БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

15» июля 2023

стор по учебной работе и разовательным инновациям О.Г. Прохоренко

Регистрационный № УД – 12773/уч.

математические основы КОМПЬЮТЕРНОЙ ГРАФИКИ

Учебная программа учреждения высшего образования по учебной дисциплине для специальности:

1-31 03 09 Компьютерная математика и системный анализ

Учебная программа составлена на основе образовательного стандарта высшего образования I ступени специальности 1-31 03 09 Компьютерная математика и системный анализ ОСВО 1-31 03 09-2021 утверждён постановлением МО РБ № 98 от 25.04.2022 г., типового учебного плана № G31-1-021/пр-тип. от 21.04.2021 г., и учебных планов БГУ № G-31-1-019/уч. от 25.05 2021 г., № G31-1-004/уч. ин. от 31.05.2021 г.

составители:

Л.Л. Голубева, заведующая кафедрой дифференциальных уравнений и системного анализа механико-математического факультета Белорусского государственного университета, кандидат физико-математических наук, доцент;

А.Э. Малевич, доцент кафедры дифференциальных уравнений и системного анализа механико-математического факультета Белорусского государственного университета, кандидат физико-математических наук, доцент;

Н.Л. Щеглова, доцент кафедры дифференциальных уравнений и системного анализа механико-математического факультета Белорусского государственного университета, кандидат физико-математических наук, доцент.

РЕЦЕНЗЕНТЫ:

Е.А. Крушевский, доцент кафедры математические методы в строительстве Белорусского национального технического университета, кандидат физикоматематических наук, доцент.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой дифференциальных уравнений и системного анализа БГУ (протокол № 13 от 14.06.2023)

Научно-методическим советом БГУ (протокол № 9 от 29.06.2023)

Зав. кафедрой дифференциальных уравнений и системного анализа, доцент

Жем Л. Л. Голубева

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

В настоящее время в обществе существует устойчивый интерес к компьютерной графике. Математики, физики, биологи, медики, кинорежиссеры, мультипликаторы, клипмейкеры, разработчики компьютерных игр и др. активно используют в своей деятельности возможности компьютерного изображения. Актуальность преподавания этой дисциплины очевидна.

Цели и задачи учебной дисциплины

Цель учебной дисциплины — обучение студентов основным математическим понятиям, методам и алгоритмам, приобретение навыков использования алгоритмов и методов компьютерной графики.

Образовательная цель: обучение студентов методам и приемам компьютерного моделирования в современных компьютерных математических средах, эффективному исследованию посредством компьютера проблем математического содержания.

Развивающая цель: формирование у студентов умений использования существующих и самостоятельной разработки новых технологий компьютерного моделирования.

Задачи учебной дисциплины:

- 1. Сформировать взгляд на компьютерную графику как на систематическую научно-практическую деятельность, носящую как теоретический, так и прикладной характер.
- 2. Иметь базовые теоретические понятия, лежащие в основе компьютерной графики.
- 3. Обучить методам геометрического моделирования, построению моделей графических данных.
- 4. Развить способности реализации алгоритмов на современных языках программирования Wolfram Language и Python.
- 5. Изучить и освоить методы и алгоритмы компьютерной графики и вычислительной геометрии.

Место учебной дисциплины в системе подготовки специалиста с высшим образованием.

Учебная дисциплина относится **к модулю** «Компьютерное моделирование» компонента учреждения высшего образования и является дисциплиной по выбору.

При изучении дисциплины «Математические основы компьютерной графики» используются знания, умения и навыки, полученные при изучении дисциплин «Геометрия и основы топологии» (модуль «Алгебра и геометрия»), «Компьютерная математика» (модуль «Компьютерная математика»), «Математический анализ» (модуль «Основы анализа»), «Методы программирования» (модуль «Программирование»).

Требования к компетенциям

Освоение учебной дисциплины «Математические основы компьютерной графики» должно обеспечить формирование у студентов следующей специализированной компетенции:

СК-8. Осуществлять математическое и компьютерное моделирование для прикладных исследований.

В результате освоения учебной дисциплины студент должен:

знать:

основные математические конструкции, алгоритмы и методы решения задач компьютерной графики и вычислительной геометрии, в том числе алгоритмы определения взаимного расположения геометрических объектов, построения выпуклых оболочек, методы моделирования линий и поверхностей и т.д.;

уметь:

применять геометрические преобразования для решения практических задач компьютерной графики; решать задачи, используя алгоритмы и методы вычислительной геометрии;

владеть

свободно методами компьютерного моделирования и основными алгоритмами решения задач компьютерной графики с использованием математического аппарата.

Структура учебной дисциплины

Дисциплина изучается в пятом семестре. Форма получения высшего образования очная (дневная).

Всего на изучение учебной дисциплины «Математические основы компьютерной графики» отведено: 120 часов, в том числе 72 аудиторных часа, из них: лекции -36 часов (в том числе: 4 часа/ДОТ), лабораторные занятия -30 часов (в том числе: 4 часа/ДОТ), управляемая самостоятельная работа -6 часов.

Трудоемкость учебной дисциплины составляет 3 зачетные единицы.

Форма промежуточной аттестации – зачет.

Занятия (лекции, лабораторные занятия), текущий контроль и промежуточная аттестация по дисциплине могут проводиться с применением дистанционных образовательных технологий (далее: ДОТ), в онлайн и офлайн режимах. В этом случае занятия проходят согласно утвержденной учебной программе и расписанию на централизованной площадке Образовательного портала БГУ, который обеспечивает интерактивное взаимодействие студента и преподавателя.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Тема 1. Введение в дисциплину

Объект и предмет изучения. Основные типы задач компьютерной графики и вычислительной геометрии. Обзор литературных источников.

Тема 2. Модели геометрических объектов на плоскости и их отношений

Объектный подход в компьютерном моделировании: представление геометрических объектов, способы задания, извлечение свойств, построение образов. Модели базовых объектов: точка, вектор, прямая. Элементарные объекты на плоскости: отрезок прямой, луч, полигон.

Модели и алгоритмы, определяющие взаимное положение объектов на плоскости.

Полигон: свойства, ориентация точки, прямой относительно полигона, взаимное расположение полигонов, алгоритмы генерирования случайных полигонов.

Тема 3. Модели геометрических объектов в пространстве и их отношений Модели базовых объектов: точки, вектора, плоскости.

Элементарные объекты в пространстве: прямая, отрезок прямой, луч, полигон, полиэдр. Модели и алгоритмы, определяющие взаимное положение объектов в пространстве.

Полиэдр: свойства, положение точки, прямой, плоскости относительно полигона, взаимное расположение полиэдров.

Тема 4. Геометрические задачи визуализации

Логические операции над отрезками. Методы и алгоритмы отсечения отрезка, полигона, полиэдра. Дополнительные задачи отсечения на плоскости и в пространстве. Лучевые методы построения оптических эффектов: тень, отражение, преломление.

Тема 5. Построение выпуклой оболочки

Основные определения (выпуклая оболочка, политоп, симплекс, грань и т.п.). Алгоритмы построения выпуклой оболочки: статически заданного конечного множества точек плоскости, последовательно поступающих точек плоскости. Методы: прохода Грэхэма (2 варианта), обхода Джарвиса, QuickHull. Анализ сложности алгоритмов.

Тема 6. Нахождение пары ближайших точек

Описание и анализ сложности алгоритма нахождения пары ближайших точек. Приложения.

Тема 7. Поиск пересекающихся отрезков

Определение взаимного положения двух отрезков. Постановка задачи. Алгоритмы, основанные на заметании плоскости прямой линией (sweep-line). Особенности алгоритма поиска пересекающихся отрезков. Анализ сложности алгоритма.

Тема 8. Триангуляция

диагоналей. Триангуляция полигона: метод хорд, метод Триангуляция Жадный Триангуляция множества точек плоскости. алгоритм. Основные определения. Структуры данных для представления триангуляции. Классификация алгоритмов построения триангуляции Делоне. Итеративные алгоритмы: простой итеративный, с индексированием поиска треугольников, с кэшированием поиска треугольников.

Тема 9. Модели кривых и поверхностей

Модель квадратичной кривой. Инварианты и классификация. Модель квадратичной поверхности. Взаимное положение поверхности относительно прямой, плоскости.

Кинематический метод построения объектов. Модели циклических кривых. Кинематическая задача перемещения в пространстве. Построение кинематических поверхностей: вращения, переноса, цилиндрических, конических, торсовых, косых.

Фрактальные множества. Построение алгебраических и геометрических фракталов.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Очной формы получения высшего образования с применением дистанционных образовательных технологий (ДОТ)

I			Количество аудиторных часов				Ţ,	йй
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	занятия	занятия	Иное	Количество часов УСР	Форма контроля знаний
1	2	3	4	5	6	7	8	9
	Математические основы компьютерной графики	36			30		6	
1	Введение в дисциплину	2						Устный опрос
2	Модели геометрических объектов на плоскости и их отношений	4			4		2	Отчет по лабораторной работе с устной защитой. Контрольная работа
3	Модели геометрических объектов в пространстве и их отношений	4 (ДОТ)			2 (ДОТ)			Отчет по лабораторной работе с устной защитой
4	Геометрические задачи визуализации	4			4			Отчет по лабораторной работе с устной защитой. Устный опрос

5	Построение выпуклой оболочки	5	5		Отчет по лабораторной работе с устной защитой. Контрольная работа
6	Нахождение пары ближайших точек	2	2 (ДОТ)		Отчет по лабораторной работе с устной защитой
7	Поиск пересекающихся отрезков	3	2		Отчет по лабораторной работе с устной защитой
8	Триангуляция	7	8	2	Отчеты по лабораторным работам. Контрольная работа
9	Модели кривых и поверхностей	5	3	2	Отчет по лабораторной работе с устной защитой. Контрольная работа

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Перечень основной литературы

- 1. Никулин, Е. А. Компьютерная графика. Модели и алгоритмы: учебное пособие для студентов направления подготовки "Информатика и вычислительная техника" / Е. А. Никулин. Санкт-Петербург; Москва; Краснодар: Лань, 2023. 706 с. По ссылке доступна электронная версия издания 2022 года (Изд. 2-е, стер.). URL: https://e.lanbook.com/book/213038.
- 2. Никулин, Е. А. Компьютерная графика. Оптическая визуализация: учебное пособие для студентов направления подготовки "Информатика и вычислительная техника" / Е. А. Никулин. Изд. 2-е, стер. Санкт-Петербург; Москва ; Краснодар : Лань, 2023. 196 с. URL: https://e.lanbook.com/book/320786.
- 3. Никулин, Е. А. Компьютерная графика. Фракталы: учебное пособие для студентов направления подготовки "Информатика и вычислительная техника" / Е. А. Никулин. Изд. 2-е, стер. Санкт-Петербург; Москва; Краснодар: Лань, 2021. 98 с. URL: https://e.lanbook.com/book/176680.
- 4. Голованов, Н. Н. Геометрическое моделирование / Н. Н. Голованов. Москва: ДМК Пресс, 2020. 405 с. URL: https://ibooks.ru/bookshelf/387310.

Перечень дополнительной литературы

- 1. Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы. Построение и анализ: [пер. с англ.] / Томас Кормен [и др.]. Третье издание. Диалектика, 2020. 1328 с.
- 2. Скворцов А.В., Мирза Н.С. Алгоритмы построения и анализа триангуляции. Томск: Изд-во Том. ун-та, 2006.
- 3. Берг, М. де Вычислительная геометрия. Алгоритмы и приложения: [пер. с англ.] / Марк де Берг, Отфрид Чеонг, Марк ван Кревельд, Марк Овермарс. 3-е изд. Москва: ДМК Пресс, 2017. 437 с.
- 4. Препарата, Ф.Вычислительная геометрия: введение / Ф. Препарата, М. Шеймос; Перевод с англ. С. А. Вичеса, М. М. Комарова; Под ред. Ю. М. Баяковского. Москва: Мир, 1989. 478 с.
- 5. Фокс, А. Д. Вычислительная геометрия: применение в проектировании и на производстве / А. Фокс, М. Пратт; пер. с англ. Г. П. Бабенко, Г. П. Воскресенского. Москва: Мир, 1982. 304 с.
- 6. Кононов, С. Г. Аналитическая геометрия: учеб. пособие для студ. учреждений высш. образования по математическим спец. / С. Г. Кононов; БГУ. Минск: БГУ, 2014. 238 с.
- 7. Кнут, Д. Э. Искусство программирования. Т. 2: Получисленные алгоритмы / Дональд Э. Кнут; под общ. ред. Ю. В. Козаченко; [пер. с англ. и ред. Л. Ф. Козаченко, В. Т. Тертышного, И. В. Красикова]. 3-е

изд., испр. и доп. – Москва ; Санкт-Петербург; Киев : Вильямс, 2007. – 829 с.

Рекомендуемое учебно-лабораторное оборудование

Для проведения занятий требуются следующее программное обеспечение: операционная система MS Windows, MS Office, *Mathematica*, Python, JupyterLab.

Перечень рекомендуемых средств диагностики и методика формирования итоговой отметки

Объектом диагностики компетенций студентов являются знания, умения, полученные ими в результате изучения учебной дисциплины. Выявление учебных достижений студентов осуществляется с помощью мероприятий текущего контроля и промежуточной аттестации.

Отметка текущего контроля по дисциплине «Математические основы формируется компьютерной графики» результате регулярной В систематической проверки знаний студентов во время занятий и по итогам самостоятельной работы. Текущий контроль знаний проходит в форме опроса на лекциях и лабораторных занятиях, во время устной защиты отчета по лабораторным работам, выполняемым в учебной лаборатории и самостоятельно вне аудитории, контрольных опросов и контрольных работ. Задания к лабораторным и контрольным работам составляются согласно содержанию учебного материала. Во время самостоятельной работы студент выполняет задания, полученные на лабораторных занятиях, а также изучает рекомендуемую литературу. При защите лабораторных работ оценивается полнота ответа, аргументация выбранных решений, последовательность и оригинальность изложения материала, оригинальность кода, корректность оформления, самостоятельность Для выполнения совершенствования способностей учиться самостоятельно студентам могут выдаваться темы докладов, с которыми они выступают на занятиях.

Формирование отметки текущей аттестации:

- отчеты по лабораторным работам, -60%;
- опросы на лекциях и лабораторных занятиях, контрольные работы 40%.

Формой промежуточной аттестации по дисциплине «Математические основы компьютерной графики» учебным планом предусмотрен зачет.

Зачет по дисциплине проходит в форме контрольного опроса в устной или письменной форме, выполнения заданий на компьютере. Если студент успешно защитил все лабораторные работы и получил положительную (4 и выше) отметку по контрольным работам, то допускается определение результатов промежуточной аттестации по дисциплине на основании

результатов текущего контроля знаний без проведения дополнительного опроса на зачете. Это решение находится в компетенции преподавателя (группы преподавателей), ответственного за реализацию дисциплины. При этом явка студента на зачет является обязательной.

Примерный перечень заданий для управляемой самостоятельной работы студентов

Тема 2. Модели геометрических объектов на плоскости и их отношений. (2 часа)

Задание. Дополните систему kmGeom новым функционалом, позволяющим работать с объектом «отрезок на плоскости».

Задание 1. Спроектировать

- -- объект «отрезок на плоскости», его внутреннее представление;
- -- конструкторы объекта «отрезок на плоскости»;
- -- функции, вычисляющие свойства объекта «отрезок на плоскости».

Создать и тестировать конструкторы и функции, реализующие запросы свойств. Написать спецификации функций: имя, входные аргументы, что вычисляет, в каком виде возвращает результат вычислений.

Задание 2. Спроектировать и реализовать

- -- конструктор отрезка: задано параметрическое уравнение прямой, несущей отрезок, и значения параметров в точках-концах отрезка (возможно, направленного);
- -- запрос свойства прямой: ее параметрическое уравнение, "equParam";
- -- запрос свойства прямой: ее направляющий вектор, "dir";
- -- запрос свойства прямой: ее нормальный вектор, "norm";
- -- конструктор прямой: задан объект «отрезок на плоскости», построить объект «прямая на плоскости», которой принадлежит этот отрезок (построить прямую, несущую этот отрезок).

Целью данного задания является выработка у студента навыков объектноориентированного проектирования и функционального стиля программирования.

Форма контроля — отчет по лабораторной работе с устной защитой. Контрольная работа

Тема 8. Триангуляция. (2 часа)

Элементы построения триангуляции Делоне.

- 1. Создайте суперструктуру триангуляции, квадрат, содержащий случайным образом заданное множество точек плоскости, отобразите ее.
- 2. Инициируйте триангуляцию вершинами квадрата, его ребрами, одной из диагоналей и двумя получившимися треугольниками. Используйте структуру «Узлы, простые Ребра, Треугольники»

- 3. Добавьте точку, перестройте триангуляцию.
- 4. Проверьте условие Делоне для пар смежных треугольников триангуляции. Форма контроля контрольная работа.

Тема 9. Модели кривых и поверхностей. (2 часа)

- 1. Напишите функцию, которая определяет тип квадратичной кривой.
- 2. Напишите функцию, которая определяет тип квадратичной поверхности.
- 3. Напишите функцию, тестирующую взаимное расположение квадратичной кривой и прямой линии.
- 4. Напишите функцию, вычисляющую линию пересечения квадратичной поверхности и плоскости.

Форма контроля – контрольная работа

Описание инновационных подходов и методов к преподаванию учебной дисциплины

При организации образовательного процесса используется *эвристический подход*, который предполагает демонстрацию многообразия решений большинства профессиональных задач и жизненных проблем.

При организации образовательного процесса используется *практико-ориентированный подход*, который предполагает освоение содержания через решения практических задач.

При организации образовательного процесса *используются методы и приемы развития критического мышления*, которые представляют собой систему, формирующую навыки работы с информацией в процессе чтения и письма; понимании информации как отправного, а не конечного пункта критического мышления.

На лекциях и лабораторных занятиях используются следующие методы обучения: проблемного изложения, поисковый, репродуктивный, исследовательский. При проведении занятий также планируется использовать наглядные методы, такие как иллюстрация, демонстрация, визуализация.

Методические рекомендации по организации самостоятельной работы обучающихся

Для организации самостоятельной работы студентов по учебной дисциплине рекомендовано разместить на образовательном портале или учебно-методические сайте кафедры материалы: курсы лекций лабораторные практикумы, методические лабораторным указания К занятиям, вопросы для подготовки к зачету, перечень рекомендуемой литературы, информационные ресурсы.

Самостоятельная работа студента включает в себя работу с учебной литературой по заданным разделам дисциплины, поиск в Интернете новейшей учебной и научной информации в указанных областях знаний и знакомство с ней, а также выполнение задач, поставленных на занятиях.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УВО

Название	Название	Предложения	Решение, принятое			
учебной	кафедры	об	кафедрой,			
дисциплины,		изменениях в	разработавшей			
с которой		содержании	учебную			
требуется		учебной	программу (с			
согласование		программы	указанием даты и			
		УВО по	номера протокола)1			
		учебной				
		дисциплине				
Отсутствует						

¹ При наличии предложений об изменениях в содержании учебной программы УВО.

	ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ								
К	УЧЕБНОЙ	ПРОГРАММЕ	ПО	ИЗУЧАЕМОЙ	УЧЕБНОЙ				
ДИ	СЦИПЛИНЕ Н	HA//		_ УЧЕБНЫЙ ГОД					

дисциплине на/ у чевный год						
и изменения		Основание				
_ (протокол мº	01	200г.)				
		ппг с				
(подпись)	_	Л.Л. Голубева (И.О.Фамилия)				
-		С.М. Босяков (И.О.Фамилия)				
	и изменения на и одобрена на з _ (протокол №	и изменения на и одобрена на заседани _ (протокол № от				