Белорусский государственный университет

УТВЕРЖДАЮ

Проректор по учебной работе и образовательным инновациям
О.Г. Прохоренко

«22» декабря 2023 г. — Регистрационный № УД- 1048 /м.

ОСНОВЫ СИНЕРГЕТИКИ

Учебная программа учреждения высшего образования по учебной дисциплине для специальности:

> 7-06-0531-01 Химия профилизация: Химический дизайн новых материалов

Учебная программа составлена на основе ОСВО 7-06-0531-01-2023, типового учебного плана №7-06-05-001/пр., утвержденного 17.11.2022 г., учебного плана М44-5.5-04/уч. от 29.12.2022 г.

составители:

Вадим Э. Матулис, доцент кафедры неорганической химии Белорусского государственного университета, кандидат химических наук, доцент.

РЕЦЕНЗЕНТЫ:

А.И. Кулак, директор Государственного научного учреждения «Институт общей и неорганической химии Национальной академии наук Беларуси», член-корреспондент НАН Беларуси, доктор химических наук, профессор

Ю.В. Григорьев, заведующий лабораторией химии конденсированных сред Учреждения БГУ «Научно-исследовательский институт физико-химических проблем», кандидат химических наук

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой неорганической химии (протокол № 5 от 4 декабря 2023 г.).

Научно-методическим Советом БГУ (протокол № 4 от 21.12.2023 г.)

Зав.кафедрой	Свиридов Д.В

Белорусский государственный университет

УТВЕРЖДАЮ

Проректор по учебной работе и образовательным инновациям _____О.Г. Прохоренко «22» декабря 2023 г. Регистрационный № УД- 1048 /м.

ОСНОВЫ СИНЕРГЕТИКИ

Учебная программа учреждения высшего образования по учебной дисциплине для специальности:

7-06-0531-01 Химия профилизация: Химический дизайн новых материалов Учебная программа составлена на основе ОСВО 7-06-0531-01-2023, типового учебного плана №7-06-05-001/пр., утвержденного 17.11.2022 г., учебного плана М44-5.5-04/уч. от 29.12.2022 г.

составители:

Вадим Э. Матулис, доцент кафедры неорганической химии Белорусского государственного университета, кандидат химических наук, доцент.

РЕЦЕНЗЕНТЫ:

А.И. Кулак, директор Государственного научного учреждения «Институт общей и неорганической химии Национальной академии наук Беларуси», член-корреспондент НАН Беларуси, доктор химических наук, профессор

Ю.В. Григорьев, заведующий лабораторией химии конденсированных сред Учреждения БГУ «Научно-исследовательский институт физико-химических проблем», кандидат химических наук

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой неорганической химии (протокол № 5 от 4 декабря 2023 г.).

Научно-методическим Советом БГУ (протокол № 4 от 21.12.2023 г.)

Зав.кафедрой	Свиридов Д.В
зар кафелрои	(pununop / I R
эав.кафедрои	Свиридов д.Б

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цель дисциплины — сформировать у магистрантов представления о синергетических подходах к описанию процессов, протекающих в сложных динамических системах.

Задачи дисциплины — познакомить магистрантов с основными понятиями синергетики; рассмотреть математический аппарат описания сложных динамических систем и анализа их временной эволюции; познакомиться с применением синергетики к описанию систем, в которых протекают химические реакции.

Место учебной дисциплины в системе подготовки специалиста с углубленным высшим образованием.

Учебная дисциплина «Основы синергетики» для специальности 7-06-0531-01 Химия, профилизации «Химический дизайн новых материалов» входит в модуль «2.5 Иерархические структуры» компонента учреждения высшего образования.

Дисциплина «Основы синергетики» предназначена для изучения во втором семестре.

Данный курс связан с такими дисциплинами, как «Высшая математика», «Информатика», «Физическая химия» и может быть прочитан после изучения указанных дисциплин.

Требования к компетенциям

Освоение учебной дисциплины «Основы синергетики» должно обеспечить формирование следующих компетенций, предусмотренных образовательным стандартом углубленного высшего образования по специальности 7-06-0531-01 Химия, профилизации «Химический дизайн новых материалов»:

СК-5 Применять теоретические положения к описанию иерархических структур и сложных динамических систем; анализировать временную динамику сложных систем и делать выводы о прогнозировании их поведения в будущем.

В результате освоения учебной дисциплины студент должен: знать:

- принципиальные различия между консервативными и диссипативными структурами;
- роль ограничений и неравновесности в возникновении диссипативных структур;
- начальные представления о путях перехода в сложных динамических системах от хаоса к порядку и наоборот;
- виды дескрипторов молекулярной структуры;

ymerb:

• составлять модели химических процессов и анализировать полученные решения;

- рассчитывать дескрипторы молекулярной структуры; **владеть:**
- подходами к прогнозированию временной эволюции систем;
- современными программными пакетами для квантово-химических расчетов.

Структура учебной дисциплины

Дисциплина изучается во втором семестре. Всего на изучение учебной дисциплины «Основы синергетики» отведено:

для очной формы получения высшего образования -90 часов, в том числе 36 аудиторных часа, из них: лекции -12 часов, практические занятия -20 часов, из них 8 часов — дистанционное обучение, управляемая самостоятельная работа -4 часа.

Трудоемкость учебной дисциплины составляет 3 зачетные единицы. Форма промежуточной аттестации — зачет.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Тема 1. Консервативные и диссипативные системы

Явления самоорганизации в диссипативных системах. Примеры из различных областей и трудности в описании с помощью классических подходов.

Консервативные (Гамильтоновы) системы и диссипативные системы. Равновесные и неравновесные системы. Ограничения в неравновесных системах и их роль в возникновении диссипативных структур.

Тема 2. Переход от периодических режимов к хаосу

Системы с монотонной и немонотонной эволюцией. Примеры и подходы к описанию.

Свободный осциллятор. Понятие о фазовом пространстве, фазовой траектории и фазовом портрете системы.

Осциллятор с затуханием, осциллятор с вынуждающей силой. Их описание, состояние и фазовые портреты.

Тема 3. Дескрипторы молекулярной структуры

Виды молекулярных дескрипторов. Квантово-химические дескрипторы. Расчеты полных и π -зарядов на атомах, энергий молекулярных орбиталей, молекулярных электростатических потенциалов и других молекулярных дескрипторов в программном пакете Gaussian.

Тема 4. Прогнозирование свойств веществ на основе квантов-химических дескрипторов

Реакционная способность карбонильных соединений, полинуклеофилов и др. Кинетический и термодинамический контроль.

Раздел 5. Диссипативные динамические структуры в химии

Моделирование химических динамических систем. Реакция Белоусова-Жаботинского в системах с перемешиванием. Периодические и хаотические режимы. Реакция БЖ в неоднородной системе. Пространственные и пространственно-временные структуры в реакции БЖ.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА

Дневная форма получения образования с применением дистанционных образовательных технологий

Ы			Количество аудиторных часов			CP		
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Количество часов У	Форма контроля зна ний
1.	Консервативные и диссипативные системы	2	2					Собеседо-
			(ДОТ)					вание
2.	Переход от периодических режимов к хаосу	2	2					Собеседо-
			(ДОТ)					вание
3.	Дескрипторы молекулярной структуры	2	4				2	Контроль-
			(2ДОТ)					ная работа
4.	Прогнозирование свойств веществ на основе	4	12				2	Тест, Кон-
	квантов-химических дескрипторов							трольная
	•							работа
5.	Диссипативные динамические структуры в	2	2					Тест
	химии		(ДОТ)					
	Итого	12	20				4	

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Перечень основной литературы

- 1. П. Берже, И. Помо, К. Видаль. Порядок в хаосе. М.: Мир, 1991.
- 2. Г. Николис, И. Пригожин. Познание сложного. М.: Мир, 1990.
- 3. И. Пригожин, И. Стенгерс. Порядок из хаоса. М.: Едиториал УРСС, 2003.
- 4. Г.Николис, И.Пригожин. Самоорганизация в неравновесных системах. М.: Мир, 1979.
- 5. L. Wang, J. Ding, L. Pan, D. Cao, H. Jiang, X. Ding, Quantum chemical descriptors in quantitative structure—activity relationship models and their applications / Chemometrics and Intelligent Laboratory Systems. 2021. Vol. 217. P. 104384.

Перечень дополнительной литературы

- 6. Г.Хакен. Синергетика. М.: Мир 1980.
- 7. Е.Н.Князева, С.П.Кюрдюмов. Законы эволюции и самоорганизация сложных систем. М.: Наука, 1994.
- 8. И.Пригожин. От существующего к возникающему. М.: Наука, 1985.
- 9. И.Пригожин, Д.Кондепути. Современная термодинамика. М.: Мир, 2002 г. (гл. 5. Порядок через флуктуации. 5.18 Нелинейная термодинамика, 5.19 Диссипативные структуры).
- 10. Foresman J.B., Frisch A. Exploring Chemistry with Electronic Structure Methods. Gaussian; 3rd edition, 2015.
- 11.E. Y. Grigoryev, I. M. Grigorieva, A. S. Lyakhov, L. S. Ivashkevich, Vadim E. Matulis, L. G. Lavrenova, S. V. Voitekhovich, Y. V. Grigoriev / 2,6-Di(1H-tetrazol-1-yl)pyridine and its cupric chloride complex // Z. Anorg. Allg. Chem. 2023 Vol. 649. P. e202200290.

Перечень рекомендуемых средств диагностики и методика формирования итоговой отметки

Учебным планом по направлению специальности: 7-06-0531-01 Химия, профилизации «Химический дизайн новых материалов» в качестве формы промежуточной аттестации по учебной дисциплине «Основы синергетики» рекомендован зачет.

Для текущей оценки достижений и контроля качества усвоения знаний студентами используется следующий диагностический инструментарий:

- выполнение тестовых заданий;
- письменные контрольные работы по отдельным темам;
- собеседование по отдельным темам;
- сдача зачета по учебной дисциплине.

Примерный перечень заданий для управляемой самостоятельной работы студентов

Тема: Дескрипторы молекулярной структуры

Задание. Для молекулы формальдегида рассчитать полные заряды на атомах и построить контурные карты молекулярного электростатического потенциала в разных плоскостях.

Перечень средств диагностики:

- 1. Выполнение заданий на СДО https://educhem.bsu.by
- 2. Контрольная работа

Тема: Прогнозирование свойств веществ на основе квантов-химических дескрипторов

Задание. Выполнить количественную оценку применимости различных квантово-химических дескрипторов для прогнозирования реакционной способности карбонильных соединений при взаимодействии с нуклеофилами.

Перечень средств диагностики:

- 1. Выполнение заданий на СДО https://educhem.bsu.by
- 2. Контрольная работа

Примерная тематика практических занятий

- 1. Преобразование Фурье дискретного сигнала. Анализ спектра мощности дискретного сигнала. Идентификация периодических (с учетом шумов) режимов.
- 2. Размерность Хаусдорфа. Корреляционная размерность множества. Определение корреляционной размерности множества (дискретного сигнала).
- 3. Расчеты π -зарядов на атомах.

- 4. Построение контурных карт молекулярных электростатических потенциалов.
- 5. Прогнозирование свойств веществ на основе квантов-химических дескрипторов (реакционная способность карбонильных соединений, полинуклеофилов и др.).
- 6. Кинетический и термодинамический контроль.

Описание инновационных подходов и методов к преподаванию учебной дисциплины

При организации образовательного процесса используются *эвристический и практико-ориентированный подходы*, которые предполагают:

- демонстрацию многообразия решений профессиональных задач;
- индивидуализацию обучения через возможность самостоятельно ставить цели, осуществлять рефлексию собственной образовательной деятельности;
 - освоение содержания образования через решения практических задач.

Методические рекомендации по организации самостоятельной работы обучающихся

При изучении учебной дисциплины рекомендуется использовать следующие формы самостоятельной работы:

поиск и обзор литературы и электронных источников по заданной проблеме курса;

выполнение домашнего задания;

решение задач, предлагаемых на практических занятиях;

подготовка к практическим семинарским занятиям; – научно-исследовательские работы;

составление моделей и проведение расчетов.

Примерный перечень вопросов к зачету

- 1. Системы с монотонной и немонотонной эволюцией. Примеры и подходы к описанию.
- 2. Консервативные (Гамильтоновы) системы и диссипативные системы.
- 3. Равновесные и неравновесные системы.
- 4. Моделирование химических динамических систем.
- 5. Реакция Белоусова-Жаботинского в системах с перемешиванием. Периодические и хаотические режимы.
- 6. Пространственные и пространственно-временные структуры в реакции БЖ.

- 7. Виды молекулярных дескрипторов.
- 8. Квантово-химические дескрипторы.
- 9. Полные и π-заряды на атомах.
- 10. Молекулярный электростатический потенциал.
- 11. Использование квантово-химических дескрипторов для прогнозирования свойств карбонильных соединений.
- 12. Использование квантово-химических дескрипторов для прогнозирования свойств полинуклеофилов.
- 13. Кинетический и термодинамический контроль.
- 14. Моделирование процессов в растворах.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УВО

Название	Название	Предложения	Решение, принятое
учебной	кафедры	об изменениях в содержа-	кафедрой, разрабо-
дисциплины,		нии учебной программы	тавшей учебную
с которой		учреждения высшего	программу (с указа-
требуется со-		образования по учебной	нием даты и
гласование		дисциплине	номера протокола)
Компьютер-	Кафедра	Отсутствуют	Утвердить согласо-
ное моделиро-	неоргани-		вание без внесения
вание строе-	ческой хи-		изменений
ния и реакци-	мии		(протокол № 5 от 4
онной способ-			декабря 2023 г.)
ности молекул			

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ

учебный год

№	Дополнения и изменения	Основание
п/п		
Учебна	ая программа пересмотрена и одобр (протокол М	рена на заседании кафедры № от 20_ г.)
Завелу	ющий кафедрой	
VTREI	РЖДАЮ	
	факультета	