УДК 911.375:528.85(476)

ОЦЕНКА ВЛИЯНИЯ РАСТИТЕЛЬНОГО ПОКРОВА НА ТЕМПЕРАТУРУ ПОВЕРХНОСТИ ЗЕМЛИ В ОСНОВНЫХ ГЕОТЕХНИЧЕСКИХ СИСТЕМАХ КРУПНЫХ ГОРОДОВ БЕЛАРУСИ

Л. А. Кравчук, А. А. Яновский, Н. М. Баженова

Институт природопользования НАН Беларуси, ул. Скорины 10, г. Минск, Беларусь, kravchu-k@yandex.by, yanouski@yandex.by

С использованием сопряженного анализа данных дистанционного зондирования Земли (ДЗЗ) и дифференцированных ГИС-проектов основных геотехнических систем крупных городов Беларуси (Минска, Витебска и Могилева) оценена связь между температурой поверхности (LST), средними индексами растительности (NDVI, LAI, ССС) и степенью озелененности.

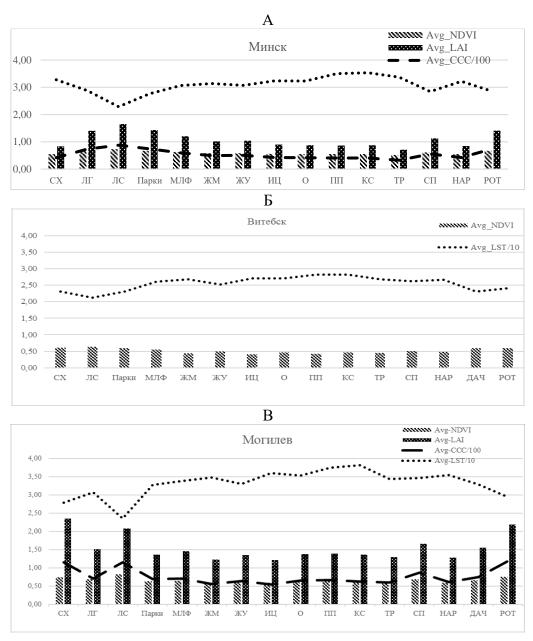
Ключевые слова: город; геотехнические системы; озелененные территории; дистанционное зондирование; температура поверхности; Минск; Витебск; Могилев.

ASSESSMENT OF THE INFLUENCE OF VEGETATION COVER ON THE LAND SURFACE TEMPERATURE IN MAIN GEOTECHNICAL SYSTEMS OF THE LARGE CITIES OF BELARUS

L. A. Kravchuk, A. A. Yanovskiy, N. M. Bazhenova

Institute for Nature Management of the National Academy of Sciences of Belarus, Skaryna st., 10, Minsk, Belarus, kravchu-k@yandex.by, yanouski@yandex.by

Using a coupled analysis of Earth remote sensing (ERS) data and differentiated GIS projects of the main geotechnical systems of large cities of Belarus (Minsk, Vitebsk and Mogilev) a relationship was established between land surface temperature (LST), average vegetation indices (NDVI, LAI, CCC) and the degree of greenery.


Keywords: city; geotechnical system; vegetation cover; remote sensing; land surface temperature; Minsk; Vitebsk; Mogilev.

При современных темпах урбанизации сохранение и оптимизация системы озелененных территорий для целей экологически обоснованного и социально ориентированного градостроительного планирования является актуальной задачей в связи с ростом численности городского населения, интенсификацией застройки городов, техногенных нагрузок и изменением климата. Необходимость дифференцированной оценки зеленой инфраструктуры в городах обусловлена важностью принятия адресных решений

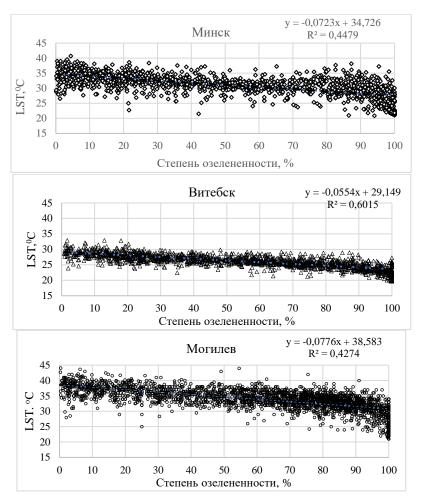
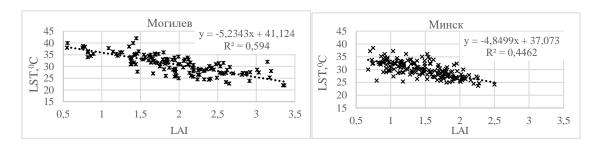
по оптимизации городских насаждений. Развитие дистанционных исследований городов позволяет детально оценивать структуру городских территорий и состояние растительного покрова в них [1, 2]. Для этих целей в крупных городах Беларуси (Минске, Витебске и Могилеве) использовался сопряженный анализ данных ДЗЗ и ГИС-проектов городов, дифференцированных в разрезе функционально-планировочных выделов по типам и видам ГТС [3-5]. Этапы исследований включали: подготовку ГИС-проекта городской территории, дифференцированного в разрезе ГТС; подбор и радиометрическую коррекцию спутниковых снимков (геометрическую коррекцию спутниковых снимков (геометрическую коррекцию спутниковых снимков для оценки LST); фильтрацию облаков и поврежденных пикселей; коррегистрацию данных ДЗЗ и данных ГИС; расчет вегетационных индексов с фильтрацией по диапазону валидных значений; извлечение значений в пределах выделов ГТС в ГИС-проекте; обработку и анализ данных; формирование тематических карт.

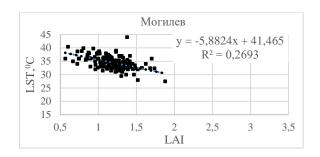
В застроенной части городов ГТС дифференцировались по видам и типам, среди последних выделялись: жилая многоквартирная, включая исторический центр (ЖМ, ИЦ), жилая усадебная (ЖУ), общественная (О), производственная (ПП), коммунально-складская (КС), специализированная (СП), дорожно-транспортная (ТР), санирующая (САН), участки незавершенного строительства (УЗ). Среди незастроенных территорий природного комплекса в городах идентифицировались: леса, лесопарки (ЛП), лугопарки (ЛГ), парки, малые ландшафтные формы (МЛФ), а также резервные озелененные территории (РОТ). В последних выделялись сельскохозяйственные земли, древесно-кустарниковая растительность, защитные насаждения. Каждый выдел в ГИС-проекте индексировался, что позволило провести сопряженную обработку ДЗЗ и ГИС, а также дифференцированный анализ данных.

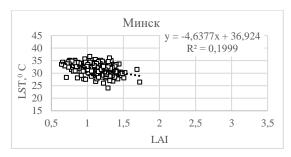
Использовались одномоментные снимки в период наиболее активной вегетации растений. Основным критерием выбора даты, помимо соответствия времени формирования ГИС-проектов, являлась минимальная облачность. Для идентификации растительности в составе ГТС городов по данным ДЗЗ использовались снимки Sentinel-2 по которым рассчитывались: нормализованный разностный индекс растительности (NDVI), индекс листовой поверхности (Leaf Area Index – LAI), содержание в пологе хлорофилла (Canopy chlorophyll content – CCC). Для оценки степени озелененности использовалось отношение числа пикселей со значениями NDVI, соответствующих растительности (>0,4), к общему числу пикселей в картографируемых выделах. Определение температуры подстилающей поверхности (Land Surface Temperature – LST) проводилось по снимкам спектрорадиометров ASTER (Минск, Могилев) и Landsat 8 (Витебск). Подробности расчетов приведены в [3-5]. Средние значения вегетационных индексов для озелененных территорий и LST в разрезе типов ГТС Минска, Витебска и Могилева приведены на рис. 1.

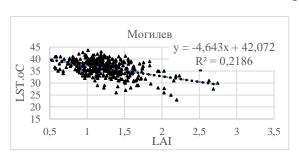
 $Puc.\ 1.$ Средние значения вегетационных индексов и температуры поверхности для озелененных территорий в различных ГТС Минска (A), Витебска (Б) и Могилева (В)

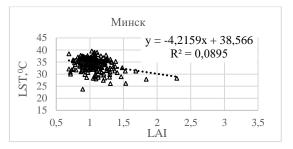
На примере Минска и Могилева в летний период установлена наиболее высокая отрицательная корреляционная связь между средними показателями LST и LAI, а также степенью озелененности всех типов ГТС города (коэффициент корреляции варьирует в пределах -0.7, -0.6). Для Витебска коэффициент корреляции LST со степенью озелененности выделов летом оценивался в -0.78. Связь средних значений LST со степенью озелененности всех ГТС в анализируемых городах отражена на рис. 2.


Рис. 2. Связь средних значений LST во всех типах ГТС Минска, Витебска и Могилева со степенью озелененности выделов (в летний период)


Среди основных типов городских ГТС наиболее высокая отрицательная зависимость проявляется в составе резервных озелененных территорий, представленных преимущественно древесно-кустарниковой растительностью в долинах рек, сельскохозяйственными угодьями (рис. 3).


Puc. 3. Связь средних значений LST с LAI для резервных озелененных территорий в Минске и Могилеве (в летний период)


Связь ослабевает в жилой многоквартирной застройке, где высоко затенение территорий многоэтажными домами, а также в производственно-коммунальной, где высоко участие производственной инфраструктуры (зданий, площадок), эмиссий от технологических процессов (рис. 4).

жилая многоквартирная застройка

производственно-коммунальная застройка

Puc.4. Связь средних значений LST со средними значениями LAI в ГТС жилой многоквартирной и производственно-коммунальной застройке Минска и Могилева

Библиографические ссылки

- 1. Remote sensing of urban and suburban areas; eds. T. Rashed, C. Jürgens, Springer, Dordrecht, 2010. 352 p. doi: https://doi.org/10.1007/978-1-4020-4385-7.
- 2. *Кавеленова Л. М.* К перспективам интеграции данных наземного мониторинга, ДЗЗ и ГИС в оценке состояния компонентов природных и антропогенно преобразованных ландшафтов // Современное ландшафтно-экологическое состояние и проблемы оптимизации природной среды регионов: материалы XIII Международной ландшафтной конференции, посвященной столетию со дня рождения Ф. Н. Милькова, Воронеж, 14-17 мая, 2018 г.: в 2 т. / ред.: В. Б. Михно [и др.]. Воронеж: ИСТОКИ, 2018. Т.1. С. 204-206.
- 3. *Кравчук Л. А., Баженова Н. М., Гайшун А. Н.* Средоформирующие функции зеленой инфраструктуры г. Витебска // Природопользование. 2021. № 1. С. 127-137.
- 4. *Кравчук Л. А., Яновский А. А., Баженова Н. М.* Дистанционная оценка влияния растительного покрова на температуру подстилающей поверхности основных геотехнических систем крупного города (на примере Минска) // Природопользование. 2022. № 1. С. 71–82.
- 5. *Кравчук Л. А., Яновский А. А., Баженова Н. М.* Оценка влияния растительного покрова на температуру подстилающей поверхности в различных геотехнических системах г. Могилева // Природопользование. 2023. № . С. 13–23.