МОЛЕКУЛЯРНАЯ БИОФИЗИКА

КОНФОРМАЦИОННЫЙ АНАЛИЗ БИОЛОГИЧЕСКИ АКТИВНЫХ МОЛЕКУЛ БРАССИНОСТЕРОИДОВ КВАНТОВО-МЕХАНИЧЕСКИМИ МЕТОДАМИ

¹Андрианов В.М., ²Анищенко И.В.

¹Институт физики им. Б.И.Степанова НАН Беларуси, Минск, Беларусь, e-mail: v.andrianov@dragon.bas-net.by
²Объединенный институт проблем информатики НАН Беларуси, Минск, Беларусь, e-mail:anishchenko.ivan@gmail.com

Брассиностероиды (БС) - новый уникальный класс растительных гормонов, проявляющих высокую биологическую активность. Она, в частности, связана с 22R,23R-диольной структурой в боковой цепи. Синтетические аналоги с 22S,23S-гидроксилами менее активны. Наличие боковой цепи с длинной цепочкой связей С-С в структуре БС предполагает разнообразие конформационных состояний в растворе. В связи с этим актуален вопрос о связи биоактивности БС со структурой и конформационным поведением в растворе их боковой цепи.

Цель данной работы заключалась в выявлении биоактивных структурных форм молекул класса БС с различной биологической активностью методами теоретического конформационного анализа.

Объектами исследования являлись синтетический (22S,23S)-24-эпибрассинолид (1) и природный брассинолид (2), различающиеся конфигурацией диольной системы боковой цепи (22S,23S (1); 22R,23R(2)) и метильной группы (24R (1) и 24S (2)) (рисунок).

Предварительное определение полного семейства устойчивых конформеров в исследуемых молекулах методом ММ позволило получить 64 (1) и 62 (2) локальных минимума, которые явились стартовыми структурами для проведения неэмпирических расчетов.

Неэмпирические расчеты конформации и электронной конфигурации исследуемых молекулярных систем проводились в программном продукте Gaussian 09 Rev В.02 в несколько этапов. На первом шаге моделирования молекулы подвергались предварительной процедуре оптимизации геометрии с помощью метода самосогласованного поля Хартри-Фока (НF). Второй шаг квантово-механических расчетов состоял в уточнении геометрии полученных на первом этапе конформаций, что достигалось за счет применения метода теории функционала плотности (DFT)

с B3LYP гибридным функционалом. Оптимизация геометрии исследуемых молекул методами HF и DFT осуществлялась с использованием базисного набора 6-31G(d). На заключительном этапе моделирования проводились расчеты электронной конфигурации молекул для фиксированных конформаций, полученных на предыдущем шаге расчетов, с использованием метода DFT с B3LYP-функционалом и расширенным базисным набором 6-311(d,p). В результате для каждой молекулы был получен ряд конформаций и проведены оценки энергии каждой из них.

a
$$C24$$
 $C27$ $C24$ $C27$ $C26$ $C28$ $C24$ $C27$ $C29$ $C2$

Рисунок – Химическое строение (22S,23S)-24-эпибрассинолида (а), брассинолида (б) и структура боковой цепи (с) (конформер RRS1, пунктиром показана водородная связь Об...H(О5))

Плотности населенности локальных энергетических минимумов рассчитывали из полных энергий конформеров, используя распределение Больцмана при комнатной температуре (293K).

В результате проведенных расчетов получены локальные минимумы для молекулы (I) (51) и для молекулы (II) (42); разность между минимальной и максимальной электронной энергией в обеих молекулах составляет около 20 ккал/моль. В пределах семейства конформеров молекулы (I) конформеры SSR_1 - SSR_9 обеспечивают 95% заселенности, а конформеры RRS_1 - RRS_6 — 90% заселенности в газовой фазе в пределах семейства конформеров молекулы (2), что указывает на большую гибкость боковой цепи молекулы (1) по сравнению с молекулой (2).

Результаты расчетов сведены в таблицу, анализ которой показывает, что небольшие различия химического строения боковой цепи в исследуемых БС приводят к значительным изменениям ее структуры и конформационных возможностей при переходе из кристаллического состояния в раствор. Так, в случае самого низкоэнергетического конформера RRS_1 молекулы (2) в отличие от конформера SSR_1 молекулы (1) наблюдаются незначительные изменения структуры боковой цепи по сравнению с кристаллическим состоянием. Основные структурные изменения в семействе низкоэнергетических конформеров RRS_i молекулы (2) происходят в

хвостовой части боковой цепи, в то время как в семействе конформеров SSR_i молекулы (1) – и в центральной ее части.

Таблица — Двугранные углы СССС (град), относительные электронные энергии ΔE (ккал/моль), расстояния О...H(O) (Å) в пределах диольной системы боковой цепи низкоэнергетических конформеров SSR_i и RRS_i

Конфор- AE C16C17- C17C20- C20C22- C22C23- C23C24- C23C24- O5 O6 %										
Конфор-	ΔE	C16C17- C20C22	C17C20- C22C23	C20C22- C23C24	C22C23- C24C25	C23C24- C25C26	C23C24- C25C27	O5 H(O6)	O6 H(O5)	(*)
мер С20С22 С22С23 С23С24 С24С23 С23С26 С23С27 Н(Об) Н(Об) (1)										
Кри-	-	68.6	-145.5	-177.7	56.5	-169.0	67.5	3.74	3.72	-
сталл										
SSR_1	0.0	54.4	70.7	-149.0	164.0	-155.2	79.0	2.06	3.51	20.6
SSR_2	0.170	54.6	70.8	-146.7	176.3	-49.6	-172.7	3.04	2.04	15.4
SSR ₃	0.225	53.9	66.6	-165.5	72.4	-158.4	76.1	2.18	3.35	14.0
SSR ₄	0.304	54.3	70.6	-149.6	163.1	66.2	-61.4	2.07	3.51	12.2
SSR ₅	0.386	54.2	70.2	-146.9	175.9	-51.0	-174.2	3.52	2.03	10.6
SSR ₆	0.569	54.3	70.5	-147.8	167.6	-150.9	83.7	3.07	2.04	7.8
SSR ₇	0.631	53.6	66.1	-164.5	76.5	-157.4	77.0	3.55	2.14	7.0
SSR ₈	0.868	54.2	70.5	-148.4	162.6	63.2	-64.6	3.08	2.04	4.6
SSR ₉	1.198	55.4	71.6	-141.5	174.9	-51.2	-174.7	2.58	2.29	2.6
Брассинолид (2)										
Кристалл	-	52.6	-176.5	52.3	-170.8	-169.9	70.2	3.68	2.41	-
RRS ₁	0.0	55.8	-177.3	56.3	-179.0	50.3	173.1	3.40	2.20	39.5
RRS ₂	0.504	55.7	-177.3	56.6	-174.9	146.8	-88.3	3.34	2.18	16.6
RRS ₃	0.692	55.5	-177.3	56.2	-170.2	152.0	-82.49	2.18	3.35	12.0
RRS ₄	0.701	56.0	-177.2	58.0	-161.8	-56.3	71.0	3.38	2.15	11.9
RRS ₅	1.047	55.5	-176.9	56.7	-171.6	-71.9	56.1	2.18	3.35	6.5
RRS ₆	1.412	56.4	-170.8	137.3	-173.7	52.3	175.7	2.52	2.34	3.5

Примечание: (*) – плотности населенности энергетических минимумов

Отметим также и большие различия в плотности населенности локальных энергетических минимумов. Анализ расстояний О...H(О) в пределах диольной системы боковой цепи показывает, что практически во всех конформерах обеих молекул образуется по одной внутримолекулярной водородной связи (ВВС): О5...H(О6) или О6...H(О5). Причем суммарное число конформеров, образующих эти ВВС, с учетом их процентного содержания, в молекуле (1) будет практически поровну, а в молекуле (2) — в соотношении 1:3. Это означает, что в молекуле (1) число свободных гидроксилов О5Н и О6Н, способных образовывать межмолекулярные водородные связи с рецептором, приблизительно одинаково, в то время как в молекуле (2) свободных гидроксилов О6Н в три раза больше, чем О5Н. Такие различия в соотношении свободных гидроксилов диольной системы боковой цепи в обеих молекулах, на наш взгляд, могут быть одной из важных причин их различной биологической активности.

СПЕКТРАЛЬНО-КИНЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ МИКРОСЕКУНДНОЙ ФОСФОРЕСЦЕНЦИИ ПРИ КОМНАТНОЙ ТЕМПЕРАТУРЕ ТРОМБИНА ИЗ КРОВИ ЧЕЛОВЕКА

Борисевич Н.А.¹, Лозникова С.Ж.², <u>Суходола А.А.¹</u>

¹Институт физики им. Б.И. Степанова НАН Беларуси, Минск ²Институт биофизики и клеточной инженерии НАН Беларуси, Минск e-mail: sukhodola@imaph.bas-net.by

Введение. Ферментативный белок тромбин (α-тромбин) является важнейшим компонентом системы свёртывания крови человека [1]. Вместе с фибрином он активно участвует в процессах образования тромбов, являющихся одной из основных причин ишемического инсульта [2].

Функциональная активность тромбина тесно связана с его внутримолекулярной динамикой [3]. Выраженная зависимость времени жизни т фосфоресценции остатков одной из ароматических кислот триптофана от молекулярной подвижности окружения хромофора и соответствие времен жизни триптофановой фосфоресценции при комнатной температуре (ТФКТ) характерным временам низкочастотных макромолекул флуктуаций структуры позволяют изучать фосфоресцентным методом медленную внутримолекулярную динамику тромбина в диапазоне $10^{-6} - 1$ с [4]. Корреляция между функциональной микросекундной белка его внутримолекулярной активностью И динамикой, оцениваемой на основе времени жизни ТФКТ, позволяет предсказывать изменения активности тромбина при изменении временных параметров ТФКТ [4].

В настоящей работе обнаружена микросекундная фосфоресценция тромбина при комнатной температуре и исследованы параметры этого свечения. Проведен анализ внутримолекулярной динамики тромбина в условиях моделирования ацидоза (снижение рН среды с 8.0 до 5.0), в