БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ

«05» пюля 2023

Проректор но унебной работе и образовательным инновациям О.Т.Прохоренко

Регистрационный № УД – 12659/уч.

СИНТЕЗ УПРАВЛЯЮЩИХ СИСТЕМ

Учебная программа учреждения высшего образования по учебной дисциплине для специальности:

1-31 03 01

Математика (по направлениям)

Направление специальности:

1-31 03 01-04

Математика (научно-конструкторская деятельность)

Учебная программа составлена на основе ОСВО 1-31 03 01-2021, типового учебного плана G31-1-011/пр-тип. от 31.03.2021 и учебного плана G31-1-018/уч. от 25.05.2021.

составитель:

Ю.Г. Таразевич, старший преподаватель кафедры математической кибернетики Белорусского государственного университета, кандидат физикоматематических наук.

РЕЦЕНЗЕНТ:

В.В. Лепин, ученый секретарь государственного научного учреждения «Институт математики Национальной академии наук Беларуси», кандидат физико-математических наук, доцент.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой математической кибернетики Белорусского государственного университета (протокол № 11 от 28.06.2023);

Научно-методическим советом Белорусского государственного университета (протокол № 9 от 29.06.2023).

Заведующий кафедрой		
математической кибернетики	A.J	I. Гладков

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Математическая теория управляющих систем является основным разделом математической кибернетики. А задача синтеза *управляющей системы* (УС) относится к основным задачам теории управляющих систем. При этом структура и функционирование большинства устройств вычислительной техники описываются на языке булевских моделей, из которых простейшими и основными традиционно считаются контактные схемы (КС) и схемы из функциональных элементов (СФЭ). Эти (базовые) модели теории УС наиболее просты и в то же время они позволяют изложить большинство основных задач и проблем теории синтеза и сложности УС.

Цели и задачи учебной дисциплины

Целью учебной дисциплины «Синтез управляющих систем» является является ознакомление студентов с базовыми разделами математической теории УС («Эквивалентные преобразования УС» и «Синтез УС» и др.), а также с некоторыми новыми классами УС и новыми подходами и методами теории УС (алгебраические методы анализа и синтеза УС и др.)

Развивающей целью учебной дисциплины является дальнейшее формирование у студентов навыков дискретного математического мышления и умения применять его в конкретных задачах.

Воспитательной целью учебной дисциплины является формирование у студентов математической культуры, а также стремления к получению знаний в области дискретной математики и математической кибернетикии их использованию при решении актуальных проблем современного общества.

Основными задачами, решаемыми в рамках изучения дисциплины «Синтез управляющих систем», являются изучение терминологии, основных утверждений и методов их доказательства, освоение методов анализа и синтеза упрывляющих систем, методов получения оценок сложности УС.

Место учебной дисциплины в системе подготовки специалиста с высшим образованием.

Учебная дисциплина относится к дисциплинам специализации компонента учреждения высшего образования.

Связи с другими учебными дисциплинами.

Для понимания учебной дисциплины студенту достаточно изучить дисциплины «Дискретная математика и теория графов» и «Теория булевых функций» из модуля «Дискретная математика и математическая кибернетика» компонента учреждения высшего образования.

Требования к компетенциям

Освоение учебной дисциплины «Синтез управляющих систем» должно обеспечить формирование следующих универсальных, базовых профессиональных и специализированных компетенций.

универсальные компетенции:

- УК-1. Владеть основами исследовательской деятельности, осуществлять поиск, анализ и синтез информации;
- УК-2. Решать стандартные задачи профессиональной деятельности на основе применения информационно-коммуникационных технологий;
- УК-4. Работать в команде, толерантно воспринимать социальные, этнические, конфессиональные, культурные и иные различия;
- УК-5. Быть способным к саморазвитию и совершенствованию в профессиональной деятельности;
- УК-6. Проявлять инициативу и адаптироваться к изменениям в профессиональной деятельности.

базовые профессиональные компетенции:

- БПК-4. Применять теоретические знания и навыки в самостоятельной исследовательской деятельности;
- БПК-5. Применять основные алгебраические и геометрические понятия, конструкции и методы при решении теоретических и прикладных математических задач.

специализированные компетенции:

- СК-1. Осуществлять анализ контекста и поставленной проблемы, аргументированно выбирать оптимальный способ ее решения, согласовывать частичные проекты решения в общую согласованную архитектуру, выполнять реализацию проекта с учетом оценки накопленных и поступающих данных;
- СК-5. Применять основные понятия, утверждения и методы решения базовых задач дискретной математики.

В результате изучения дисциплины студент должен:

знать: основные понятия и утверждения из рассматриваемых разделов теории УС;

уметь: доказывать основные утверждения и применять их для решения типовых задач теории УС;

владеть: основными методами решения типовых задач из рассматриваемых разделов теории УС.

Структура учебной дисциплины

Дисциплина изучается в 5, 6, 7 семестрах. Всего на изучение учебной дисциплины «Синтез управляющих систем» по специальности 1-31 03 01 Математика (по направлениям), направление специальности 1-31 03 01-04 Математика (научно-конструкторская деятельность) отведено:

- в очной форме получения высшего образования: 232 часа, в том числе 140 аудиторных часов, из них:
- в 5-м семестре 108 часов, в том числе 72 аудиторных часа, из них: лекции
 36 часов, лабораторные занятия 30 часов, управляемая самостоятельная работа 6 часов.

Трудоемкость учебной дисциплины составляет 3 зачетных единиц.

Форма текущей аттестации – зачет.

- в 6-м семестре - 54 часа, в том числе 34 аудиторных часа, из них: лекции - 16 часов, лабораторные занятия - 16 часов, управляемая самостоятельная работа - 2 часа.

Трудоемкость учебной дисциплины составляет 3 зачетных единицы. Форма текущей аттестации – зачет.

- в 7-м семестре - 70 часов, в том числе 34 аудиторных часа, из них: лекции - 18 часов, лабораторные занятия - 14 часов, управляемая самостоятельная работа - 2 часа.

Трудоемкость учебной дисциплины составляет 2,5 зачетных единицы. Форма текущей аттестации – зачет.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел 1. Основные классы управляющих систем (УС).

Тема 1.1. Основные понятия теории управляющих систем.

- 1.1.1. Понятия «сеть» и «схема». Функционирование схемы. Преобразования и суперпозиции сетей и схем. Сложность сети и схемы. Функция Шеннона.
- 1.1.2. Определение базовых классов УС (контактные схемы, схемы из функциональных элементов, формулы).

Тема 1.2. Класс контактных схем (КС).

- 1.2.1. Определение КС. Сложность и функционирование КС. Примеры КС. Произвольные, плоские и параллельно-последовательные КС.
- 1.2.2. Простейшие методы синтеза КС. Метод каскадов.
- 1.2.3. Реализация линейной функции в различных классах КС.

Тема 1.3. Класс формул.

- 1.3.1. Определение формулы в произвольном базисе. Форулы в базисе {V,&,-} и их связь с контактными схемами. Параллельно-последовательные КС (Псхемы).
- 1.3.2. Реализация линейной функции в классе П-схем.
- 1.3.3. Дизъюнктивные нормальные формы (ДНФ). Сложность ДНФ. Проблема минимизации ДНФ.
- 1.3.4. Реализация линейной функции в классе ДНФ.

Тема 1.4. Схемы из функциональных элементов (СФЭ).

- 1.4.1. Определение СФЭ в произвольном базисе и их связь с формулами.
- 1.4.2. Простейшие методы синтеза СФЭ. Метод каскадов.
- 1.4.3. Реализация линейной функции в некоторых классах СФЭ.
- 1.4.4. Поднятие инверторов для СФЭ в базисе $\{V,\&,-\}$.

Раздел 2. Универсальные методы синтеза.

Тема 2.1. Универсальные методы синтеза в классах КС.

- 2.1.1. Контактное дерево конъюнкций. Метод Шеннона для КС.
- 2.1.2. Асимптотически наилучший метод Лупанова реализации системы конъюнкций контактным многополюсником.
- 2.1.3. Метод Лупанова для контактных схем.

Тема 2.2. Универсальные методы синтеза в классах СФЭ.

- 2.2.1. Метод Шеннона для СФЭ.
- 2.2.2. Метод Лупанова для СФЭ в базисе $\{V,\&,-\}$.

Тема 2.3. Универсальные методы синтеза в классах формул.

- 2.3.1. Метод Лупанова для формул в базисе $\{V,\&,-\}$ и Π -схем.
- 2.3.2. О методе Лупанова для формул в произвольном базисе и для плоских КС.

Раздел 3. Мощностные нижние оценки сложности.

Тема 3.1. Верхние оценки для числа сетей и схем заданной сложности.

- 3.1.1. Верхняя оценка для числа графов и сетей.
- 3.1.2. Верхняя оценка для числа КС и СФЭ в заданном базисе.
- 3.1.3. Верхняя оценка для числа Π -схем и формул в базисе $\{V, \&, -\}$.

Тема 3.2. Нижние оценки функций Шеннона.

- 3.2.1. Асимптотическая нижняя оценка функции Шеннона в классе КС.
- 3.2.2. Асимптотическая нижняя оценка функции Шеннона в классе СФЭ в базисе {V,&,-}.
- 3.2.3. Об асимптотической нижней оценке функции Шеннона в классе СФЭ в произвольном базисе.
- 3.2.4. Асимптотическая нижняя оценка функции Шеннона в классе П-схем и формул в базисе {V,&,-}.

Раздел 4. Сложность эффективно заданных булевых функций.

Тема 4.1. Методы синтеза эффективно заданных булевых функций.

- 4.1.1. Реализация симметрических функций в различных классах УС.
- 4.1.2. Другие примеры реализации эффективно заданных функций.

Тема 4.2. Линейные нижние оценки сложности.

- 4.2.1. Нижняя оценка сложности линейной функции в классе КС.
- 4.2.2. Нижняя оценка сложности линейной функции в классе СФЭ в базисе {V,&,-}.
- 4.2.3. Линейные нижние оценки сложности для некоторых других булевых функций.

Тема 4.3. Нелинейные эффективные нижние оценки сложности.

- 4.3.1. Метод Субботовской и метод Храпченко.
- 4.3.2. Метод Нечипорука.
- 4.3.3. Метод Фишера Мейера Патерсона.

Раздел 5. Контактные матроиды и гиперконтактные схемы.

Тема 5.1. Расширенные полиномиальные матрицы.

- 5.1.1. Расширенные матрицы над кольцами полиномов с идемпотентными переменными.
- 5.1.2. Эквивалентные преобразования расширенных полиномиальных матриц. Метод приведения расширенной матрицы к одноэлементному каноническому виду
- 5.1.3. Алгебраизация КС в классах расширенных полиномиальных матриц.

Тема 5.2. Гиперконтактные схемы (ГС).

- 5.2.1. Определение гиперконтактной схемы (Γ C) и контактного матроида. Функционирование Γ C.
- 5.2.2. Топологические и физические интерпретации ГС. Контактнотрансформаторные схемы.
- 5.2.3. Универсальный метод синтеза для ГС.
- 5.2.4. Нижние оценки функций Шеннона в классах ГС.
- 5.2.5. Реализация линейных и монотонных симметрических функций в классах ГС.
- 5.2.6. Метод Нечипорука в классах ГС над конечными полями.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Очная форма получения высшего образования с применением дистанционных образовательных технологий (ДОТ)

Tembi		Количество аудиторных часов)B		
Номер раздела, те	Название раздела, темы	Лекции	Практические Занятия	Семинарские Занятия	Лабораторные занятия	Иное	Количество часов УСР	Литература	Форма контроля знаний
1	2	3	4	5	6	7		8	9
1	Основные классы управляющих систем (УС)	14			12		6		
1.1	Основные понятия теории управляющих систем	2			2				
1.1.1	Понятия «сеть» и «схема». Функционирование схемы. Преобразования и суперпозиции сетей и схем. Сложность сети и схемы. Функция Шеннона.	1			1			[1,3,6,7,8]	Экспресс-опрос
1.1.2	Определение базовых классов УС (контактные схемы, схемы из функциональных элементов, формулы).	1			1			[5,6,7,8]	Экспресс-опрос
1.2	Класс контактных схем (КС)	4			2		3		
1.2.1	Определение КС. Сложность и функционирование КС. Примеры КС. Произвольные, плоские и параллельно-последовательные КС.	1			1			[2,3,5,6,7]	Экспресс-опрос
1.2.2	Простейшие методы синтеза КС. Метод каскадов.	1			1			[5,6,7,8]	Устный опрос
1.2.3	Реализация линейной функции в различных классах KC.	2					3	[5,7,8]	Контрольная работа №1 по теме 1.2
1.3	Класс формул	4			4		3		

1.3.1	Определение формулы в произвольном базисе. Форулы в базисе {V,&,-} и их связь с контактными схемами. Параллельно-последовательные КС (Псхемы).	1	1		[4,6,7,8]	Экспресс-опрос
1.3.2	Реализация линейной функции в классе П-схем.	1	1		[7,8]	Устный опрос
1.3.3	Дизъюнктивные нормальные формы (ДНФ). Сложность ДНФ. Проблема минимизации ДНФ.	1	2		[1,2,4,6,8]	Устный опрос
1.3.4	Реализация линейной функции в классе ДНФ.	1		3	[2,6,8]	Контрольная работа №2 по теме 1.3
1.4	Схемы из функциональных элементов (СФЭ)	4	4			
1.4.1	Определение СФЭ в произвольном базисе и их связь с формулами.	1	1		[4,5,6,7,8]	Устный опрос
1.4.2	Простейшие методы синтеза СФЭ. Метод каскадов.	1	1		[4,5,6,7,8]	Экспресс-опрос
1.4.3	Реализация линейной функции в некоторых классах СФЭ.	1	1		[4,5,6,7,8]	Устный опрос
1.4.4	Поднятие инверторов для СФЭ в базисе {V,&,-}.	1	1		[4,5,6,7,8]	Устный опрос
2	Универсальные методы синтеза	12	8			
2.1	Универсальные методы синтеза в классах КС	4	4			
2.1.1	Контактное дерево конъюнкций. Метод Шеннона для КС.	1	1		[5,6,7,8]	Экспресс-опрос
2.1.2	Асимптотически наилучший метод Лупанова реализации системы конъюнкций контактным многополюсником.	1	1		[5,7,8]	Устный опрос
2.1.3	Метод Лупанова для контактных схем.	2	2		[5,7,8]	Коллоквиум
2.2	Универсальные методы синтеза в классах СФЭ	4	2			-
2.2.1	Метод Шеннона для СФЭ.	2	1		[4,5,7,8]	Экспресс-опрос
2.2.2	Метод Лупанова для СФЭ в базисе {V,&,-}.	2	1		[5,7,8]	Устный опрос
2.3	Универсальные методы синтеза в классах формул	4	2			

2.3.1	Метод Лупанова для формул в базисе {V,&,-} и П-схем.	2	1		[5,7,8]	Устный опрос
2.3.2	О методе Лупанова для формул в произвольном базисе и для плоских КС.	2	1		[5,7,8]	Коллоквиум
3	Мощностные нижние оценки сложности	10	10			
3.1	Верхние оценки для числа сетей и схем заданной сложности	4	4			
3.1.1	Верхняя оценка для числа графов и сетей.	1	1		[4,5,6,7,8]	Экспресс-опрос
3.1.2	Верхняя оценка для числа КС и СФЭ в заданном базисе.	2	2		[4,5,6,7,8]	Устный опрос
3.1.3	Верхняя оценка для числа Π -схем и формул в базисе $\{V, \&, -\}$.	1	1		[4,5,6,7,8]	Экспресс-опрос
3.2	Нижние оценки функций Шеннона	6	6			
3.2.1.	Асимптотическая нижняя оценка функции Шеннона в классе КС.	1	1		[5,6,7,8]	Устный опрос
3.2.2	Асимптотическая нижняя оценка функции Шеннона в классе СФЭ в базисе {V,&,-}.	1	1		[4,5,6,7,8]	Экспресс-опрос
3.2.3	Об асимптотической нижней оценке функции Шеннона в классе СФЭ в произвольном базисе.	2	2		[4,5,7,8]	Устный опрос
3.2.4	Асимптотическая нижняя оценка функции Шеннона в классе Π -схем и формул в базисе $\{V, \&, -\}$.	2	2		[4,5,7,8]	Экспресс-опрос
	Итого за 5-й семестр	36	30	6		
4	Сложность эффективно заданных булевых функций	16	16	2		
4.1	Методы синтеза эффективно заданных булевых функций	4	4	2		
4.1.1	Реализация симметрических функций в различных классах УС.	2	2		[4,5,7,8]	Устный опрос

4.1.2	Другие примеры реализации эффективно заданных функций.	2	2	2	[4,5,7,8]	Контрольная работа №3 по теме 4.1
4.2	Линейные нижние оценки сложности	6	6			
4.2.1	Нижняя оценка сложности линейной функции в классе КС.	2	2		[7,8]	Устный опрос
4.2.2	Нижняя оценка сложности линейной функции в классе $C\Phi \ni B$ базисе $\{V,\&,-\}$.	2	2		[7,8]	Экспресс-опрос
4.2.3	Линейные нижние оценки сложности для некоторых других булевых функций.	2	2		[7,8]	Коллоквиум
4.3	Нелинейные эффективные нижние оценки сложности	6	6			
4.3.1	Метод Субботовской и метод Храпченко.	2	2		[7,8]	Устный опрос
4.3.2	Метод Нечипорука.	2	2		[8]	Устный опрос
4.3.3	Метод Фишера – Мейера – Патерсона.	2	2		[8]	Экспресс-опрос
	Итого за 6-й семестр	16	16	2		
5	Контактные матроиды и гиперконтактные схемы	18	14	2		
5.1	Расширенные полиномиальные матрицы	6	4	2		
5.1.1	Расширенные матрицы над кольцами полиномов с идемпотентными переменными.	2	2		[10,11]	Экспресс-опрос
5.1.2	Эквивалентные преобразования расширенных полиномиальных матриц. Метод приведения расширенной матрицы к одноэлементному каноническому виду.	2	2		[10,11]	Устный опрос
5.1.3	Алгебраизация КС в классах расширенных полиномиальных матриц.	2		2	[10]	Контрольная работа №4 по разделу 5.1
5.2	Гиперконтактные схемы (ГС).	12	10			
5.2.1	Определение гиперконтактной схемы (ГС) и контактного матроида. Функционирование ГС.	2	2		[9,11]	Экспресс-опрос

5.2.2	Топологические и физические интерпретации ГС. Контактно-трансформаторные схемы.	2		1		[9,11]	Коллоквиум
	Универсальный метод синтеза для ГС.	2		2		[5,11]	Экспресс-опрос
5.2.4	Нижние оценки функций Шеннона в классах ГС.	2		1		[4,5,7,8,11]	Устный опрос
5.2.5	Реализация линейных и монотонных симметрических функций в классах ГС.	2		2		[7,8,11]	Коллоквиум
5.2.6	Метод Нечипорука в классах ГС над конечными полями.	2		2		[8,11]	Экспресс-опрос
	Итого за 7-й семестр	18		14	2		
	ИТОГО	70		60	10		

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Перечень основной литературы

- 1. Ерусалимский, Я.М. Дискретная математика. Теория и практикум: учебник / Я.М. Ерусалимский. Санкт-Петербург; Москва; Краснодар: Лань, 2018. 472 с. URL: https://e.lanbook.com/book/212897.
- 2. Кожухов, С. Ф. Сборник задач по дискретной математике : учебное пособие / С. Ф. Кожухов, П. И. Совертков. 2-е изд., стер. Санкт-Петербург: Лань, 2022. 324с. Текст: электронный// Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/212675.
- 3. Лекции по теории графов: учеб. пособие для студ., обуч. по спец. "Математика" и "Прикладная математика" / В. А. Емеличев [и др.]. Изд. стер. Москва: URSS: ЛЕНАНД, 2017. 383 с.

Перечень дополнительной литературы

- 4. Яблонский С.В. Введение в дискретную математику: Учеб. Пособие для вузов / Под ред. В.А. Садовничего. 4-е изд., стер. М.: Высшая школа, 2003. 384 с.
- 5. Лупанов О.Б. Асимптотические оценки сложности управляющих систем, М.: Изд-во МГУ, 1984, 137 с.
- 6. Гаврилов, Г. П. Задачи и упражнения по дискретной математике : [учеб. пособие] / Г. П. Гаврилов, А. А. Сапоженко. Изд. 3-е, перераб. Москва : ФИЗМАТЛИТ®, 2009. 416 с.
- 7. Яблонский С.В. Элементы математической кибернетики. М.: Высшая школа, 2007. 188 с.
- 8. Нигматуллин Р.Г. Сложность булевых функций, М.: Наука, 1991, 240 с.
- 9. Эвнин А. Ю., "Элементарное введение в матроиды", Матем. обр., 2005, №2(33), 2–33. URL: https://www.mathnet.ru/rus/mo412
- 10. Таразевич Ю.Г. «Расширенные полиномиальные матрицы и алгебраизация контактных схем». Журнал Белорус. гос. ун-та. Математика. Информатика, 2017, № 3, 85–93. URL: https://www.mathnet.ru/rus/bgumi147
- 11. Таразевич Ю.Г. «О сложности реализации булевых функций в некоторых классах гиперконтактных схем», *Дискрет. матем.*, **34**:3 (2022), 90–113. URL: https://doi.org/10.4213/dm1503

Перечень рекомендуемых средств диагностики и методика формирования итоговой отметки

Объектом диагностики компетенций студентов являются знания, умения, полученные ими в результате изучения учебной дисциплины. Выявление учебных достижений студентов осуществляется с помощью мероприятий текущего контроля и текущей аттестации.

Для диагностики компетенций могут использоваться следующие средства текущего контроля: устный опрос, экспресс-опрос, коллоквиум и контрольные работы.

Формой текущей аттестации по дисциплине «Синтез управляющих систем» учебным планом предусмотрен зачет.

Формирование отметки за текущую успеваемость:

- − устный опрос − 17 %;
- экспресс-опрос 17 %;
- коллоквиум -33 %;
- контрольные работы 33 %.

Примерный перечень заданий для управляемой самостоятельной работы студентов

Раздел 1. Основные классы управляющих систем (УС)

Тема 1.2. Класс контактных схем (КС). (3 ч)

Примерный перечень заданий:

- 1. Для заданной булевой функции, зависящей не более чем от 3-х переменных, построить минимальную контактную схему и минимальную плоскую контактную схему.
- 2. Для заданной плоской контактной схемы построить двойственную контактную схему.
- 3. Применить метод каскадов для реализации заданной булевой функции 4-х переменных в классе контактных схем.
- 4. Применить метод каскадов для реализации линейной булевой функции n переменных в классе Π -схем.
- 5. Применить метод каскадов для реализации линейной булевой функции n переменных в классе плоских контактных схем.

Форма контроля – контрольная работа №1 по теме 1.2.

Тема 1.3. Класс формул. (3 ч)

Примерный перечень заданий:

1. Для заданной булевой функции, зависящей не более чем от 3-х переменных, построить минимальную П-схему, минимальную ДНФ и минимальную КНФ.

- 2. Минимизировать заданную П-схему не более 4-х переменных.
- 3. Применить метод каскадов для реализации линейной булевой функции *п* переменных в классе КС, плоских КС, П-схем.
- 4. Заданную контактную схему преобразовать в минимальную П-схему, минимальную ДНФ, минимальную КНФ.

Форма контроля – контрольная работа №2 по теме 1.3.

Раздел 4. Сложность эффективно заданных булевых функций Тема 4.1. Методы синтеза эффективно заданных булевых функций. (2 ч)

Примерный перечень заданий:

- 1. Реализовать линейную функцию 2^n переменных в классе Π -схем.
- 2. Реализовать линейную функцию n переменных в классе плоских КС.
- 3. Реализовать скрещивание соединений плоской схемой из функциональных элементов (с двумя входами и двумя выходами) в базисе {⊕}.
- 4. Реализовать скрещивание соединений плоской схемой из функциональных элементов (с двумя входами и двумя выходами) в базисе {V,&,-}.
- 5. Реализовать линейную функцию n переменных в классе плоских схем из функциональных элементов в базисе $\{V,\&,-\}$.
- 6. Реализовать монотонную симметрическую функцию 4-х переменных с порогом 2 в классе контактных схем.

Форма контроля – контрольная работа №3 по теме 4.1.

Раздел 5. Контактные матроиды и гиперконтактные схемы Тема 5.1. Расширенные полиномиальные матрицы. (2 ч) Примерный перечень заданий:

- 1. Построить таблицу истинности для заданной расширенной матрицы над кольцом полиномов Жегалкина 3-х переменных.
- 2. Построить таблицу истинности для заданной расширенной матрицы над кольцом арифметических полиномов 3-х переменных.
- 3. Заданную расширенную матрицу над кольцом полиномов Жегалкина 2-х переменных привести к одноэлементному каноническому виду.
- 4. Заданную расширенную матрицу из 2-х строк и 2-х столбцов над кольцом арифметических полиномов 2-х переменных привести к одноэлементному каноническому виду.
- 5. Матрицу инциденций минимальной контактной схемы, реализующей конъюнкцию 2-х переменных, эквивалентными преобразованиями привести к одноэлементному каноническому виду в классе расширенных матриц над кольцом полиномов Жегалкина.

Форма контроля – контрольная работа №4 по теме 5.1.

Примерная тематика контрольных работ

- **Контрольная работа № 1.** «Построение минимальных контактных, плоских и П-схем для заданных булевых функцих малого числа переменных. Применение простейших методов синтеза для построения контактных схем».
- **Контрольная работа № 2.** «Минимизация ДНФ, КНФ, П-схем и формул в заданном базисе для булевых функций малого числа переменных. Применение простейших методов синтеза формул».
- **Контрольная работа № 3.** «Реализация эффективно заданных булевых функций в различных классах управляющих систем. Реализация линейных функций. Реализация симметрических и пороговых функций».
- **Контрольная работа № 4.** «Построение таблиц истинности для расширенных матриц. Эквивалентные преобразования расширенных матриц. Приведение расширенных матриц к одноэлементному каноническому виду».

Примерная тематика лабораторных занятий

Лабораторное занятие 1. Построение таблиц истинности для формул и схем из различных классов.

Лабораторное занятие 2. Эквивалентные преобразования формул и схем из различных классов.

Лабораторное занятие 3. Минимизация ДНФ, КНФ, формул и схем из различных классов.

Лабораторное занятие 4. Построение двойственных плоских графов и контактных схем.

Лабораторное занятие 5. Реализация линейных булевых функций в различных классах управляющих систем.

Лабораторное занятие 6. Реализация симметрических и других эффективно заданных булевых функций в различных классах управляющих систем.

Лабораторное занятие 7. Универсальные методы синтеза в различных классах управляющих систем.

Лабораторное занятие 8. Получение мощностных нижних оценок сложности в различных классах управляющих систем

Лабораторное занятие 9. Получение линейных нижних оценок сложности в различных классах управляющих систем.

Лабораторное занятие 10. Получение нелинейных эффективных нижних оценок сложности в различных классах управляющих систем.

Лабораторное занятие 11. Эквивалентные преобразования расширенных полиномиальных матриц.

Лабораторное занятие **12.** Приведение расширенной матрицы к одноэлементному каноническому виду.

Лабораторное занятие 13. Универсальный метод синтеза в классах гиперконтактных схем.

Лабораторное занятие 14. Реализация линейных булевых функций в классах гиперконтактных схем.

Лабораторное занятие 15. Реализация монотонных симметрических булевых функций в классах гиперконтактных схем.

Лабораторное занятие 16. Реализация систем булевых функций в различных классах управляющих систем.

Описание инновационных подходов и методов к преподаванию учебной дисциплины

При организации образовательного процесса используется *эвристический подход*, который предполагает:

- осуществление студентами личностно-значимых открытий окружающего мира;
- демонстрацию многообразия решений большинства профессиональных задач и жизненных проблем;
- творческую самореализацию обучающихся в процессе создания образовательных продуктов;
- индивидуализацию обучения через возможность самостоятельно ставить цели, осуществлять рефлексию собственной образовательной деятельности.

Наиболее эффективной предполагается следующая форма реализации эвристического подхода: доказательства громоздких теорем, а также решения сложных задач разбиваются на этапы, после чего обучаемые подводятся к самостоятельному определению действий на этапах.

При организации образовательного процесса используется также *практико-ориентированный подход*, который предполагает:

- освоение содержания образования через решение практических задач;
- приобретение навыков эффективного выполнения разных видов профессиональной деятельности;
- ориентацию на генерирование идей, реализацию групповых студенческих проектов, развитие предпринимательской культуры;
- использованию процедур, способов оценивания, фиксирующих сформированность профессиональных компетенций.

Методические рекомендации по организации самостоятельной работы обучающихся

При изучении учебной дисциплины рекомендуется использовать следующие формы самостоятельной работы:

- поиск (подбор) и обзор литературы и электронных источников по индивидуально заданной теме дисциплины;
- выполнение домашнего задания;
- проведение научно-исследовательских работ;
- подготовка к участию в научных и научно-практических конференциях и конкурсах.

Примерный перечень вопросов к зачету

- 1. Понятия «сеть» и «схема». Функционирование схемы. Преобразования и суперпозиции сетей и схем. Сложность сети и схемы. Функция Шеннона.
- 2. Определение контактной схемы (КС). Сложность и функционирование КС. Произвольные, плоские и параллельно-последовательные КС.
- 3. Простейшие методы синтеза КС. Метод Шеннона. Метод каскадов.
- 4. Реализация линейной функции в различных классах КС.
- 5. Определение формулы в произвольном базисе. Форулы в базисе {V,&,-} и их связь с КС. Параллельно-последовательные КС (П-схемы).
- 6. Реализация линейной функции в классе П-схем.
- 7. Реализация линейной функции в классе ДНФ.
- 8. Определение СФЭ в произвольном базисе и их связь с формулами.
- 9. Реализация линейной функции в СФЭ в базисе {V,&,-}.
- 10. Поднятие инверторов для СФЭ в базисе $\{V,\&,-\}$.
- 11. Метод Лупанова для контактных схем.
- 12. Метод Шеннона для СФЭ.
- 13. Метод Лупанова для СФЭ в базисе {V,&,-}.
- 14. Асимптотическая нижняя оценка функции Шеннона в классе КС.
- 15. Асимптотическая нижняя оценка функции Шеннона в классе СФЭ в базисе $\{V,\&,-\}$.
- 16. Нижняя оценка сложности линейной функции в классе КС.
- 17. Нижняя оценка сложности линейной функции в классе СФЭ в базисе $\{V,\&,-\}$.
- 18. Метод Храпченко для П-схем.
- 19. Метод Нечипорука для КС и формул в конечном базисе.
- 20. Эквивалентные преобразования расширенных полиномиальных матриц.
- 21. Определение гиперконтактной схемы (ГС) и контактного матроида. Функционирование ГС.
- 22. Универсальный метод синтеза для ГС.
- 23. Нижние оценки функций Шеннона в конечнозначных классах ГС.
- 24. Реализация линейных функций в классах ГС.
- 25. Реализация монотонных симметрических функций в классах ГС.
- 26. Метод Нечипорука в классах ГС над конечными полями.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УВО

Название	Название	Предложения	Решение, принятое
учебной	кафедры	об изменениях в	кафедрой,
дисциплины,		содержании учебной	разработавшей
с которой		программы	учебную программу
требуется		учреждения высшего	(с указанием даты и
согласование		образования по	номера протокола)
		учебной дисциплине	
Отсутствует			

дополнения и изменения к учебной программе

на ____/___ учебный год

		1
N_0N_0	Дополнения и изменения	Основание
ПП		
	_	
	я программа пересмотрена и одоб	
математ	гической кибернетики (протокол №	_ от 20 г.)
_		
	ощий кафедрой	A 17 D
доктор	физмат. наук, профессор	А.Л. Гладков
	ЖДАЮ	
	дакультета	СМ Газата
доктор	физмат. наук, доцент	С.М. Босяков