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co3maHa BeIYMCAUTEIbHAS 1iatdopma FluorSimStudio niast 00pabOTKU U3MEpEHHUl (IIyOpECICHIINN ¢ BPEMEHHBIM pa3-
pemennem. Lludposast miardopma mpeacTapisier CO00H OTKPBITYIO CUCTEMY U TI03BOJISIET 100aBIISTH CIOXKHbBIE MOACIH
aHaM3a C yU4eTOM CO3aHUsI HOBBIX aJrOPUTMOB MOJICIUPOBAHKs U 00pPaOOTKH AaHHBIX. [IpUMEHEHHE KOMILIEKCHOTO
MTOIX0/a TIOBHIIAET d(PPEKTHBHOCTH UCCIICTOBAHNS OMOPH3MUECKAX CUCTEM IIPU aHAJH3€ OOIBIITNX JaHHBIX.

Kntoueswte cnosa: dyopecteHTHas CIEKTPOCKOITHS; 00pab0TKa TaHHBIX; MMUTALMOHHOE MOJCIHPOBAHKE; HHTEI-
JIEKTYaJIbHBIN aHAJIM3 JJAHHBIX; BRIYUCIIUTEIbHAS [UTaT(opMma.

SIMULATION MODELLING AND DATA MINING APPROACH
FOR THE STUDY OF APPLIED FLUORESCENCE
SPECTROSCOPY SYSTEMS
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For the study of biomolecular compounds in applied fluorescence spectroscopy supporting systems an integrated
approach, based on simulation modelling and data mining methods and including simulation models of physical pro-
cesses, methods and algorithms for data mining, and software for studying molecular and cellular systems is proposed.
The idea of an integrated approach is in using simulation modelling of biophysical processes occurring in the object
of study, selecting the most informative experimental data, and determining the characteristics of the object using data
mining algorithms. The effectiveness of the algorithms of the proposed approach is verified by analysing simulated and
experimental data of fluorescence spectroscopy systems. As a practical implementation of the developed integrated
methodology, the computational platform FluorSimStudio was developed for processing time-resolved fluorescence measu-
rements. The digital platform is an open system and allows addition of complex analysis models, taking into account the
development of new modelling and data processing algorithms. The use of complex analysis improves the efficiency of
studying biophysical systems during big data analysis.

Keywords: fluorescence spectroscopy; data processing; simulation modelling; data mining; computational platform.

Introduction

Experimental fluorescence spectroscopy methods are used to investigate the optical properties of mole-
cular compounds and therefore are applied in the studies of artificial photonic materials, protein complexes,
biopolymers, biological membranes, cell biomarkers and organic tissues [1-3]. The standing development
of methods is driven due to the improvements of effective molecular fluorophores, including genetically ex-
pressed proteins (for example, green fluorescent protein (GFP)), semiconductor nanoparticles and quantum
dots, optical systems for laser excitation and photon detection, allowing for high-precision measurements, and
computer technologies for data storage and processing [4—6]. Novel experimental high-throughput techniques,
integrating pulsed, phase and modulation methods for detecting fluorescence decay times, form the basis of
modern fluorescence microscopy and allow obtaining big datasets, characterised by high spectral, time and
spatial resolution [6; 7]. The main fluorescence spectroscopy and microscopy techniques for studying complex
molecular systems in «cuvettes» and living cells are fluorescence-lifetime imaging microscopy, fluorescence
recovery after photobleaching and its derivatives (fluorescence loss in photobleaching and fluorescence lo-
calisation after photobleaching), fluorescence fluctuation spectroscopy (combining fluorescence correlation
spectroscopy, fluorescence cross-correlation spectroscopy, photon counting histogram (PCH) and fluorescence
intensity distribution analysis), fluorescence sensing [1; 7].

The advantage of the modern experimental fluorescence spectroscopy methods is the expanding degree of
accuracy of measurements, achieved through the use of multichannel spectral, time and spatial resolutions,
which significantly enhances the volume of recorded data, but simultaneously increases the efficiency of stu-
dying physical processes with a wide dynamic range of changes in parameters and measurement conditions,
and allows to study complex multicomponent molecular systems in a series of clinical experiments. One of the
major limitations in processing big fluorescence spectroscopy data is the lack of universal effective automated
supporting and decision-making systems, including protocols for planning and conducting experiments, soft-
ware for processing and analysing data, modelling and interpreting the studied biophysical processes. Presently,
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systems for collecting and processing fluorescence spectroscopy data have been implemented to study optical
processes in molecular compounds [6; 8]. Their advantages are acceptable performance and barely reasonable
support of experimental investigations. However, these systems are not complex, used for specific types of
biomolecular compounds and specialised experimental equipment, they are not organised in the form of a uni-
versal technique or approach to big data analysis, and provide a limited set of physical interpretation models
and software analysis tools, which lets us to conclude that it is necessary to systematise existing solutions,
integrating the most effective methods of data analysis, physical models (for example, based on simulation mo-
delling) into a complex approach. The development of new improved supporting and decision-making systems
should simplify and automate the processing of fluorescent experimental measurements, increase the accuracy
of estimated parameters, and expand the limits of interpretation and prediction of physical processes.

The existing data analysis approaches to processing fluorescence spectroscopy data can be divided into clas-
sical and modern, based on machine learning or data mining algorithms. Classical methods consider separate or
joint analysis of datasets using deconvolution, least squares, maximum likelihood, Bayesian, target and global
analysis to estimate the parameters of mathematical models of optical processes and systems [9]. New approaches
are based on: 1) projection transformations and following parameter estimation (for example, transformation of
fluorescence intensities into the phasor space (phasor analysis)); ii) using machine learning techniques, mainly
artificial neural networks and ensemble algorithms, to estimate the model parameters; iii) segmentation of cell or
tissue images and subsequent classification by a machine learning algorithm [10—14]. The main disadvantages
of existing data processing methods are limited efficiency, that is due to the use of nonphysical analytical models
(multi-exponential or polynomial decompositions), poor accuracy in parameter estimating when analysing noisy
data (phasor analysis, neural networks), slow computations (global and Bayesian analysis), the need for the large
training datasets (neural networks), special requirements for computing resources (the usage of video cards or
multiprocessor nodes to accelerate neural network computing), and finally the lack of specialised software for
automated data processing. Therefore, the primary task is to develop an integrated data analysis approach that
eliminates the main drawbacks of existing methods, which would include physical models of the processes
and systems under study, effective methods and software for processing a series of fluorescence spectroscopy
data [15—17]. It should include descriptions of molecular systems at various levels of generalisation, from
simple molecular compounds in solutions and films to complex cellular systems involved in various diseases.

In this paper, we propose an integrated approach based on simulation modelling and data mining methods
for the study of biomolecular compounds in applied fluorescence spectroscopy systems. It includes simula-
tion models of physical processes, methods and algorithms for data mining, and software for automating data
analysis. As a practical implementation, the developed integrated methodology is integrated into the compu-
tational platform FluorSimStudio for processing fluorescence kinetic curves obtained through time-resolved
fluorescence experiments.

Methodology

It is assumed that through a series of experiments generating big datasets some object, i. e. biophysical pro-
cess or biomolecular compound, is investigated, whose essential properties or characteristics, for example, a set
of biophysical parameters 4 = {al, Ayy .oy A P} (e. g., electronic excitation energy transfer rate constants, protein
concentrations and diffusion coefficients, biochemical reaction rate constants, etc.), must be determined during
data analysis. The number of parameters P is determined depending on the level of detail (abstraction) of physical
description and complexity of the investigated object. The parameters should be sufficient to adequately explain
the behaviour of the object. In an integrated approach data mining algorithms are applied to multidimensional
datasets to select the most informative or significant data for further in-depth analysis and finding estimates of
parameters 4 using simulation models. Let us consider the main components of a complex approach.

Data. Let there be N observations, samples or measurements Hy = {El, E, . FE N} of the investigated
object E, kept in the database or obtained in a real physical experiment. Let us consider the formalisation of
conducting an experiment to investigate the object under study (fig. 1).

Experiment

I I
I I
. | Sensors Sensors | Data
Object I:,‘>I for measuring X => for measuring Y ::,‘> (X, 7)
i |

Fig. 1. Scheme of studying an object in a physical experiment
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We assume that the experiment combines a set of sensors to record some properties of the observations of
the object. The registered object properties are known as features, attributes, or variables and can be of two
types. The first ones, denoted X, are independent measurements, including external influences (this can also in-
clude time as a signal), set by the experiment designer or researcher. The second ones, denoted Y, are measure-
ments depending on the selected values of the characteristics of the first group. Independent measurements X
are usually called features (or inputs, predictors, independent variables), and dependent ¥ — target variables
(or outputs, responses, dependent variables) that determine solutions to data analysis problems. As a result of

measuring the properties of observations, a dataset D = {X, Y } (or (X, Y )) is recorded that combines indepen-
dent and dependent variables of observations. The data structure of the object is considered in terms of selected
attributes X and dependent variables Y.

Measurements over observations form feature vectors X;, X,, ..., Xx and an input data matrix X. Measure-
ments over observations with fixed values X, X, ..., Xi form vectors of target features or output characteris-
tics V), Y5, ..., Y5 and an output data matrix Y. The data (X, Y ) obtained from a real experiment are presented
in the form of a table, containing the recorded values of the properties of the object.

A set of multidimensional data recorded

in some physical experiment and representing observations
or measurements H of the investigated object £

X Y
HE
X | X Xe | 4 )6 Y
Ey | x| oxp e Xk | Y | Y2 - | ViR
Ey | x| X s | Xog | Y2 | Va2 ceo | Yor
Ey | Xy | Xn2 s | XNk | YN | Y2 <o | Ynr

The model of the data can be represented as
=E(X), (1)
where E is a set of correspondence operators that transforms independent features X into dependent variables Y.
Data mining. Let us consider the formulation of the data analysis problem. The general task of data analy-
sis is to find functional transformations I (correspondence estimates =) and their parameters ®, transforming
the original set of features X into a theoretical set of dependent characteristics

Y'=1(x, @), 2)

such that the condition of minimal difference between the observed output characteristics Y and the theoreti-
cal Y7 is satisfied.
By data mining models we assume mathematical models that provide solutions to problems (1) and (2), i. e.

functional transformations (for parametric models) .# = {H(X, ®)|® € DG)}, where [1: X x @ — ¥, Dg — set

of admissible values of parameters ® or parameter space. The model parameters ®, in the general case, do not
coincide with the physical parameters A.

In practice, such models are built based on existing known experimental data, representing the so-called
expert-labeled, reference or training data. The specificity of data mining models is the lack of consideration
of the physical principles of the processes in the object under study. The model is built according to so-called
precedents or existing examples, based on behavioural assessments of which it is planned to predict the be-
haviour of the object in the future. The most popular data mining models are cluster algorithms, decision trees,
associative rules, mathematical functions (analytical models), and neural networks [18].

As data mining methods, we consider computational algorithms p for finding estimates of unknown pa-
rameters ® of the data mining models, i. e. the method is a mapping p: X x Y — .4, which associates an arbit-

rary finite data sample (X, Y ) with some algorithm for determining parameters ®, such that the condition of

minimal difference between the observed output characteristics ¥ and the theoretical Y is satisfied. The most
popular data mining methods are statistical analysis (regression and variance analysis, data dimensionality
reduction), classification and prediction (artificial neural networks, decision trees, k-nearest neighbours, Bayesian
networks), cluster analysis, optimisation, association rule search and data visualisation [18].
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The experimental data mining diagram is shown in fig. 2. The overall task of data analysis can be divided
into components that form the basis of data mining. The main tasks of data mining include classification, re-
gression, cluster analysis, data dimensionality reduction, association rule search and visualisation [18].

Data mining

,_ ________ i
: Data mining :
| models :
|
| Y :
Object [>>| Experiment |[=> Data = : (Y - YT) — min :|:"> Solution ¥ !,
(X, 7) | : predictive models

Fig. 2. Scheme of studying an object in an experiment using data mining

An important feature of data models is that they can be used to build a predictive model and obtain an exact
solution to the problem. This is often sufficient, for example, for classifying images of cancer cells or multi-ex-
ponential smoothing of fluorescence decay kinetic curves [19-21]. The disadvantage of this approach is the
impossibility of reproducing a detailed description of the physical processes occurring in the object. To eliminate
this drawback, it is necessary to use physical models, for example, based on simulation modelling.

Simulation modelling. The basis of simulation modelling is Monte Carlo methods [22—24], which are
stochastic modelling algorithms based on the use of random numbers and statistical probabilities for solving
applied problems. Traditionally, Monte Carlo methods find applications in two directions: when checking the
reliability of approximate solutions obtained as a result of analytical calculations, i. e. to confirm the developed
theories by numerical experiment [15; 25]; to compare simulated and experimental data, followed by a deeper
interpretation of the data in terms of simulation models [26; 27]. The presented work deals with the second
direction of applications of simulation modelling methods.

In modelling, the investigated object £ can be considered as a biophysical process (for example, electronic
excitation energy transport in a molecular system or actin polymerisation in a cell) or a biomolecular sys-
tem (molecules, cells or cell populations). Let object £ be described by a mathematical (analytical or simulation)
model M (fig. 3).

Parameters 4

Models of sensors :‘,> Models of sensors

for measuring X for measuring ¥

Model M
[ 2 1
|
| System :
: characteristics @ |
|
. |
Object [—> | / \ ::"> Data
| | (X,7)
' |
' |
' |

Scales for Scales for
measuring X measuring Y

Fig. 3. Scheme of the mathematical model of the object
When constructing a mathematical model, it is necessary to take into account the measurement scales of
the features X and the characteristics of the system states @ (systems of equations or modelling algorithms that
describe the behaviour of the object) for given values of the physical parameters of the model 4. The characte-

ristics of the system states @ are represented by a matrix of features X, including response components system
or output signals Y. Then the mathematical model of the object can be represented as the expression

M={X, ®, 4, F},
where F is the operator of functional transformations
Y=F{X, 4}.

The mathematical model describes the real processes occurring in the investigated object. It can be pre-
sented in the form of a «white box», since it takes into account the physics of the occurring processes in
the object. The dataset for subsequent analysis is a table of characteristics of system states X and output
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signals Y. At the initial moment of the investigation, the internal structure and relationships between the com-
ponents of the object E are known. The task is to clarify the functional dependencies £ and estimate the mo-
del parameters 4. It should be noted that the «black box» models .4 in the form of data mining models are
analytical approximation models (F = I1, parameters ®), not taking into account the physics of the process
under study.

An integrated approach to big data analysis. This work suggests to use simulation modelling and data
mining methods to study biomolecular systems, a feature of which is the use of simulation modelling algo-
rithms to reproduce biophysical processes in the systems under study. The idea of an integrated approach consists
of studying the investigated object using simulation modelling of biophysical processes occurring in it, com-
paring simulated and the most informative experimental data, selected by the data dimensionality reduction
methods, and determining the parameters of physical processes using optimisation algorithms.

A diagram of the studying an object (some biophysical process or biomolecular compound) using the de-
veloped integrated approach is shown in fig. 4.

Computational platform

I
iYes

! Exact solution ¥,
it |i|:‘,> parameter
Simulation h estimates A"

[
| 1
P _
: i ||Data reduction : X Y,
B | No

A:{ocl, o Oy, A}

experiment 1, o, 4

Simulation :
experiment Q, .y, 4| i |
|

7

] | Improving the model

Fig. 4. Scheme of studying an object using the developed integrated approach

The study of the object (block 1) is carried out by considering the physical model of the object (block 2)
and a series of Q real and simulated experiments that form a global experiment (block 3). Simulation experi-
ment includes modelling of the experimental equipment and the object. The data of individual experiments are
converted to a single format in order to reduce and eliminate inhomogeneities of various distortions associated
with specific experiments. Filtering, normalisation, vectorisation, or special data transformations, such as loga-
rithmic, are performed to reduce the effect of outliers. In block 4, data dimensionality reduction is performed.
Data are compressed by the dimensionality reduction methods in order to exclude uninformative, redundant
data or noise, and essential informative data are extracted. Sets of transformed data from various experiments

are collected into a combined dataset (X, Y) for subsequent processing using data mining and simulation mo-

delling methods (block 5). The parameters of individual experiments oy, ..., ., and the model of object 4 are
collected into a single set A and then refined during the analysis of the combined data. The analysis of indivi-
dual experiments can be carried out independently or in a complex manner. The advantage of integrated ana-
lysis is the combination of data from various experiments into one large set, which provides a generalisation
and an increase in the statistical power of the results and, as a consequence, an increase in the accuracy of the
analysis. Some parameters 4 are fixed (they are global for the experiments), limited (in the case of dependent
experiments), or remain free for accurate estimation using optimisation methods. Optimisation methods are
used to evaluate free or adjustable parameters 4" of the global simulation model of the object, built on the basis
of models of individual experiments. If the desired accuracy of the correspondence between the experimental
and simulated data is achieved, which is determined by the given statistical criterion in block 6 (for example,
the quantitative ¥, Kolmogorov — Smirnov and Romanovskii criteria, as well as diagram plots of the weighted
residuals, their autocorrelation functions, and histograms [15]), then the analysis process is completed and a solu-
tion is provided (an estimated set of parameters and an accurate mathematical model of the object capable of
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predicting its behaviour in the pre-cases of a desirable accuracy). Otherwise, in block 7, the description of the
object is improved (including the deepening of the object formalisation, collection of new data, changing mo-
dels, conducting additional experiments, changing the parameters of the object or environment) and move to
block 2 to perform the next iteration of data analysis. The presented scheme is a general approach, the specific
implementation is determined by the type of the solved problem and should be designed taking into account
the specifics of the conducted experiments.

In the integrated approach, various methods and algorithms should be tried, moving from simple models to
complex ones, performing a gradual complication of the models and increasing the circumstantiation of the pro-
cess under consideration. When working with big data, it is necessary to choose an adequate level of refrain-
ment of the mathematical model, corresponding to the desired depth of the object investigation, the volume of
datasets and the power of the available computing resources.

Error analysis. When carrying out computer modelling, it is important to confirm the adequacy of the
simulation models, the reliability, confidence and reproducibility of the results obtained, as well as achieving
the desired modelling accuracy. Assuming that the optimal model parameters have been chosen, three stages
of confirming its adequacy can be considered, i. e. the model must meet the following requirements [28—30]:

e be physical, based on consideration of the physics of processes «from first principles», which includes
the selection of the most accurate laws for describing probability distributions for the random variables and
processes under consideration;

e be confirmed by an analytical description or experiment under certain control conditions, various balance
equations and internal technical verification tests of algorithms. In the literature, this requirement is often re-
ferred to as model verification;

e be confirmed experimentally, for example, to ensure a minimum error when compared with experimental
data according to some pre-established statistical criterion. Provided that the first and second requirements
are met, the criterion allows to assess the validity or adequacy of the models. The following test results are
possible:

— the criterion value is unacceptable to confirm the statistical significance of the model. Therefore, the mo-
del is not supported by experimental data and is assumed to be inadequate. Inadequacy may be a consequence
of suboptimal selection of model parameters or model inaccuracy. Inadequacy should be eliminated by clari-
fying the model parameters, expanding the formalisation of the modelled processes, moving to a deeper level
of the consideration, or completely replacing the model, achieving an improvement in the value of the criterion;

— the criterion takes optimal values for a large set of models, which corresponds to the limitations of the se-
lected criterion or the redundancy of models (for example, in problems of analysing fluorescence decay curves,
this is a large number of exponentials, a high-degree polynomial, a multilayer neural network, a simulation
model taking into account the modelling of insignificant processes, not affecting the output characteristic);

— the criterion tends to the best value in an extreme or excessively accurate manner, which corresponds to
overtraining of the model. The situation is typical for overfitting a regression model when approximating ex-
perimental noise in the data — the model loses an important generalisation property.

The most reliable model is assessed using cross-validation or bootstrap algorithms [31; 32].

Examples of biophysical systems for investigation in integrated data analysis approach. Let us consider
the possibilities of applying an integrated approach to the analysis of big data using examples of molecules,
biopolymers, proteins and cell systems, studied by fluorescence spectroscopy methods and representing groups
of data associated with the processes of electronic excitation energy transfer at the level of molecules and their
compounds and with the processes of protein interaction at the cell level. These systems and processes are
studied in the construction of molecular photonic artificial antenna systems and in the diagnosis of oncological
diseases; they are combined by such an area of experimental research as applied fluorescence spectroscopy.
In the experiments, the fluorescence of molecular compounds or luminescent dyes, that mark the molecules of
the samples, is studied. The samples are exposed to laser radiation at the excitation wavelength of the mole-
cules or dyes, and the intensity of fluorescence emission is then recorded. Optical processes and molecular
systems are studied using the intensity of emitted fluorescence. What is common in the study of objects of
these systems are the area of experimental methods for obtaining data, formalisation of the description of objects
and their observations, analysis and modelling algorithms, mathematical models used to describe biophysical
processes, formalism of data presentation (see table). We adhere to the following scheme for describing the
system: object of study — observations or measurements of the object — features or attributes of the object —
formulation of the problem to be solved in terms of an integrated approach.

Molecules. The object of study is the process of energy transfer in artificially created molecular systems [1; 33].
Object observations are the optical spectra and fluorescence decay curves recorded for the molecular compounds
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of interest under specified experimental conditions. Features are absorption (emission) wavelengths, time
counts of photon registration on the detector, physical parameters characterising experimental samples (con-
centration of molecules, type of solution, temperature, day of measurement, etc.). The dependent variable is the
fluorescence intensity at specified times, excitation and emission wavelengths. The problem of regression is
solved, namely, finding a model and its parameters that satisfactorily describe the kinetic curves of fluorescence
decay. Simulation modelling of electronic excitation energy transfer processes in molecular systems is carried
out. In an integrated approach, fluorescence decay curves are grouped in clusters, the medoids of clusters are
found, the medoid curves are analysed using simulation models, the result of which is the estimated parameters
of energy transfer processes. Different clusters of decay curves are associated with molecular compounds based
on the estimated parameters. In the case of a small set of fluorescence decay curves, the integrated approach
is reduced to a single analysis of the decay curves using simulation models according to the simulation-based
approach [34].

Proteins. The object of study is the processes of diffusion and aggregation of proteins in various environments
(for example, proteins involved in the formation of cancer cells [35; 36]). In fluorescence fluctuation spectros-
copy experiments, the fluorescence intensity of molecular complexes is recorded, which allows to estimate the
size of the protein complex [37]. Observations of the object are PCHs of fluorescence intensity fluctuations for
fluorescently-labeled proteins at a given recording time interval. Features are histogram channels represented
by the photon frequencies detected during a certain short time interval. The dependent variable is a marker of
the type of protein or molecular complex. Simulation modelling of the proteins diffusion and aggregation pro-
cesses is carried out. In the integrated approach, the grouping of PCHs, the determination of medoids of PCH
clusters and the analysis of PCHs using simulation models are performed, the result of which is the estimated
parameters of the proteins diffusion and aggregation processes.

In fluorescence spectroscopy experiments conducted on cells (in vitro and in vivo), fluorescence analysis
allows to estimate the parameters of association and dissociation reactions (or in the general case of poly-
merisation) to molecular protein complexes [38; 39]. Observations are kinetic curves of increase and recovery
of fluorescence after photobleaching of proteins. Features are the time of occurred and detected fluorescence
emission events of a luminescent protein. The dependent variable is protein fluorescence recorded at the indicated
times. The regression problem is solved, namely, finding a model of protein polymerisation and its parameters
that satisfactorily describe the fluorescence intensity. Simulation modelling of protein polymerisation processes
in a cell is carried out. In the integrated approach, fluorescence curves are processed, data cluster medoids are
found and analysed using simulation models, which result in estimated parameters of protein polymerisation
processes.

Cells. The object of the study is a cancer disease, determined by the characteristics of cell microobjects in
a luminescent image [40; 41]. Observations are highlighted (segmented) cells in the image (contours of nuclei or
cytoplasms), affected by disease. Features (properties of segmented microobjects in the image) are cell charac-
teristics obtained as a result of segmentation of cell contours (size, colour, orientation, etc. [19]). The dependent
variable is a marker of cell cancerous type or stage of disease. The problem of classifying cells into cancerous
(non-cancerous) or determining the stage of the disease is solved. Simulation modelling reproduces the stages
of the disease with given parameters. In an integrated approach, the stages of cancer are modelled, parameters
corresponding to cancerous (non-cancerous) cells are determined, microobjects of images are classified into
one or another type of cell susceptible to a certain stage of the disease. Simulation modelling may not be used
if expert solutions are given in the form of labeled images of cancer cells.

Computational platform for the implementation of integrated approach methods and algorithms.
The developed integrated approach to the analysis of big experimental data can be practically implemented
in the form of a computing platform or programming environment that combines computational algorithms
of mathematical models and analysis methods, as well as auxiliary software tools for data processing. In the
structure of the computational approach, the platform integrates implementations of simulation models, analysis
algorithms and analysis quality assessment (see fig. 4).

As a demonstrative example of the practical implementation of the developed complex methodology, inte-
grating simulation modelling and data mining algorithms, the computational platform FluorSimStudio has been
developed for processing fluorescence kinetic curves in time-resolved fluorescence experiments [42]. The user’s
work is carried out through a web application hosted at Attps.://dsa-cm.shinyapps.io/FluorSimStudio. An example
of the package interface window is shown in fig. 5. The main interface window consists of nine panels corre-
sponding to six stages of analysis: loading, modelling and clustering data, reducing data dimensionality by the
principal component analysis, fitting medoids (data analysis), visualising and interpreting the results, information
about the authors of the development, and instructions for using the computational resource.
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Fig. 5. FluorSimStudio web application interface windows:
examples of simulation modelling the stretched-exponential fluorescence decay dataset (a)
and analysis results visualisation () of clustered fluorescence decay curves

The platform is not intended for data collection and storage, development of new analysis algorithms, or-
ganisation of parallelised computational systems for big data analysis. Its main task is to provide the user with
computing tools for the implementation of developed simulation models, methods of modelling and analysis
of big data, instruments for assessing the quality of analysis, visualisation and interpretation of data.

Results

Application of an integrated approach to the analysis of molecular systems. We consider two examples
that confirm the fundamental applicability of the developed integrated approach to the analysis of molecular
systems in fluorescence spectroscopy experiments.

Time-resolved fluorescence spectroscopy. The effectiveness of the algorithms of the developed approach
was tested during the analysis of fluorophore systems under various parameters of a computational experiment.
Simulated time-resolved fluorescence datasets, representing three fluorophore systems and characterised by
one-, two- and stretched-exponential fluorescence decay laws were studied [16]. The stretched-exponential
model is a represent of the donor fluorescence intensity decay in the presence of Forster type of energy transfer
in a donor — acceptor molecular system. The donor fluorescence in three dimensional space can be written as

o . t 1 )2
l(t, Iy> 95 tD)zloeXp —T—D—q T_D ,

where i is the fluorescence intensity at time ¢ = 0; ¢ =0.5[C,]/[C,,], where C,, and C, are the critical and

actual concentrations of acceptors; 1, is the fluorescence decay time of donors [16]. The application of the
algorithms of the developed approach to the analysis of datasets made it possible to accurately determine
the fluorescence lifetimes of fluorophores. The accuracy of the estimated parameters by complex analysis
is higher than in the case of using the classical approach based on separate processing of each dataset using
analytical models of fluorescence decay (fig. 6, a). The developed approach requires significantly less time and
the number of calculations of the theoretical model, and allows faster and more accurate determination of the
parameters of biophysical and optical processes in molecular compounds in comparison with the classical
method. The use of simulation models of optical-physical processes significantly increases the efficiency of
parameter estimation in the case of analysis of complex molecular systems, such as photonic antennas based
on metalloporphyrin films or zeolite crystals [43; 44], when the parameters of the molecular environment and
the mechanisms of electronic excitation energy transfer, necessary to create accurate analytical models, are
unknown.

Fluorescence fluctuation spectroscopy. The effectiveness of the analysis algorithms developed within the
framework of the proposed approach was confirmed by simulated and experimental PCH measurements of
fluctuations in the fluorescence intensity of the green fluorescent protein GFP-S65T [45; 46]. Analysis of ex-
perimental data on the GFPs in cell lysates revealed the presence of monomeric and dimeric forms of proteins
(fig. 6, b—f). Monomers of the GFP demonstrate a spherical data cluster in the space of the first two principal
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Fig. 6. Examples of the application of an integrated approach to the analysis of molecular compounds in experiments
with time-resolved fluorescence (a) and fluorescence fluctuation (b—f) spectroscopies:
(a) error ¢ in assessing the accuracy of reconstructing the parameters of simulated fluorescence decay curves
of fluorophore systems characterised by one-exponential (I and II), two-exponential (IIT) and stretched-exponential (IV) laws
of fluorescence decay, using classical (black) and developed (gray) methods. Digital labels (I-1V) of the abscissa axis
denote the following modelling parameters: fluorescence decay times t, = 2 ns and 1, = 4 ns, number of curves is 200,
standard deviation of parameters ¢ = 0.1 (I); T, = 1.4 ns and 1, = 2 ns, number of curves is 200, ¢ = 0.1 (I);

1, = 0.5 ns and 7, = 2 ns, their contributions (normalised to one) p, = 0.2, p, = 0.8 and p, = 0.8, p, = 0.2, respectively,
for two sets of decay curves, number of curves is 200, ¢ = 0.1 (III); donor fluorescence decay time t,, =2 ns,
acceptor concentration ¢ is equal 1 and 0.2 for two sets of decay curves, number of curves is 200, o = 0.1 (IV);

(b) and (c) are photon counting histograms PCHs of monomeric and dimeric forms of the green fluorescent protein GFP
in the coordinates of the most informative components Z;, Z, and Z;, calculated by the principal component method;
(d) PCH on a logarithmic scale in the space of the initial features X}, X), ..., X, f; are frequencies of occurrence
of the number of photons during a certain short time interval; (e) dendrograms of PCH,

d is a measure of similarity of clusters; (/) PCH in the space of the first two principal components Z, and Z,.

In illustrations d— /" colours and symbols indicate monomeric and dimeric forms of proteins

components (see fig. 6, b), while an elongated ellipsoidal cloud is observed for a mixture of monomeric and
dimeric forms of protein compounds (see fig. 6, ¢). Note that accurate separation of monomeric and dimeric
forms of a protein is difficult to achieve using classical analytical methods, which involve a separate analysis
of PCHs. Further assessment of the parameters of protein complexes can be made by analysing the medoids of
the resulting PCH clusters using classical analysis or simulation algorithms.

Conclusions

The integrated approach to processing big datasets in applied fluorescence spectroscopy has been developed,
which is based on simulation modelling and data mining methods for the study of optical processes in biophy-
sical systems. Its main feature is the use of simulation modelling algorithms to reproduce biophysical processes
in the systems under study and data mining to determine the most informative data. The effectiveness of the
algorithms was verified by analysing simulated and experimental data representing systems of molecules and
proteins that are studied in time-resolved fluorescence and fluorescence fluctuation spectroscopy experiments.
The developed analysis approach, in comparison with the classical one, quickly and more accurately deter-
mines the parameters of biophysical and optical processes in molecular compounds. The proposed methodology
of the developed integrated approach was realised in the computational platform FluorSimStudio, intended
for processing fluorescence decay curves of molecular systems. It provides high productivity of processing
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large fluorescence datasets, is hosted on the server and can be used in the educational process and for the study
of time-resolved fluorescence spectroscopy systems. By the developed integrated approach, it is possible to
increase the accuracy of assessing the studied characteristics of biophysical processes in comparison with the
classical approach, based on separate processing of each dataset, to deepen knowledge about the physics and
essence of the processes under study, to create new predictive tools when analytical models do not exist or the
derivation of analytical solutions is difficult due to increasing complexity of a system represented by big data.
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