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Abstract

We present a review of analytical approaches involved in developing the

ratchet theory, which are based on the model of extremely asymmetric saw-

tooth potential. Analytical expressions are given for the average velocity of

ratchets which operate in various motion modes, namely, motion induced

by dichotomous half-period shifts of potential profiles, adiabatic and high-

temperature modes, and motion induced by small fluctuations of an arbi-

trary type. The presence of jumps in the periodic extremely asymmetric

sawtooth potential profile leads to a number of features of the obtained

solutions which follow from the competition of the reverse sliding time

tending to infinity with high fluctuation frequencies. The resulting depen-

dences of the average velocity on the ratchet parameters clearly demon-

strate that the motion direction can be controlled by tuning the frequency

and temperature. The heuristic value of the presented models for control-

ling nanoparticle transport is discussed.
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1 | INTRODUCTION

Professor S. H. Lin was a bright person always open to
the latest trends in modern physics and chemistry, who
urged his students not to stagnate within the scientific
areas already known, but to be actively engaged in new
promising research areas. One of such new areas, which
Professor S. H. Lin began to study in 2004, was the theory

of ratchet systems.[1] Interest in such systems is based on
several factors, among which are attempts to understand
the operation principles of protein motors that convert
the energy of chemical transformations into the direc-
tional motion of biological objects, as well as developing
systems for particle segregation in solutions and control-
ling directional motion of nano-objects.[2–8] From a theo-
retical point of view, the interest in ratchet systems is
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induced by the fact that directional motion in asymmetric
media can be described by the including fluctuations of
various nature in a theoretical model; to do that, the
methods of the modern theory of nonequilibrium pro-
cesses are used within the framework of the well-
developed diffusion dynamics.[9]

It should be emphasized that ratchet mechanisms
differ from other methods of creating particle
motion[10–12] in that, in a ratchet system, the average
forces acting on the particles or the particle concentra-
tion gradients are equal to zero, and the directional
motion arises from various unbiased non-equilibrium
perturbations, when the spatial and/or temporal sym-
metry of the system is broken. The concept of ratchet
systems implies systems that initiate exactly unidirec-
tional translational or rotational motion. At the same
time, there are nanomachines in which non-equilibrium
perturbations can cause reciprocating motion[13]; they
include, for example, light-driven reciprocating host–
guest molecular machines,[14] light-activated molecular
catchers,[15] or rotation-inversion dual-mode molecular
systems.[16]

Most ratchet models are based on a dichotomous pro-
cess of switching periodic potential profiles, among
which sawtooth profiles occupy a special place. This spe-
cial place is because of the fact that piecewise linear
models lead to analytical expressions for the desired
quantities, and these expressions are greatly simplified if
potential profiles are extremely asymmetric sawtooth. It
is this shape of the potential profile that was proposed
in[17] to explain the high efficiency of energy conversion
in a ratchet with half-period shifted periodic potentials.

The operation scheme of a highly efficient ratchet
with an extremely asymmetric sawtooth potential profile
is given in Figure 1. When a particle moves down the
potential profile, this profile is shifted by half a period
with a certain frequency, potential barriers then do not
impede the motion and it can proceed continuously in
the same direction. It turns out that the efficiency of such
a process is high when the potential barrier is much
greater than the thermal energy. Section 2 presents the
solution of this model.

The main parameters affecting the properties of a
ratchet system are the frequency of nonequilibrium
fluctuations and temperature (equilibrium noise inten-
sity). The smallness of the fluctuation frequency with
respect to the inverse characteristic times of the system
makes it possible to obtain a number of analytical
expressions for the particle current in sawtooth poten-
tials fluctuating in amplitude (Section 3). In these
expressions, the temperature can vary over a wide
range. If the temperature is assumed to be sufficiently
high, that is the ratios of the energy barriers to the

thermal energy be sufficiently small, then a wide range
of analytical expressions for the particle current can be
also derived, and they have very simple forms for the
sawtooth barriers (Section 4). In these expressions, on
the contrary, the fluctuation frequency can vary over a
wide range. Finally, one more approximation exists
which is a source of analytical results, in which only
the fluctuation energies (but not the potential profile
as a whole) are assumed to be small with respect to the
thermal energy while both the temperature and the
fluctuation frequency are allowed to vary within a wide
range of values. This small fluctuation case for an
extremely asymmetric sawtooth potential is discussed
in Section 5. In Section 6, a number of concluding
remarks are made on the role of jumps in potential pro-
files inherent to extremely asymmetric sawtooth ones
as well as on the practically important features which
they lead to.

2 | POTENTIAL FLUCTUATIONS
FOR HALF A PERIOD

Following Ref. [17], we assume that there are two peri-
odic potential profiles Vþ xð Þ and V� xð Þ alternating with
frequency γ. To describe the efficiency of energy conver-
sion in the ratchet system, we define the output power
(the useful work done against a load F per unit time) as
the product Wout ¼F⟨v⟩, where ⟨v⟩ is the average ratchet

FIGURE 1 Schematic representation of an extremely

asymmetric sawtooth potential fluctuating in the “shift by half a
period” way, which can initiate a directional motion characterized

by high efficiency
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velocity. The total potential energy in “�” states is writ-
ten as U� xð Þ¼V� xð ÞþFx. To find the velocity ⟨v⟩ and
the input power, we need the probability density ρ� x, tð Þ
of the particle being in the “�” state at the point x and
time t, which is a solution of the Smoluchowski Equa-
tion[9] with sources and sinks:

∂ρ� x, tð Þ
∂t

¼� ∂j� x, tð Þ
∂x

� γ ρ� x, tð Þ�ρ∓ x, tð Þ� �
, ð1Þ

with the currents j� x, tð Þ given by the expression

j� x, tð Þ¼�De�βU� xð Þ ∂

∂x
eβU� xð Þρ� x, tð Þ
h i

: ð2Þ

Here, D is the diffusion coefficient, β¼ kBTð Þ�1 is the
inverse thermal energy (kB is the Boltzmann constant
and T is the absolute temperature). We will be interested
in the stationary state in which ∂ρ� x, tð Þ=∂t¼ 0, and the
argument t of the functions ρ� x, tð Þ and j� x, tð Þ can then
be omitted. In the stationary state, the total current
J � jþ xð Þþ j� xð Þ is a constant, and the average velocity
⟨v⟩ is equal to the product of this current and the spatial
period L of the potential profiles, so that

Wout ¼FJL: ð3Þ

The power required to switch the potential profiles Vþ xð Þ
and V� xð Þ with frequency γ is determined by the follow-
ing expression[18]:

W in ¼ γ

ZL
0

Vþ xð Þ�V� xð Þ½ � ρ� xð Þ�ρþ xð Þ� �
dx: ð4Þ

Relations (3) and (4) determine the efficiency of the
ratchet: η¼Wout=W in.

An extremely asymmetric sawtooth potential with a
period L and a barrier ΔV can be specified on its period
ε, Lþ εð Þ, ε! 0, as follows:

V xð Þ¼ΔV x�Lθ x�Lð Þ½ �, θ xð Þ¼ 1, x>0,

0, x<0:

�
ð5Þ

If we consider that, in the “þ” state, Vþ xð Þ¼V xð Þ, then,
in the “�”state, the potential be V� xð Þ¼V xþL=2ð Þ. The
solution of this model has been obtained in[17]:

J ¼ DA
2 Z1B�Z2Að Þ , η¼

FL
4ΔV

f
1� e�fL=2

Aeγ sinhβΔV , ð6Þ

where

A¼Ψ0e
βΔV e�βFL=2 coshβΔV �1
� �

þ Ψ1 e�βFL=2� coshβΔV
� �

,

B¼ e�βFL=2 Ψ0e
βΔV coshβΔV þΨ1

� �
,

Z1 ¼ 4

f 2
sinh2 fL=4ð Þ, Z2 ¼ 1

f 2
fL=2þ e�fL=2�1
� �

,

Ψj ¼ 1
2sinhLΔ=4

exp �1ð ÞjfL=4
� �

þ cosh LΔ=4ð Þ
h i

Δ
n

þ �1ð Þjf sinhLΔ=4g, j¼ 0,1,

f ¼ βF�2βΔV=L, eγ¼ γ=D, Δ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2þ8eγq

ð7Þ

Figure 2 depicts the current and the efficiency as
functions of the load force F with the different values of
the parameter eγL2. While the current is a monotonically
decreasing function of the load force F, the F-dependence
of the efficiency is nonmonotonic. It was shown in[17]

that the maximum of the dependence η Fð Þ tends to unity
as βΔV !∞ according to the law:

ηm !
βΔV!∞

1� ln 2βΔVð Þ
βΔV

: ð8Þ

Thus, the presented model is indeed very promising
to explain the high efficiency of protein motors.

3 | ADIABATIC MODE OF MOTION

Here, we still assume that the process which initiates the
directional motion is dichotomous. Then the adiabatic
operation mode corresponds to sufficiently low frequen-
cies γ of switching the potential profiles relative to the
inverse characteristic times of the system, so that the sys-
tem has time to reach local thermodynamic equilibrium
in each of the states. Depending on temperature, the
characteristic times can be the diffusion time over the
period of the potential profiles, the sliding time along
the linear sections of these profiles, or the time required
to overcome potential barriers. The smallness of γ values
makes it possible to obtain, using the Parrondo's
lemma,[19] an analytical expression for the particle cur-
rent in a ratchet system operating due to the adiabatic
switching of sawtooth potentials, which are not shifted
relative to each other and have fluctuating amplitudes
ΔVa and ΔVb. In the adiabatic motion mode, the
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resulting expression for the current is linear in γ and can
be represented as[20,21]:

J ¼ γ

4
κf a, bð Þ,

f a, bð Þ¼ a

sinh2a
þ b

sinh2b
�aþb
a�b

sinh a�bð Þ
sinhasinhb

, ð9Þ

where a¼ βΔVa=2, b¼ βΔVb=2, and κ¼ 1�2l=L is the
asymmetry parameter (l and L� l are the widths of the
links of the sawtooth potential). The parameter κ changes
from zero for the symmetric potential (l¼ 1=2), in which
there is no ratchet effect, to unity for the extremely asym-
metric potential (l¼ 0) having jumps in each period. It is
this feature that leads to a singularity when one tries to
describe inertial effects in the framework of the adiabatic
motion mode[21] and gives a number of interesting conse-
quences, which we will discuss further.

It follows from the expression (9) that the function
f a, bð Þ is positive when a> jbj and it vanishes when
either there are no fluctuations (a¼ b) or the sign fluctu-
ates (a¼�b); in the latter case V� xð Þ¼�Vþ xð Þ. In the
high-temperature limit (a,jbj< <1), the function f a, bð Þ
takes on the following form:

f a, bð Þ≈ 2
45

aþbð Þ a�bð Þ2, ð10Þ

so that its maximum is reached at b=a¼�1=3. In the
case b¼ 0, one of the states of the dichotomous process
corresponds to the zero potential and the free diffusion
occurs in it (the system is called on–off ratchet). Then the
expression (9) is simplified to

f a, 0ð Þ¼ cothaþa=sinh2a�2=a: ð11Þ

Figure 3 represents the dependence f a, bð Þ, which, up to
a factor γL=4, describes the velocity of the ratchet with
fluctuating extremely asymmetric sawtooth potentials as
a function of the potential amplitudes. One can see that
f a, bð Þ≥ 0 at a≥ jbj. In addition, in the cross-sections of
the surface, corresponding to a¼ const, the maximum
values of f a, bð Þ as a function of b are reached at
b=a≈ �1=3 (strict equality is realized in the high-
temperature limit in accordance with the formula (10)).

4 | HIGH TEMPERATURE
DRIVING

The theory of high-temperature ratchets was proposed
in Ref. [22] and successfully developed in Refs. [23–25].
The assumption on smallness of the ratio of the barriers
of periodic potentials to the thermal energy made it
possible to obtain the explicit solution of the Smolu-
chowski equation in the most general case via a series
expansion in this small parameter. That solution led to
a wide range of analytical results on features of ratchets
driven by deterministic and stochastic fluctuations,[26]

in particular, on ratchet symmetry properties.[27] In this
section, we present the result obtained in[25] for the
current in the stochastic high-temperature on–off flash-
ing ratchet with the sawtooth potential characterized by
the barrier ΔV and the widths l and L� l of the links of
the “saw”:

J ¼ τ�1
D

ξ0 �ξð Þ βΔVð Þ3
128 ξ0ξzð Þ2 6f 1 z, ξð Þ�3f 2 zð , ξÞþ f 1 z, ξÞf 2 z, ξÞð �,ð½

ð12Þ

FIGURE 3 Function f a, bð Þ, which determines the average

particle velocity in Equation (9) for the sawtooth potentials with

fluctuating amplitudes
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FIGURE 2 Current J (solid lines, the left axis) and the

efficiency η (dashed lines, the right axis) versus the load force

F for an extremely asymmetric sawtooth potential at several values

of eγL2 (indicated on the curves) and constant value of temperature

(amplitude) βΔV = 15. The dependences are calculated by

Equations (6) and (7)
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where τD ¼D=L2 is the characteristic diffusion time over
the period L, z¼ ffiffiffiffiffiffiffiffiffiffiffiffi

τDγ=2
p

, ξ¼ l=L, and

f 1 z, ξð Þ¼ 1� sinh zξ sinh zξ0

ξξ0z sinh z
, f 2 z, ξð Þ¼ 1� sinh z ξ� ξ0ð Þ

ξ� ξ0ð Þsinh z
, ξ0 ¼ 1� ξ:

ð13Þ

In the particular case of the extremely asymmetric saw-
tooth potential (ξ! 0), the relations (12) and (13) yield

J ¼ τ�1
D

βΔVð Þ3
16

cosh 2z

4sinh2 z
� 5
4z

coth zþ 1
z2


 �
: ð14Þ

The frequency dependences of the current calculated by
the relations (12) and (13) are given in Figure 4. The low-
frequency limit of the current (12) leads to a linearly
increasing dependence on γ, namely J ¼ κ βΔVð Þ3γ=720,
which at κ¼ 1 coincides with the low-frequency limit of
the expression (14). The high-frequency limits for the
current in the extremely asymmetric sawtooth potential
and its analogue in the potential of an arbitrary symme-
try differ significantly: It follows from Equations (12)
that, as γ!∞, J! τ�1

D βΔVð Þ3=32≠ 0 (ξ¼ 0) but J / γ�1

(ξ≠ 0). These differences are a consequence of the pres-
ence of jumps in the potential relief in the extremely
asymmetric case.

5 | MODE OF SMALL
FLUCTUATIONS

Currently, the adiabatic and high-temperature modes of
motion considered in Sections 3 and 4 are the most

fruitful approximations that make it possible to obtain
analytical expressions for the characteristics of ratchet sys-
tems. The disadvantages of these approximations include
the limitations of the obtained results with respect to the
set of control parameters. For example, within the high-
temperature approximation, one cannot predict the possi-
bility of controlling the motion characteristics by chang-
ing the temperature, while within the low- and high-
frequency approximations, by the fluctuation frequency.

One can avoid the above difficulties in analytical
analysis of nanotransport control when using the approx-
imation of small potential energy fluctuations.[28,29] In
this approximation, the potential energy in the “�” states
is written as V� xð Þ¼ u xð Þ�w xð Þ, and only the fluctua-
tions w xð Þ relative to thermal energy is considered small,
not the potential profile V� xð Þ as a whole. This allows
using the perturbation theory for the Smoluchowski
equation with respect to a small quantity w0 xð Þ; as a
result, the current can be written as[28]:

J ¼ β2D2
ZL
0

dxρþ xð Þw0 xð Þ
ZL
0

dyS x, yð Þ ∂

∂y
w0 yð Þρ� yð Þ,

ρ� xð Þ¼ e�βu xð Þ=
ZL
0

dxe�βu xð Þ:

ð15Þ

Here, ρ� xð Þ is the equilibrium Boltzmann distribution in
the stationary potential u xð Þ, and the function S x, yð Þ is
the Laplace image of the retarded Green's function of dif-
fusion in the stationary potential relief, which satisfies
the equation

d
dx
bJ xð Þþ2γ

� 
S x, yð Þ¼�δ x� yð Þ, ð16Þ

where

bJ xð Þ¼�De�βu xð Þ ∂=∂xð Þeβu xð Þ ð17Þ

is the current operator. The physical meaning of the func-
tion S x, yð Þ in the case of a stochastic dichotomous pro-
cess is that the value �2γS x, yð Þ specifies the probability
density of finding a particle at the point x in the potential
u xð Þ with the lifetime 2γð Þ�1, provided that the particle
was originally placed at the point y.

An explicit analytical expression for the function
S x, yð Þ can only be obtained in the case of a piecewise lin-
ear potential relief; the solution, quite cumbersome for
the case of an arbitrary asymmetry of this relief, was
derived in Ref. [29]. Here, we present the result obtained

FIGURE 4 Frequency dependence of the normalized current

(given by Equations (12) and (13)) in the stochastic high-

temperature on–off flashing ratchet with the sawtooth potential.

The curves, top-down, are in the order of increasing the parameter

ξ (the upper curve, red online, corresponds to the extremely

asymmetric sawtooth potential, Equation (14))
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in Ref. [30] for its limiting case – the extremely asymmet-
ric sawtooth stationary component u xð Þ, defined analo-
gously to the expression (5). The function S x, yð Þ is then
written as

Sl,r x, yð Þ¼ L

D Λ1�Λ2ð ÞDet b1� bC� � X
k,m¼1,2

�1ð Þm�1al,rkme
Λkx=L�Λmy=L,

bal ¼ bC�b1, bC¼ 1
Λ1�Λ2

Λ1e
�Λ2 �Λ2e

Λ1 Λ1 e�Λ1 � eΛ2
� �

Λ2 eΛ1 � e�Λ2
� �

Λ1e
Λ2 �Λ2e

�Λ1

 !
,

bar ¼b1� bC�1
,

bC�1 ¼ 1
Λ1�Λ2

Λ1e
Λ2 �Λ2e

�Λ1 �Λ1 e�Λ1 � eΛ2
� �

�Λ2 eΛ1 � e�Λ2
� �

Λ1e
�Λ2 �Λ2e

Λ1

 !
,

Det 1� bC� �
¼ 4
Λ1�Λ2

Λ2 sinh
2Λ1

2
�Λ1 sinh

2Λ2

2


 �
,

ð18Þ

where the superscripts l and r correspond to x on the
intervals x � þ0, yð Þ and x � y, L�0ð Þ, respectively, and

Λj ¼�α

2
1þ �1ð Þj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ16 z=αð Þ2

q� 
, j¼ 1,2,

α¼ βΔV , z¼
ffiffiffiffiffiffiffiffiffiffiffiffi
τDγ=2

p
:

ð19Þ

The surface in Figure 5 represents the function S x, yð Þ in
the basic region of values of its arguments x and y. If the
lifetime of the state with the potential u xð Þ tends to zero
(γ!∞), then �2γLS x, yð Þ!Lδ x� yð Þ. Therefore, at
finite value of γ, the surface contains the line of cusp
points corresponding to x¼ y. The S x, yð Þ-surface also
demonstrates both the jumps at the boundaries x¼ 0 and
x¼L of the region when changing x values and continu-
ity at the boundaries y¼ 0 and y¼ L when changing y
values. Note that in the long-lived potentials (γ! 0) the
dependence on the initial particle position disappears,
and the function �2γS x, yð Þ tends to the equilibrium
Boltzmann distribution in the stationary potential u xð Þ
(see the expression for ρ� xð Þ in Equation (15)).

To illustrate the usefulness of the Green's function of
the diffusion in an extremely asymmetric sawtooth
potential, we present the result for the current in the
flashing ratchet controlled by spatially harmonic
fluctuations

w xð Þ¼wcos 2π x=L� λ0ð Þ½ �: ð20Þ

For the Green's function (18) of the extremely asymmet-
ric sawtooth potential and the coordinate dependence
(20) of its slight perturbation, the integrals in
Equation (15) are reduced to ones of the products of
exponential and trigonometric functions and can be

taken analytically. Simplifying the cumbersome result of
the double integration leads us to the following
expression:

J ¼ J0
8π2α2z2

φ2
1 αð Þφ2 αzð Þ

coshδ� cosh α=2ð Þ
Δ αγð Þ φ1 αð Þ cos4πλ0�1þ 8π2α2

φ2 αzð Þ
� 8<:

þ1

9=;,

φ1 αð Þ¼ sinh α=2ð Þ
α=2

, φ2 α, zð Þ¼ Λ2
1þ 2πð Þ2� �

Λ2
2þ 2πð Þ2� �

,

Δ α, γð Þ¼ coshδcosh
α

2
�1� α

2δ
sinhδsinh

α

2
,

Λ1,2 ¼�α=2�δ, δ¼ 1=2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2þ16z2

p
,

ð21Þ

where J0 ¼ w=ΔVð Þ2τ�1
L , τL ¼ ζL2=ΔV is the characteristic

sliding time over the period of the extremely asymmetric
sawtooth potential, ζ¼ βDð Þ�1 is the friction coefficient.

Figure 6 depicts the frequency and temperature depen-
dences of the current at several values of the phase shift λ0
of the fluctuating harmonic signal relative to the station-
ary extremely asymmetric sawtooth profile. The fre-
quency dependence at the fixed temperature
(corresponding to α¼ 5) and for λ0 ¼ 0:19 is a sign-con-
stant function, while for λ0 ¼ 0:21 and λ0 ¼ 0:25 it
becomes sign-alternating with one zero point (called the
stopping point). The temperature dependence at the fixed
frequency γ¼ 2τ�1

L with the same values of the phase
shift λ0 always turns out to be sign- alternating with one
stopping point. Thus, these dependencies clearly show
the possibilities of controlling the motion direction by
tuning the frequency and temperature. It is noteworthy
that the analytical expression (21) obtained for the
extremely asymmetric sawtooth potential can describe

FIGURE 5 Surface plot for the dimensionless probability

density �2γLS x, yð Þ, Equations (18)–(19), at fixed values of

dimensionless parameters α (inverse temperature) and z (inverse

correlation time): α¼ βΔV ¼ 5, z¼ ffiffiffiffiffiffiffiffiffiffiffiffi
τDγ=2

p ¼ 2:5
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such a rich behavior of the ratchet system under
consideration.

6 | DISCUSSION AND
CONCLUSIONS

The piecewise linear form of the sawtooth potential led
to a number of analytical results in the presence of sim-
plifying factors which are the dichotomous process of
shifting the potential by half a period, adiabatic and
high-temperature modes of the motion, and the mode of
slight fluctuations of the potential energy (see
Sections 2–5). An important simplifying factor was the
choice of the extremely asymmetric sawtooth potential
(5), having only one linear section and one jump on its
period (instead of two linear sections for a sawtooth
potential of arbitrary symmetry). The jump leads to a
number of features of the obtained solutions, one of
which is clearly illustrated in Figure 4. The high-fre-
quency asymptotics of the current has a nonzero value in
the presence of jumps in the potential profile and is equal
to zero when the profile is smooth. A similar regularity
took place for the model with the potential shifted by half
a period.[17] For the so-called rocking ratchets (they are
not of interest in our review), there are even more strik-
ing manifestations of potential-profile jumps in the
ratchet characteristics.[25]

To explain the appearance of the mentioned features,
let us consider the limiting transition from a sawtooth
potential of arbitrary asymmetry to the extremely asym-
metric one. To do this, we introduce the parameter l (the
sawtooth width), which tends to zero in the extremely
asymmetric case. This width is associated with the time
of sliding along this “saw”, equal to τl ¼ ζl2=ΔV . As l! 0,

the value τ�1
l tends to infinity and begins to compete with

high fluctuation frequencies γ. Therefore, understanding
which of the limits, l! 0 or γ!∞, is taken first becomes
utterly important. For the extremely asymmetric saw-
tooth potential, l¼ 0 and the high-frequency limit for the
current can give a result different from the result
obtained in the high-frequency limit for the potential
with l≠ 0. Note that the sawtooth potential of arbitrary
asymmetry has cusp points with jumps in the derivatives.
The jumps in the applied forces lead to the features
known for rocking ratchets.[25] Smoothing the cusp
points eliminates these features, as was shown in particu-
lar in Ref. [21] using the example of eliminating the
divergence of inertial corrections.

The short sliding time τl can also compete with the
characteristic time τv ¼m=ζ (m is particle mass) of relax-
ation in the velocity phase space. Therefore, the results
obtained from the Smoluchowski equation (that is, with-
out accounting for particle inertia) and from the Klein-
Kramers equation (taking inertia into account) will differ
for l¼ 0 and l≠ 0.[31]

There are several sources of a prominent role which
a sawtooth potential plays in the ratchet theory (see,
for example, Refs. [2,17,21,31–33]). First of all, only
two parameters are used to define its shape: the energy
barrier ΔV and the ratio l=L characterizing the potential
asymmetry. Such small number of parameters is very
convenient in analyzing experimental data and predict-
ing new features of ratchet systems. Moreover, a saw-
tooth potential is not only a theoretical idealization,
but can be realized experimentally; examples can be
found in Ref. [34]. In numerous experiments on direc-
tional motion of colloidal particles, sawtooth shapes of
the ratchet potential are created by means of interdigi-
tated electrodes, deposited on the glass slides with

FIGURE 6 Analytical dependences (21) of the current in the ratchet with the extremely asymmetric sawtooth potential u xð Þ on the

frequency γ at the fixed value of the temperature parameter (α¼ 5 (a) and on the temperature parameter α at the fixed γ value γ¼ 2τ�1
L (b))
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photolithographic techniques (see, for example, Chap. 7
in Ref. [4]). In experiments for manipulating charged
components within supported lipid bilayers,[35] such
shape of the ratchet potential is created by a patterned
bilayer.

Potential profiles having near jump-like sections
can also be created experimentally. Small times of
sliding over such sections can compete with other char-
acteristic times in the system; this gives new prerequi-
sites for controlling ratchet parameters. The possibility
of the controlling has been demonstrated in Ref. [30]:
Additional stopping points can appear with the fluctua-
tion frequency changes as a result of the presence of
short sliding times in the ratchet system. Summarizing,
the models of ratchet systems involving extremely
asymmetric sawtooth potential profiles, considered in
this paper, not only make it possible to obtain the
dependences of the characteristics of the ratchet sys-
tems on their parameters, but also have heuristic value
for controlling directional motion of nanoparticles.
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NOMENCLATURE

“�” Alternating states
V� xð Þ Periodic potential energies
U� xð Þ Total potential energies
F Load force
ρ� x, tð Þ Probability densities
j� x, tð Þ Probability currents
J Total current
D Diffusion coefficient
β¼ kBTð Þ�1 Inverse thermal energy
γ Alternating frequency
W in Input power
Wout Output power
η Motor efficiency
L Period of the potential
ΔV Barrier of the sawtooth potential
l Width of a link of the “saw”
κ Asymmetry parameter
τD Diffusion time
τl Sliding time on length l
u xð Þ Static part of the potential
w xð Þ Fluctuating part of the potential
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