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Abstract

It is well known that at low temperatures, the direction of motion for a quan-

tum rocking ratchet in an asymmetric periodic potential (with a period L and

an energy barrier V0), driven by an external fluctuating force F ( Fh i¼ 0), can

be opposite to the direction for the analogous classical ratchet operating at high

temperature (Reimann et al, Phys. Rev. Lett. 1997, 79, 10). In the present work,

within the semiclassical approximation and taking into account zero-point

fluctuations of a quantum particle in the minima of a sawtooth potential of an

arbitrary asymmetry at the temperature of absolute zero, we obtain analytical

expressions for the tunneling current in the rocking ratchet. These expressions

allowed us to obtain the dependencies of the ratio FL=V0, at which the motion

direction is reversed, on the asymmetry parameter and other parameters of the

system. Similar results are obtained for a particle in a two-sinusoidal potential.
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1 | INTRODUCTION

At present, much attention is paid to nanosystems, in
which unbiased nonequilibrium disturbances of vari-
ous natures can lead to a directional motion of nano-
particles when the spatial and/or temporal symmetry
of the system is broken. Such nanosystems are nor-
mally called Brownian motors or ratchets.[1–6] The

main parameter influencing the direction of a
Brownian-motor motion is the asymmetry of potential
energy landscape characterizing the nanoparticles.[5,7–
10] In addition to the asymmetry and other features of
the potential landscape, various dynamic effects can sig-
nificantly influence the direction of motion.[11] More
possibilities for controlling nanotransport arise for
nanoparticles of sufficiently large or small mass, when
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inertial or quantum effects, respectively, should also be
considered.[3,5]

Accounting for quantum effects in the functioning
mechanisms of microscopic ratchets often leads to funda-
mentally new physics that does not appear in a classical
description.[3] In a quantum mechanical description, the
critical factor is the temperature under which particles
surmount potential barriers. As is well known (see, for
example,[12,13] and the references therein), at a certain
temperature, there occurs a transition from the low-
temperature tunneling regime to the classical regime, in
which the particles move above the barrier. In other
words, there exists a temperature criterion, depending on
the barrier parameters and on the particle mass, at which
the mechanism of the particle transport alters. In particu-
lar, this result applies to the quantum rocking ratchet
described in the pioneering work[14]: At sufficiently high
temperatures, the ratchet effect led to a one-directional
particle motion (analogous to the motion of a classical
ratchet), while at low temperatures, when the tunneling
mechanism prevails over the classical one, the particles
moved in the opposite direction. That theoretical result
was confirmed experimentally in[15] (see also Ref. [16] for
more details).

Note that a rigorous description of quantum ratchets
should be based on the known principles of driven quan-
tum tunneling.[17] It uses various approaches that take
into account, to some extent, quantum fluctuations and
friction.[18] For example, strong friction at relatively low
temperatures for an adiabatic rocking ratchet driven by a
dichotomous process (nonthermal two-state noise) was
taken into account in[19,20] using the modified quantum
Smoluchowski equation. The reverse conditions were
also considered to analyze the quantum ratchet with low
friction[21] or at high temperatures.[22] The developed
quantum theory provides the key to understanding the
properties of real quantum ratchets.[23–25]

In the present work, using the semiclassical approxi-
mation and taking into account zero-point fluctuations of
a quantum particle we developed analytical expressions
for the tunneling current of a rocking ratchet in a saw-
tooth periodic potential of an arbitrary asymmetry at the
temperature of absolute zero. This made it possible to
determine the limited range of model parameters respon-
sible for reversing the motion direction. To involve in our
description the zero-point fluctuations of the quantum
particle in the minima of a sawtooth potential, which
mathematically are cusp points, it was necessary to solve
an auxiliary problem, represented in the Appendix 1. As
a result, in Section 2, we show that the motion of the
quantum rocking ratchet at low temperatures and the
motion of the corresponding classical ratchet at high tem-

peratures can be oppositely directed only in a certain
region of the parameter space determined by the value of
the barrier height V 0, the particle mass, the magnitude of
the external fluctuating force F, the period L, and the
asymmetry l=L of the sawtooth potential profile with the
widths of its linear sections l and L� l. In Section 3, we
discuss the dependence of the direction of the ratchet
motion on the asymmetry of the potential and emphasize
that the significant contribution to the appearance of this
dependence is given by the energy of zero-point vibra-
tions, which was not taken into account before. The
value FL=V 0 at which the motion direction reverses
decreases when zero vibrations are taken into account if
the sawtooth profile does not belong to extremely asym-
metric ones (l=L≠ 0,1). A similar result is obtained for
the motion of the rocking ratchet when choosing the
two-sinusoidal form of the potential, the same as was
considered in Ref. [14].

2 | FORCE-DEPENDENT MOTION
OF ROCKING RATCHETS

A rocking ratchet is a system in which the directed
motion of a particle in an asymmetric periodic potential
profile V xð Þ with a period length L [i.e., V xþLð Þ¼V xð Þ]
is forced by the action of a zero-mean time-dependent
external force F tð Þ, F tð Þh i¼ 0. As a rule, a dichotomous
time dependence F tð Þ is considered, in which the force
takes on two values, Fþ and F�, during alternating time
intervals, τþ and τ�, (a deterministic process) or these
two values (two states) are switched in a random way
with known frequencies γþ and γ� (a stochastic process
with average state durations τ�h i¼ γ�1

� ). In this (dichoto-
mous) case, the equality F tð Þh i¼ 0 is ensured by the rela-
tions FþτþþF�τ� ¼ 0 and Fþ=γþþF�=γ� ¼ 0 in the
first and the second cases, respectively. In a particular
case τþ ¼ τ�, we set F� ¼�F (F >0), and the total poten-
tial energy of a nanoparticle at a position x is given by

U� xð Þ¼V xð Þ∓F� x� lð Þ, ð1Þ

where the parameter l� 0, Lð Þ specifies the location of
the potential maximum in the main domain 0, Lð Þ. It
should be noted that the contribution �Fl to the potential
energy (1) does not affect the dynamics of the particle
motion and is introduced here only for the convenience
of geometrical representation of the origin of the
applied-force fluctuations. We choose V xð Þ as a sawtooth
potential with a potential barrier V0 and the widths of
the linear sections l and L� l; it is defined in the main
domain by the following function:
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V xð Þ¼V0�
x=l, 0 < x< l,

L� xð Þ= L� lð Þ, l< x <L:

�
ð2Þ

Note that at l¼ 0 or l¼ L, the sawtooth potential
becomes extremely asymmetric, and a Brownian ratchet
with such potential has a number of unique properties
due to the presence of the jump in the potential
shape.[26–28] In the case of the quantum ratchet, such a
potential in the presence of a weak oscillating field and
within a semiclassical approximation was considered, for
example, in Ref. [29].

The applied force F tilts the potential profiles U� xð Þ
(tilted periodic potential, washboard potential), invoking
a stationary particle current J� for each of these profiles.
In the adiabatic approximation, with the lifetimes τ� of

both states significantly exceeding characteristic relaxa-
tion times of the system (the times during which initial
conditions become forgotten and the currents become
stationary), the average current J for the symmetric
dichotomic process (τþ ¼ τ�) is determined by the arith-
metic mean of the currents J�:

J ¼ Jþþ J�ð Þ=2: ð3Þ

The classical description in the high-barrier approxi-
mation (corresponding to the energy barriers large in
comparison with the thermal energy kBT of the system)
allows one to calculate the particle current in the state
with the potential profile U� xð Þ using the Arrhenius law,

J clð Þ
� ¼C e�β V0�U� 0ð Þð Þ � e�β V 0�U� Lð Þð Þ

h i
¼Ce�βV0 e�βFl� e�βF L�lð Þ

h i
: ð4Þ

Here, the first and second terms correspond to the
currents of particles that surmount the barrier from left
to right and from right to left, respectively (see Figure 1),
β¼ kBTð Þ�1, and the pre-exponential factor C describes
the frequency with which the particles hit the barrier. By
averaging expression (4) using formula (3), we find the
total current

J clð Þ ¼ 2Ce�βV0 sinh βFL=2ð Þsinh βF 2l�Lð Þ=2½ �: ð5Þ

From this, it follows that the current is positive when
l>L=2 (Figure 1), that is the particles will move from the
potential barrier to the nearest potential well. Note that
analytical expressions for the velocity of the adiabatic
rocking ratchet with a sawtooth potential profile, not
limited to the case of high potential barriers, have been
obtained in Ref. [30,31]. Formula (5) is a particular case
of these expressions. Since in this article our aim is only
to clarify the mechanisms responsible for the occurrence
of currents in classical and quantum ratchets to a cer-
tain, one or another, direction, the high-potential-
barrier approximation should suffice.

A rigorous quantum treatment of the particle motion
in a periodic potential under the action of the homoge-
neous static force F should take into account the pres-
ence of Bloch bands at sufficiently small F[32] and the
appearance of Wannier ladders with gaps FL at large
F.[33,34] For sufficiently large barriers V0 of the potential
profile, one may use the semiclassical approximation (the
quantitative condition for the validity of this approxima-
tion is given below by inequality (7)), in which the main
mechanism of the motion is tunneling from the lower
levels of the zero-point vibrations. If, however, the

FIGURE 1 The mechanism of the appearance of a directed

motion in a rocking-ratchet system at high temperatures, caused by

over-barrier thermally activated transitions, according to the

Arrhenius law (4). The solid and dashed arrows (red online) depict

major and minor transitions in the alternating states with potential

profiles (1). Since the direct major transition in the “+” state is
more probable than the reverse major transition in the “�” state
(due to the different heights of the potential barriers), Brownian

particles will move to the right at high temperatures
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inequality FL<V0 holds true, then the presence of the
Wannier ladders does not prevent the use of that semi-
classical approximation. Within the adiabatic approxima-
tion, described above, with τþ ¼ τ� the semiclassical
approximation will be used for two values of the applied
forces, F and �F.

At zero temperature, there are no thermally activated
contributions to the current, and the only motion mecha-
nism corresponds to quantum tunneling. From the semi-
classical approximation, the tunneling current is
proportional to the rate constant of overcoming the
potential barrier, which is determined by the following
expression:

J qmð Þ
� ¼Ae�S�=ℏ, S� ¼ 2j

Zx1,�
x0,�

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m U� xð Þ�U x0,�ð Þ½ �

p
j,

ð6Þ

where A is the pre-exponential factor, ℏ is the Planck
constant, and S� is the action in the Gamow
formula[35–37] (a rigorous proof of this formula and the
corrections to it are given in Ref. [38]), in which m is the
particle mass, and we integrate over the sub-barrier range
of the potential profile U� xð Þ with the entry and exit
points x0,� and x1,�, respectively (the modulus sign is
necessary when x0,� > x1,�). The coordinates of the entry
and exit points satisfy the equations
U� x0,�ð Þ¼U� x1,�ð Þ¼E�, where E� are particle energies
in the potentials U� xð Þ; in the limit of low temperatures,
they correspond to the energy levels of zero-point vibra-
tions. The validity of the semiclassical approximation is
ensured by the smallness of the following dimensionless
parameter

ε� ℏ2

2mV0L2
< < 1 ð7Þ

(the smallness of the ratio of the de Broglie wavelength of
the particle to the characteristic size of the system, deter-
mined by the quantity

ffiffiffi
ε

p
). Within this approximation,

the tunneling currents are exponentially small, and the
energy levels E� are close to the minima of the potential
wells.

For a sawtooth potential, the sub-barrier region has a
triangular shape, so the integral in expression (6) contain-
ing the piecewise linear function can be expressed in ele-
mentary terms:

I�
Zx1
x0

dx
ffiffiffiffiffiffiffiffiffi
y xð Þ

p
¼ 2
3

ffiffiffi
h

p
jx1� x0j, ð8Þ

where y xð Þ is the piecewise linear function that corre-
sponds to the top of the triangle, h is the triangle height,
and jx1�x0j is the length of its base (see the inset in
Figure 2). For the potential Uþ xð Þ, the sub-barrier region
is determined as follows. Tunneling can occur from any
potential well only to the right. Assuming that tunneling
occurs from the minimum of the potential well (that is
Eþ ¼Umin,þ ¼Fl), then hþ ¼V0�Fl and
x1,þ ¼V0L= V0þF L� lð Þ½ �. Similarly, for the potential

FIGURE 2 The mechanism of the appearance of a directed

motion in a rocking ratchet at low temperatures, caused by

tunneling. Arrows (blue online) represent tunneling trajectories in

the alternating states with potential profiles (1). The inset shows a

triangular-shaped sub-barrier region and the corresponding integral

value (shaded) described by formula (8) for a sawtooth potential.

For relatively weak forces F, the characteristic height of the barrier

region under which tunneling occurs (blue online profile) is

approximately the same in both states; hence, the smaller the

tunneling path, the greater the probability of tunneling transitions.

Due to this, at low temperatures, a Brownian particle will move to

the left, that is, in the direction opposite to the direction of its

motion at high temperatures
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U� xð Þ, tunneling can only occur to the left, from the
point x0,� ¼L (with E� ¼Umin,� ¼F L� lð Þ), so that
h� ¼V0�F L� lð Þ and x1,� ¼FLl= V0þFlð Þ< x0,�. If,
however, we take into account that the energy level E�
of the tunneling particle is separated from the bottom of
the considered potential well Umin,� by the value of the
energy of zero-point vibrations E0,�, so that
E� ¼Umin,�þE0,� (see Figure 2), then the height h� and
the base jx1,��x0,�j of the triangle will change by a fac-
tor of 1�E0,�=h�ð Þ. Therefore, the modified value of the
integral (8) (accounting for the zero-point energy) will
be related to the original relation by the equal-
ity I 0 ¼ 1�E0,�=h�ð Þ3=2I.

It is convenient to define the dimensionless parame-
ters, characterizing the applied force F, the asymmetry of
the potential profiles, and the zero-point energy:

α�FL
V 0

, ξ� l
L
, z� �E0,�

h�
: ð9Þ

With them, the expressions for the actions S� defined
by formula (6) take on the following form:

Sþ=ℏ¼ 4
3
ε�1=2φα ξð Þ 1� zþ α, ξð Þ½ �3=2, S�=ℏ

¼ 4
3
ε�1=2φα 1�ξð Þ 1� z� α, ξð Þ½ �3=2, ð10Þ

where

φα ξð Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�αξ

p
1þα 1�ξð Þ : ð11Þ

Deriving the expressions for the parameters that take
into account the zero-point energy requires special treat-
ment since the minimum of the sawtooth potential is at
its cusp point. These expressions are derived in Appen-
dix 1 and have the following approximate form:

zþ α, ξð Þ¼�ε1=3
y γþ
� �

ξ2 1�αξð Þ� �1=3 , z� α, ξð Þ

¼�ε1=3
y γ�ð Þ

1�α 1� ξð Þ
1�αξ

ξ

� 	2=3

, ð12Þ

where

γ� ¼ γ� α, ξð Þ¼ 1∓αξð Þ 1�ξð Þ
1�α 1� ξð Þ½ �ξ

� 
2=3

: ð13Þ

Here, the functions y γð Þ are the smallest in magnitude
negative roots of equation (A1.10), which comprises the

Airy functions, changing from �2:338 to �1:019 when γ
runs from 0 to 1. Note that the parameters z� are small,
they are proportional to the small value ε1=3.

To determine the sign of the average quantum
mechanical current (3), we represent it in the follow-
ing form:

J qmð Þ ¼Ae�Sþ=ℏ 1� exp �4
3
ε�1=2f α ξð Þ

� �� 

,

f α ξð Þ�φα 1� ξð Þ 1� z� α, ξð Þ½ �3=2�φα ξð Þ 1� zþ α, ξð Þ½ �3=2,
ð14Þ

from which we find that the sign of J qmð Þ will be the same
as the sign of the function f α ξð Þ. From its definition (14)
and from the identity z ∓ α, 1� ξð Þ¼ z� α, ξð Þ, which is a
consequence of the Eq. (A1.11), the equality
f α 1� ξð Þ¼�f α ξð Þ follows; hence it suffices to study the
behavior of f α ξð Þ, say, on the interval 1=2< ξ<1 on
which the classical current (5) is positive. The absence of
the current at ξ¼ 1=2 (f α 1=2ð Þ¼ 0) is consistent with the
fact that the ratchet effect is absent for a symmetric
potential.

The graph of the function f α ξð Þ for several values of α
is presented in Figure 3. The dashed and solid curves show
the dependences obtained without and with considering
zero fluctuations. For small α values, the function f α ξð Þ
will be negative, while for large α values, it is positive. At
ξ! 1, we have the following approximate equalities:
γ� ≈ 1∓αð Þ 1� ξð Þ½ �2=3, zþ α, ξð Þ≈ � ε1=3 1�αð Þ�1=3y γþ

� �
,

and z� α, ξð Þ≈ � ε1=3 1�αð Þ2=3y γ�ð Þ, so that with (А1.12),

FIGURE 3 Family of functions f α ξð Þ (Equation (14)) that

describe the tunneling current of the quantum rocking ratchet in a

sawtooth potential. The parameters ξ¼ l=L and α¼FL=V 0 are the

asymmetry of the sawtooth potential and the magnitude of the

applied fluctuating force, respectively. The inset shows the

dependences α ξð Þ and α0 ξð Þ (Equation (17) with ε¼ 0:001 and

ε¼ 0, respectively), which correspond to the stopping points of the

ratchet. The dashed and solid curves show the dependences

without (ε¼ 0) and with (ε¼ 0:001) taking into account the zero-

point energy
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we come to the conclusion that, at ξ! 1, the derivatives
∂z� α, ξð Þ=∂ξ diverge according to the law 1�ξð Þ�2=3.
Due to this, the solid curves in Figure 3 have an infinite
derivative at ξ¼ 1.

Let us find the roots of equation f α ξð Þ¼ 0. Substitut-
ing (11) into expression (14) for f α ξð Þ, we obtain an equa-
tion of the form

1� ξþ ξ2
� �

α2þα�1¼ ε1=3Λ α, ξð Þ: ð15Þ

Because of the smallness of the parameter ε, an
approximate solution to this equation can be sought by
assuming that the value of the variable α belonging to
Λ α, ξð Þ is equal to the value of the positive root
α0 ¼ α0 ξð Þ of Equation (15) with ε¼ 0. Therefore, it suf-
fices for us to give here only an explicit expression for the
quantity Λ α0, ξð Þ:

Λ α0, ξð Þ¼ 3
1�α0ξð Þ 1þα0 1�ξð Þ½ �f g2=3 1þα0ξð Þ2

α0 1�2ξð Þ Δ α0, ξð Þ,

Δ α0, ξð Þ¼ y γþ
� �

1þα0 1� ξð Þ½ �2=3
� y γ�ð Þ

1�α0 1� ξð Þ½ �2=3
:

ð16Þ

The solution of equation (15) with α>0 has the form

α¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�4ξ 1� ξð Þ�4ε1=3Λ α0, ξð Þ 1� ξþ ξ2

� �q
�1

2 1� ξþ ξ2
� � , ð17Þ

where the value α0 is defined by the same equation (17)
with ε¼ 0. On the inset in Figure 3, the dependences
α ξð Þ and α0 ξð Þ are depicted by the solid and dashed
curve, respectively. Using the approximate equalities
γ� ≈ 1∓αð Þ 1�ξð Þ½ �2=3 and (A1.12), it is easy to show that
at ξ! 1, we have Λ α0, ξð Þ≈ �0:615 1�ξð Þ1=3. Therefore,
first, Λ α0, 1ð Þ¼ 0 and α 1ð Þ¼ α0 1ð Þ¼ ffiffiffi

5
p �1
� �

=2≈ 0:618,
and second, near the value ξ¼ 1 and at ε≠ 0, the first
derivative of the function α ξð Þ is infinite (we observe it in
the inset to Figure 3). Thus, zero vibrations do not make
any contribution to the location of the stopping point of
the quantum rocking ratchet in the extremely asymmet-
ric sawtooth potential with ξ¼ 1. Note that the boundary
value F ≈ 0:618V0=L was given in the review [1] within
the semiclassical consideration of the rocking ratchet in
the extremely asymmetric potential but without taking
into account the zero vibrations. Note also that the
expression for Λ α0, ξð Þ in (16) takes a finite value at the
point ξ¼ 1=2 due to the identities
γ� α, 1=2ð Þ¼ γ�1

∓ α, 1=2ð Þ and y γ�ð Þ¼ γ ∓ y γ ∓
� �

(the latter
follows from the first identity in (A1.11)) and due to the
fact that the factor Δ α0, ξð Þ vanishes at the same point.

It should be noted that the dependence of the
motion direction of a quantum rocking ratchet on the
magnitude of the applied force is typical not only for
the sawtooth potential. In [14], the periodic potential
profile was chosen as the following sum of two
sinusoids:

V xð Þ¼ eV 0 sin 2πx=Lð Þ�0:22sin 4πx=Lð Þ½ �, ð18Þ

and only the force value F corresponded to the modified
parameter eα≈FL=eV0 ¼ 0:4π. It is easy to show that the
function (18) is best approximated by the sawtooth poten-
tial with V 0 ≈ 2:50 eV 0 and ξ≈ 0:655 (see the inset in Fig-
ure 4). Since α�FL=V0 ≈ 0:4eα, then the value eα≈ 0:4π
from [14] corresponds to α≈ 0:503< α1, so that f α ξð Þ<0,
and indeed the quantum current will be in the direction
opposite to the classical current. The direction of the
average quantum current (14) for the potential profile
(18) can also be analyzed in terms of the function f α ξð Þ.
Since the second equality of Equation (14) is applicable
to a sawtooth case only, we estimated f α ξð Þ implicitly, by
solving the first equation of Equation (14) for f α ξð Þ at
known J qmð Þ, which in turn was obtained by computing
numerically the integrals in (6). Accounting for zero-
point vibrations for the potential of two sinusoids is car-
ried out in a standard way (the energy of the zero-point
vibrations is equal to ℏω=2, where ω¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U 00
min=m

p
is the

frequency of classical vibrations of a particle of mass m
near the minimum of the potential well with a curvature

FIGURE 4 Dependence of the function f α that describes the

tunneling current for the potential profiles (18) (curves 1, red on-

line) and (2) (curves 2, blue on-line) on the parameter α. The two-

sinusoid potential (18) and the sawtooth potential (2) which is the

least-square fit of the potential (11) with parameters V 0 ≈ 2:50eV 0

and ξ≈ 0:655 are shown by the corresponding curves in the inset.

The dashed and solid curves show the dependences without (ε¼ 0)

and with (ε¼ 0:001) taking into account the zero-point energy
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U 00
min ). A comparison of the numerical result with the

analytical one obtained for the corresponding sawtooth
approximation of the potential (curves 1 and 2 in
Figure 4) shows that both dependences behave in a simi-
lar fashion. The boundary values α, at which the func-
tions f α ξð Þ change their signs, are shifted for the two-
sinusoid potential by about 0.15 upward relative to the
sawtooth potential.

3 | DISCUSSION AND
CONCLUSIONS

The cause for the reversal in the motion direction of a
rocking ratchet at lower temperatures, corresponding to
the transition from the classical to quantum regime, lies
in different mechanisms—thermal activation and tunnel-
ing, respectively—for overcoming the potential barrier.
In the first case, only the height of the barrier to be sur-
mounted is important; in the second case, the length of
the tunneling path in the sub-barrier region also comes
into play. The choice of a sawtooth potential to develop a
model capable of reproducing these dynamic effects
turned out to be reasonable. The model gave analytical
dependences of currents on the applied fluctuating force,
as well as allowed us to visualize and explain the condi-
tions under which the tunneling can dominate over the
thermal-activation mechanism (that is, when the
decrease in the tunneling path dominates over the barrier
height decrease). The competition between these two fac-
tors arises from the interplay of the asymmetry magni-
tudes in the periodic potential profile and the applied
force F that perturbs it (see Figures 1 and 2). From the
analysis of the obtained expressions, it follows that for
small values of F, the quantum rocking ratchet moves in
the direction opposite to the classical one. That was in
full agreement with the results of [14]. The new result
is that such a behavior of the quantum ratchet will differ
from the known behavior in the region of large F: The
quantum ratchet will move in the same direction as the
classical one. This result can be understood from the fact
that at large F, one of the potential barriers becomes
small (see the left barriers on the upper insets of Figures 1
and 2); these changes increase the tunneling current in
the direction of the thermally activated current, not only
the thermally activated current itself (despite the fact that
the tunneling path remains practically unchanged).

We found that for the values of the asymmetry
parameter of the sawtooth potential ξ� l=L (l is the width
of one of its linear sections and L is its period), which cor-
respond to a positive thermally activated current
(1=2< ξ≤ 1), there exists such an interval of α�FL=V0

values (V0 is the energy barrier of the potential) in which

the sign of the tunneling current depends on ξ. Without
accounting for the zero-point fluctuations, this interval is
determined by the boundary values α≈ 0:618 and
α≈ 0:667 at ξ¼ 1 and at ξ¼ 1=2, respectively. Accounting
for zero vibrations leads to a decrease in the boundary
values of the parameter α for all ξ values except for the
case of the extremely asymmetric sawtooth potential with
ξ¼ 1 (see the inset in Figure 3). When ξ! 1, the depen-
dence on ξ of both the current and the boundary α value
are characterized by infinite derivatives, this fact reflects
the jump-like behavior of the potential profile V xð Þ. To
analyze the effect of the zero-point vibrations on the
properties of the system, in the Appendix 1, we present a
solution to the problem of the energy spectrum of a quan-
tum particle in an infinite triangular well of an arbitrary
symmetry (reducible, as particular cases, to known solu-
tions in a symmetric triangular well V xð Þ/ jxj and a well
with its one vertical wall).

Special attention should be paid to the appearance of
the dependence of the zero-point energy on the asymme-
try of the triangular potential well; this dependence also
makes a significant contribution to the boundary values
of the parameters corresponding to the stopping points of
the quantum ratchet. For a parabolic potential well, the
energy of zero vibrations E0 is related to the cyclic fre-
quency of vibrations ω0 and the period of vibrations
T0 ¼ 2π=ω0 by the equation E0 ¼ℏω0=2, and the classical
mechanics formula can be used to calculate the period:
T0 ¼

ffiffiffiffiffiffiffiffiffi
m=2

p Þ
E�V xð Þ½ ��1=2dx. This approach to estimat-

ing the energy of zero-point vibrations gives an accurate
result both for a parabolic potential well V xð Þ¼ kx2=2,
when the formula for the period leads to the known
expression ω0 ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
, and for a rectangular infinite

well of the width L. In this case ω0 ¼ π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0=mL2

p
, this

result being substituted to the formula E0 ¼ℏω0=2 gives
an equation for E0, the solution of which,
E0 ¼ π2ℏ2= 2mL2ð Þ, is also an exact result.

For the asymmetric infinite triangular well, the above
approach yields the expression for frequency
ω0 ¼ πV=Lð Þ 2mE0ð Þ�1=2, which does not depend on the
asymmetry of the well. From this result, the energy of
zero-point vibrations turns out to be equal
z¼E0=V ¼ π=2ð Þ2=3ε1=3 ≈ 1:351ε1=3 and also independent
of the asymmetry parameter ξ. This z value is signifi-
cantly less than the exact values obtained in the Appen-
dix 1, which change from 1.618 to 2.338 depending on ξ
values. The presence of the dependence E0 on ξ is
explained by the different penetration lengths of the
quantum particles under the potential barriers that are
formed by the sides of the triangular well. Under the clas-
sical description, there is no such penetration at all, and
the contributions to the oscillation period from the sec-
tions to the left and to the right of the minimum cusp

ROZENBAUM ET AL. 427



point are compensated. Thus, the accounting for zero-
point vibrations and the dependence of their energy on
the asymmetry parameter, which was performed in this
paper for the first time, are fundamentally important not
only from a quantitative point of view but also for the
correct description of quantum effects in the sub-barrier
regions of the ratchet motion.

The tunneling current has also been estimated using
numerical integration for a two-sinusoid potential, with
parameters allowing us for modeling it with high accu-
racy by a sawtooth potential. The results obtained with
the potential of two sinusoids also confirmed the conclu-
sion that the motion reversal of the quantum rocking
ratchet with respect to the classical one (motion reversal
with decreasing temperature) occurs only in the region of
small values of α (α<0:81 without the zero-point fluctua-
tions and at less boundary values of α with accounting
for them). This allows us to assert that the regularities
established here do not depend on the specific choice of
the asymmetric periodic profile perturbed by an external
fluctuating force and are of a general nature. This conclu-
sion is confirmed by the experimentally observed depen-
dence of the tunneling current J on the applied force F
(see figure 2 (B) in [15]): At sufficiently low temperatures,
the non-monotonic function J Fð Þ changes its sign at a
certain value of F, while at higher temperatures, this
function becomes monotonic and sign-constant.

In conclusion, we note that the simple model used in
the present work made it possible not only to draw con-
clusions about the existence of a limited range of system
parameters that permit motion reversal but also to quan-
tify the boundaries of this range, which depend on the
type of potential profile and asymmetry of the system.
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APPENDIX 1

ZERO-POINT ENERGY FOR AN INFINITE
TRIANGULAR WELL OF ARBITRARY
ASYMMETRY

Consider an infinite triangular potential well defined by
the following expression:

V xð Þ¼ Frx, x >0,

Flx, x <0,

�
ðA1:1Þ

where the forces Fr и Fl can be set by the energy parame-
ter V0 and the widths l and L� l of the rightward and
leftward links of the triangle, respectively (Figure 5),

Fr ¼V0

l
>0, Fl ¼ V0

l�L
<0, ðА1:2Þ

so that the asymmetry of the potential well can be char-
acterized by the parameter ξ¼ l=L (ξ¼ 1=2 corresponds
to the symmetric well; ξ¼ 0 and ξ¼ 1 means the
extremely asymmetric well, one of its walls is vertical).
The Schrödinger equation for a particle of mass m and
energy E in the potential (A1.1) for the leftward and
rightward half-space (negative and positive x values)
takes on the form,

d2ψ j xð Þ
dx2

þ2m

ℏ2 E�Fjx
� �

ψ j xð Þ¼ 0, j¼ l,r: ðА1:3Þ

For each half-space, the general solutions of differen-
tial equations (A1.3) contain two arbitrary constants,
which (together with the energy parameter E) can be
determined from the normalization condition and four
boundary conditions:

Z0

�∞

dxjψ l xð Þj2þ
Z∞
0

dxjψ r xð Þj2¼ 0, ψ l �∞ð Þ¼ 0, ψ r ∞ð Þ¼ 0,

ψ l �0ð Þ¼ψ r þ0ð Þ, ψ 0
l �0ð Þ¼ψ 0

r þ0ð Þ:
ðА1:4Þ

In terms of the following new variables:

yr ¼
2mFr

ℏ2

� 	1=3

x� E
Fr

� 	
, yl ¼� 2mjFlj

ℏ2

� 	1=3

xþ E
jFlj

� 	
ðА1:5Þ

equations (A1.3) are reduced to the equations

d2eψ j yj
 �

dy2j
� yjeψ j yj

 �
¼ 0, j¼ l,r: ðА1:6Þ

for the new wave functions eψ j yj
 �

¼ψ j xð Þ (x <0 at j¼ l
and x >0 at j¼ r). The general solutions to (А1.6) are
expressed in terms of Airy functions of the first and sec-
ond kind [39]:

eψ j yj
 �

¼CjAi yj
 �

þDjBi yj
 �

, j¼ l,r, ðА1:7Þ
FIGURE 5 An infinite triangular potential well of arbitrary

asymmetry, characterized by the ratio ξ¼ l=L (for ξ¼ 1=2, the well

is symmetric, and for ξ¼ 1, the left wall of the well is vertical)
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were Cj and Dj are arbitrary constants. Since yj !∞ at
x!�∞, and Bi ∞ð Þ!∞, then the boundary conditionseψ j ∞ð Þ¼ 0 (see (А1.4)) are satisfied when Dj ¼ 0 due to
the equality Ai ∞ð Þ¼ 0. The constants Cj are expressed
from the normalization condition and the continuity con-
dition at the point x¼ 0, while the quantization of the
energy variable E follows from the condition of continu-
ity of the first derivatives of the wave functions at the
same point. The last condition, taking into account equa-
tions (A1.4), (A1.5), and (A1.7), can be written as follow:

�jFlj1=3Ai
0 ylð Þ

Ai ylð Þ jyl¼� E
jFl j

2mjFl j
ℏ2

� �1=3 ¼Fr
1=3Ai

0 yrð Þ
Ai yrð Þ jyr¼� E

Fr
2mFr
ℏ2ð Þ1=3 ,

ðА1:8Þ

where Ai0 yð Þ is the derivative of Ai yð Þ.
Define the dimensionless variables

γ� yl
yr
¼ Fr

jFlj
� 	2=3

¼ 1� ξ

ξ

� 	2=3

, z� E
V0

¼�ε1=3ξ�2=3yr;

ðА1:9Þ

the first one is equal to the ratio of variables being
substituted as y in equation (A1.8) and is determined by
the asymmetry coefficient ξ¼ l=L, and the second one
specifies the ratio of energy E to the barrier value V0. If
we denote yr by y, then equation (A1.8) takes on
the form:

Ai0 eyð Þ
Ai eyð Þ jey¼γy

þ ffiffiffi
γ

p Ai0 yð Þ
Ai yð Þ ¼ 0: ðА1:10Þ

Since we are interested in precisely the zero-point
energy values E0, then from the set of solutions to equa-
tion (A1.10) (which defines the energy spectrum of the
system), we must choose the smallest in magnitude nega-
tive value of y and consider it as a function of the param-
eter γ or asymmetry coefficient ξ. By passing in equation
(A1.10) from variable y to variable ey and using the iden-
tity γ 1�ξð Þ¼ γ�1 ξð Þ, it is easy to verify the validity of the
following identities:

y γ�1
� �¼ γy γð Þ, z 1� ξð Þ¼ z ξð Þ: ðА1:11Þ

The second identity means that the energy spectrum
is invariant with respect to the symmetry transformation
x!�x. These properties allow us to bound the range of
change of the asymmetry parameter ξ by values from 1/2
to 1, and the parameter γ by values from 0 to 1.

The results of the numerical solution of equation
(A1.10) for various ξ values are shown in Figure 6. When
ξ changes from 1/2 to 1, the function z ξð Þε�1=3 increases
monotonically from 1.618 to 2.338, and the function
y γ�1ð Þ¼ γy γð Þ decreases monotonically from �1:019 to
�2:338. These boundary values are the largest roots of
the functions Ai0 yð Þ and Ai yð Þ and correspond to the
cases of the symmetric triangular well V xð Þ/ jxj and the
well with a vertical wall which have been considered in
[40], respectively. Near the point ξ¼ 1 (γ¼ 0), the func-
tions z ξð Þ and y γð Þ have their first derivatives tending to
infinity. This follows from the asymptotic solution of
equation (A1.10). By expanding the Airy function and its
first derivative near the point y0 ¼�2:338 (Ai y0ð Þ¼ 0),
Ai yð Þ≈Ai0 y0ð Þ y� y0ð Þ, and substituting into (A1.10), we
obtain an asymptotic solution at γ! 0:

y γð Þ ≈
γ!0

y0� Ai 0ð Þ=Ai0 0ð Þ½ � ffiffiffi
γ

p
≈ �2:338þ1:372

ffiffiffi
γ

p
,

ðА1:12Þ

that is y0 γð Þ!∞ as γ! 0.

FIGURE 6 The results obtained by numerically solving

equation (A1.10) (curve y ξð Þ, right axis) and the ratio of the zero-

point energy to the parameter V0 (curve z ξð Þε�1=3, left axis) for

different values of the parameter ξ)
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