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The hopping diffusion model is often used to describe the motion of Brownian ratchets. On
the other hand, hopping diffusion is well modeled by Parrondo’s paradoxical game method.
In this paper, this method is used to simulate the energy characteristics of ratchets. It
is known that the most efficient ratchet models are those in which the periodic potential
profile can block the backflow of particles and fluctuates for half a period. Therefore, we
have considered a one-dimensional hopping diffusion model with two nonequivalent nodes in
an elementary cell, the hops of a Brownian particle between which were specified by two sets
of transition probabilities. These sets of probabilities corresponded to potential profiles of
the desired shape, which periodically shifted relative to each other by half a period. The time
dependencies of the work done by the particle against the load force (output energy) and the
energy transferred to the particle when switching potentials (input energy) of the system were
calculated. The ratchet efficiency (the ratio of output energy to input energy) was calculated
as a function of the load force at the moments of potential switching. This value ceased to
depend on the time when the process became steady. The simulation results showed that the
selected sets of transition probabilities ensure high efficiency of the considered ratchets up
to 70%. In this case, the dependence of the efficiency on the load force is a nonmonotonic
function, the course of which is in good agreement with the known theoretical data.
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1. Introduction

The ratchet mechanism, which leads to the
directed motion of nanoparticles in asymmetric
systems in the absence of concentration gradients
and average applied forces, can function only
under nonequilibrium conditions in the presence
of energy supply to the system [1, 2]. Due to
this, in the description of ratchet systems, a
special role belongs to modeling not only the
average velocity of the ratchet, which is frequently
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referred to as its main characteristic, but also the
energy characteristics, input and output energies.
Calculations of them make it possible to evaluate
the ratchet efficiency – the ratio of input to
output energies. In early theoretical works, the
efficiency of the ratchet mechanism was assumed
to be rather low and not exceeding a few percent
[3, 4]. On the other hand, molecular (protein)
motors in cells in some cases demonstrate high
efficiency up to 100 percent [5, 6]. It was shown
in [7, 8] that a high efficiency of a ratchet system
can be expected in cases of potential profiles
being fluctuated with shifts in their extrema. The
first analytical model of an efficient Brownian
motor having high efficiency was described in [9].
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It was a Brownian motor with an asymmetric
potential profile undergoing random half-period
shifts; its analogue with a hopping mechanism
for overcoming potential barriers of a double-
well potential profile was presented in [10]. The
ratchet efficiency is determined by the expended
energy Ein (energy input) and the useful work
Eout (energy output) performed by the ratchet
against an additionally introduced load force F
[4,11,12]. Generally, for cyclic processes (inherent
to deterministic ratchets), these quantities are
determined per the period of the process, τ .
When the load force F is introduced, the periodic
potential energy profile V (x, t) should be replaced
by the total potential energy U (x, t) = V (x, t) +
Fx. Here, the positive sign before Fx corresponds
to the direction of the load-force vector against
the direction of the ratchet motion, and the value
of the force F is entered into U (x, t) as the
modulus of this vector. Useful work is defined
as the product of the load force and the average
displacement 〈x〉 of the ratchet particle, that is

Eout ≡ F 〈x〉 . (1)

The expended energy in the theory of Brownian
motors is defined as the average energy
transferred to a particle due to a change in its
potential energy

Ein ≡
τ∫

0

dt

L∫
0

dx
∂U(x, t)

∂t
ρ(x, t). (2)

Using Eqs. (1) and (2), the efficiency of
converting the expended energy into useful work
is easily calculated as

η ≡ Eout/Ein. (3)

The average velocity of the motor directed motion
〈v〉 = d 〈x〉 /dt is a monotonically decreasing
function of the load force F [3, 9, 10, 12, 13]. It
takes the largest value at F = 0 and vanishes at
some value F = Fs corresponding to the ratchet
stopping point. The value of Fs is an important
characteristic of the motor, associated with its

ability to resist the load. According to Eqs. (1) -
(3), the efficiency η is proportional to the product
Fl 〈v〉, and therefore it vanishes both at F = 0
and at F = Fs. This means that the efficiency is
a non-monotonic function of the load force, which
takes on the maximum value ηmax at a certain
value of F . Based on the analysis of various
models of pulsating ratchets [1, 4, 7–9, 11, 13–
15], where the directed motion of a nanoparticle
appears in a time-dependent periodic potential,
the necessary and sufficient conditions for high
efficiency (ηmax → 1) have been formulated
[12, 14–16]: 1) adiabatic (slow or fast) change of
potential relief in time; 2) shift (continuous or
abrupt) of potential extrema; 3) the presence of an
effective mechanism for rectifying nonequilibrium
fluctuations at large (exceeding the thermal
energy) amplitudes of the potential profile and,
in addition, a certain asymmetric shape of this
profile in the adiabatically fast case. In this
paper, to describe the energy characteristics of
Brownian ratchets, we use the hopping diffusion
model, which can be effectively investigated
by Parrondo’s paradoxical games approach [17].
The development of this approach for adiabatic
ratchet systems with a discrete change in variables
was presented in [18, 19]. The characteristics of
highly efficient ratchet systems were modelled
for hopping diffusion between the nodes of a
1D periodic structure, with a unit cell having
two nonequivalent nodes in it. In Ref. [15], just
for such a model, corresponding to a double-
well potential profile fluctuating by half a period,
the high efficiency of the ratchet operation under
conditions of high potential barriers was obtained
based on the general theory operating with
continuous-time kinetic equations. In contrast to
the approach of Ref. [15], it is convenient to
perform numerical simulation of hopping diffusion
with a discrete change in the time variable, since
it allows one to operate with sets of probabilities
of particle hops between neighboring nodes with
subsequent averaging of the resulting trajectories
[18]. Moreover, the proposed modeling can be
much more simple in accounting the tunnelling
processes when describing quantum ratchets.
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2. Antisymmetric kinetic model of
a ratchet with continuous time variation

It was shown in Ref. [15] that the
simplest kinetic model that can be used to
describe the ratchet effect is constructed through
considering two states A and B with two reaction
channels α and β (Fig. 1a). The ratchet effect
arises at stochastic or deterministic dichotomous
fluctuations of transition rate constants α±AB,
α±BA, β

±
AB and β±BA, which are denoted by indices

′′+′′ and ′′−′′ (Fig. 1b). This model corresponds
to the hopping model of particle motion in a

periodic double-well potential, which undergoes
dichotomous fluctuations in the values of wells
and barriers (Fig. 2).

If fluctuations can be considered as shifts of
the double-well potential relief by half a period,
then such a model is referred to as antisymmetric,
and the transition rates satisfy the relations:

αAB ≡ α−AB = β+BA, βAB ≡ β−AB = α+
BA,

αBA ≡ α−BA = β+AB, βBA ≡ β−BA = α+
AB. (4)

The ratchet effect is characterized by the current:

J = Jf +
βAB + βBA − αAB − αBA

Σ
Jγ , Jγ =

1

τ

ξB − ξA
Σ

ϕ, Jf =
αABβBA − αBAβAB

Σ
,

ϕ =

{
tanh(Σ/Γ), determ,
Σ/(Γ + Σ), stoch, ξA = αAB + βAB, ξB = αBA + βBA, Σ = ξA + ξB. (5)

Here, the dependence of the current on
the period τ of the deterministic process or the
average period of the stochastic process τ , equal
to 4/Γ, where Γ is the inverse correlation time,
is determined by the function ϕ(τ). For both
processes the value of ϕ(τ) increases linearly with
growth in τ as Στ/4 at Στ << 1 and tends to
unity at Στ >> 1.

For the Arrhenius temperature dependence
of the rate constants for overcoming potential
barriers, we have the following relations:

αAB = k0p
r
1, βAB = k0p

l
1,

βBA = k0p
r
2, αBA = k0p

l
2, (6)

where k0 is a coefficient that has the dimension of
inverse time and determines the time scale of the
process, pr1,2 is the probability of transition from
nodes 1 or 2 to neighbouring nodes to the right,
and pl1,2 is the probability of transition from nodes
1 or 2 to the left. These values are expressed in
terms of the potential relief parameters, u = u−B−
u−A, v = v−β −(u−A+u−B)/2, V = v−α −(u−A+u−B)/2,
f = FL/(4kBT ) (see Fig. 2), measured in units

FIG. 1. The simplest system that allows motion
along a closed trajectory (circulation) consists of
two states A and B with two reaction channels
α and β , characterized by rate constants (a) or
corresponding currents Jα. and Jβ (b). Scheme of
currents arising for two sets of states A± and B±,
which are deterministically or stochastically switched
(c), which leads to the currents J±

γ .
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FIG. 2. Two periodic profiles of the potential energy
U±(x) fluctuating for half a period in the field of
the load force −F (F > 0). For both profiles,
the depths of the wells A±, B± and the heights
of the barriers α±, β± are given, as well as the
corresponding characteristics of the profiles and the
rate constants for overcoming the barriers.

of thermal energy, as follows:

pr1 = exp(−V − u− f), pl1 = exp(−v − u+ f),

pr2 = exp(−v + u− f), pl2 = exp(−V + u+ f).
(7)

In our antisymmetric model, the efficiency η of
converting the expended energy into useful work,
determined by formula (3), can be calculated by
the formula:

η =
f

u

J

Jγ
=
f

u

(
βAB + βBA − αAB − αBA

Σ
+
Jf
Jγ

)
.

(8)
Since the transition rate constants αAB and αBA
(corresponding to the reaction channel α− in the
state ′′−′′) and the numerator of the expression for
the current Jf in Eqs. (5) (αABβBA − αBAβAB =
−2k20e

−V−v sinh(2f)) are proportional to e−V and
hence exponentially small for large values of the
larger barrier V , then (βAB + βBA − αAB −
αBA)/Σ→ 1, Jf/Jγ → 0, and the efficiency tends
to unity as . This can be directly verified through
the analysis of the expression

η =
f

u

[
cosh(u− f)− e−V+v cosh(u+ f)

cosh(u− f) + e−V+v cosh(u+ f)
− 2ζ

ϕ

e−V+v sinh(2f)

sinh(u− f) + e−V+v sinh(u+ f)

]
,

Σ/Γ = ζ[cosh(u− f) + e−V+v cosh(u+ f)], ζ = (k0τ/2)e−v. (9)

obtained by direct substitution of Eqs. (6) and
(7) into Eq. (8). Note that, at large values of the
barrier V , the contribution to efficiency, which
depends on the period of the dichotomous process
τ and on whether this process is deterministic or
stochastic, is also exponentially small.

3. Simulation of ratchet
characteristics with discrete time
variation

Let q = 0, 1, 2, ... be the number of
time intervals of duration ∆t ≈ k−10 between
the attempts of a particle to move from one
node of the 1D structure to a neighbouring one,
characterized by the probabilities (7). We will
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assume that at the initial moment of time the
particle was located in an even node 2 in a state
characterized by a potential profile U−(x) (see
Fig. 2), so that the probabilities of transitions
to node 1 are determined by the quantities pr,l2
according to Eq. (7). After g time intervals
of the duration ∆t, the state with the profile
U−(x) is replaced by an antisymmetric state with
the profile U+(x), in which nodes 1 and 2 are
interchanged, and the corresponding transition
probabilities (7) have the inverted indices 1 and 2;
it is this inversion that implements the shift of the
double-well profile by half a period. Generally, the
lifetime of each antisymmetric state is assumed to
be equal to the half-period τ/2, therefore ∆t =
τ/(2g), and the particle jumps will occur at the
time instants

t = qτ/(2g). (10)

Assuming ∆t = k−10 , we obtain an obvious
relation for the quantity g: g = k0τ/2. Note,
that, for the system under consideration,
its characteristic relaxation time τrel to
the equilibrium state is determined by the
quantity (α−AB + α−BA + β−AB + β−BA)

−1. Since
the coefficient k0 is equal to (∆t)−1 in order of
magnitude, then

τrel/∆t=[2e−vcosh(u− f)+2e−V cosh(u+ f)]
−1
.

(11)
From Eq. (11) we can estimate the minimum
number of hops qmin = τrel/∆t for the system
to relax to a given potential profile. Thus, for
g > qmin, the system has time to relax while, for
g < qmin, does not. The motion of the particle
along the node chain will be characterized by
an integer variable l = 0, ±1, ±2, ..., whose
odd and even values correspond to nonequivalent
nodes 1 and 2. Since the period of the elementary
cell is L, then the length of each step made
by the particle and determined by the distance
between neighbouring potential wells, is equal
to L/2; then, the corresponding displacement
coordinate is x = lL/2. Therefore, the trajectory
of the particle hopping motion is described by the
function x(t) = l(q)L/2, where is determined by

Eq. (10). The average over the set of trajectories
is then

〈x(t)〉 =
L

2
〈l(q)〉 . (12)

Since the product FL in units of thermal energy
is represented as F = 4f/L, Eq. (1) becomes

Eout ≡ 2f 〈l(q)〉 . (13)

The main development presented in this paper
is the method of accounting for the energy of
the ratchet. We introduced a discrete variable,
w = 0, ±1, ±2, ..., which is needed to implement
a hopping numerical model for calculating
(simulating) the energy characteristics of a
ratchet. Since the states are switched (the
potentials are shifted by half a period) when
q multiples g (see Eq. (10)), and just at these
time steps the variable can change by +1 or −1
depending on the parity of the node and on which
state the transition occurs from. The algorithm
for these changes is defined as follows. From Fig.
2 one can see that, in the state with the potential
profile U−(x), the well A− corresponding to node
1 is deeper, so that the vertical transition to the
well A+ corresponding to node 2 is accompanied
by the acquisition of energy 2u, which is described
by the increase w by unity. On the contrary,
the vertical transition from well B− to well B+

(transition from node 2 to node 1) is accompanied
by the loss of energy 2u and is described by the
decrease by unity. If transitions between wells
occur from the state with the potential profile
U+(x) to the state with the potential profile
U−(x), then the direction of changes of the value
of the random variable w is reversed. Thus, the
variable w can be represented as a function of an
integer argument [q/g]: It is constant for q non-
multiples of g and changes by unity for q multiples
of g. Introducing the average value 〈w(q)〉 over an
ensemble of trajectories, we represent the average
energy transferred to a particle due to a change
in its potential energy in the form:

Ein = 2u 〈w(q)〉 . (14)
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Then the energy conversion efficiency is modeled
by the formula

η =
f

u

〈l(q)〉
〈w(q)〉

(15)

with sufficiently large values of q. Greater values
of efficiency can be expected at high barriers
V blocking the reverse motion of the particle.
The simplest simulation of hopping diffusion,
easily implemented in software, corresponds to
the symmetric case pr1 = pl1 = pr2 = pl2 = 1/2.
If the initial state of the particle is given by the
values q = 0 and l = 0, then at q = 1, the particle
with equal probability goes to the point l = 1 or
l = −1. Then the dependence l(q) will be a broken
line (trajectory) starting at zero and deviating
from the horizontal line in both directions. We
are interested in the dependence 〈l(q)〉 averaged
over an ensemble of a large number of trajectories.
The above symmetric case is characterized by zero
mean, 〈l(q)〉 = 0, while the standard deviation〈
l2(q)

〉
is proportional to q, as it should be for the

free diffusion, in which the standard deviation of
the particle is proportional to the elapsed time.
Consider the asymmetric case. Let in a state with
an odd value of the discrete coordinate l (location
node) of a particle, the probability of the event
l → l + 1 is pr1, of the event l → l − 1 is pl1,
and the probability for the particle coordinate to
remain unchanged is 1−pr1−pl1. In the even node
l, the values of similar quantities pr2 and pl2 will be
considered different from the values pr1 and pl1 in
the case of odd l. The detailed balance condition
which keeps the mean value 〈l(q)〉 constant is
formulated as pr1pr2 = pl1p

l
2. To illustrate and test

the computer implementation of the model, we
choose the values used in [18] for f = 0 and
satisfying the detailed balance condition:

pr1 = 0.2, pl1 = 0.3, pr2 = 0.54, pl2 = 0.36. (16)

Since pr1 6= pl1, we have pr2 6= pl2 . The geometric
interpretation of the considered asymmetric case
follows from an analogy with the scheme of
motion of a Brownian particle in an asymmetric
double-well periodic potential profile (see Fig.

1 in the absence of the slopes at F = 0).
According to the Arrhenius law, the probabilities
of transitions from one potential well to another
are proportional to the exponential function of the
ratio of the potential barrier to thermal energy
taken with the opposite sign (see Eq. (7) at
f = 0). The discussed asymmetric case is then
modeled as follows. Let l(0) = 0. Since the
initial value l is an even number, the particle
displacements are determined by the second set
of probabilities pr2 and pl2. Since pr2 + pl2 =
0.9 < 1, then there is a non-zero probability that
the position of the particle at the next moment
of time will not change, remaining still zero.
With this outcome of a random trial, the second
set of probabilities will again be used; similar
results will occur until a random event is realized,
namely, the transition of a particle to a node
with an odd number. After this, the displacements
of the particle will be determined by the set of
probabilities of the first type with parameters pr1
and pl1. Depending on the result, that is whether
the particle stays at the odd node or moves to the
even one, the first or second set of probabilities
will be used again, and so on. The described
algorithm is easy to realize by a programming
language. At each step q, the value of a basic
random variable uniformly distributed over the
interval [0, 1] is generated; it is checked for hitting
the interval [0, pr], [pr, pr + pl] or [pr + pl, 1].
In the first case, the particle is shifted forward
by one node with the addition of unity to the
current value of l (l(q) := l(q − 1) + 1), in the
second case it is shifted back by one node with
subtraction from l by unity (l(q) := l(q− 1)− 1),
in the third case, the value l does not change
(l(q) := l(q − 1)). An array of discrete values for
all steps is stored. The procedure being repeated
K times, K trajectories l(q) are obtained, which
are then averaged to obtain the desired average
trajectory 〈l(q)〉. As noted above, the detailed
balance condition ensures the constancy of the
mean value 〈l(q)〉. At f 6= 0, the detailed balance
condition is violated, since according to Eq. (7):

pr1p
r
2 − pl1pl2 = −2e−V−v sinh(2f) < 0. (17)
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This leads to the particle shift to the left and
the decrease of the average value 〈l(q)〉 with the
increase of the discrete time q. The ratchet effect
is able to shift the average values 〈l(q)〉 with the
change of q even if the detailed balance condition
is met. For that, it suffices to invert indices 1 and
2 of the probabilities in Eq. (7) every steps of
the time variable q. Such an inversion corresponds
to transitions between antisymmetric states with
potentials shifted by half a period. The set of
parameters (16) at f = 0 corresponds to the
potential relief with

u = 0.2939, v = 0.9101, V = 1.3155. (18)

For the set of values (18), the results of modeling
the behaviour of 〈l(q)〉 and 〈w(q)〉 are shown in
Fig. 3 for different loads f and in Fig. 4 for
f = 0. The characteristic relaxation time for
the parameters (18) is τrel/∆t ≈ 0.7, so the
thermodynamic equilibrium will be established
during the lifetime of each potential profile g = 6.
This leads to the following regularities.

FIG. 3. Dependencies of the average values 〈l(q)〉
of the chain node occupancy on discrete time q,
calculated for the set of parameters (18) with g = 6
by numerical simulation with averaging over 3 million
trajectories.

The average displacements 〈l(q)〉 experience
jumps at the moments of potential profile shift by
half a period, and then for time intervals shorter
than the lifetime, they either remain constant at
f = 0 or decrease with increasing q at f > 0, since
the direction of f is opposite to the direction of
particle motion. For f < 0.0148, the values of the

FIG. 4. Dependence of the average values 〈w(q)〉 of
the accumulative energy variable, which determines
the energy input into the system, on the discrete time
q, calculated for the set of parameters (18) with g = 6
at f = 0 by numerical simulation with averaging over
3 million trajectories.

function 〈l(q)〉, additionally averaged over half-
period, increase and the ratchet effect dominates
the load force, while for f > 0.0148, the load
force becomes dominant. Therefore, for the chosen
parameters, the value fs ≈ 0.0148 is an estimate
of the force corresponding to the ratchet stopping
point. The value of the efficiency (11) with f =
0.01 turns out to be very small, η ≈ 0.002. This
result follows from the smallness of the potential
barriers (18): they are of the order of the thermal
energy and cannot provide the reverse motion
blocking which is necessary for high efficiency
in the discussed case. To simulate the operation
of a highly efficient ratchet with deterministic
fluctuations of the potential for half a period and
discrete time, we will use parameters from Ref.
[10], where the same potential were chosen for the
theoretical description of a stochastic ratchet:

u = 4.5, v = 5.5, V = 14.5. (19)

Figures 5 and 6 show the dependencies of the
mean value of the particle displacement 〈l(q)〉 and
the energy transferred to the particle 〈w(q)〉 as
functions of the number of steps q for various
values of f . Since, for the set (19), the energy
barriers are high compared to the thermal energy,
the probabilities for the particles to overcome
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these barriers are rather small, so that the
characteristic relaxation time τrel/∆t will be 32
at f = 2.5 and 71 at f = 3.5, and the
lifetime of each potential profile, g = 6, is too
small for the thermodynamic equilibrium to be
established in these profiles. As a result, the
average displacements 〈l(q)〉 treats the potential
profile shifts worse and, therefore, are smoother
functions of q than those corresponding small
barriers (18) (see Fig. 4). From Eq. (17), the
deviation of the system from the detailed balance
condition is the smaller, the higher the potential
barriers. Therefore, the decrease of the values
of 〈l(q)〉 with increasing q at f > 0 is not
observed. Since the particle does not have time
to get into a deeper well during the lifetime of
the potential, the transferred energy oscillates
after the potential switching; subsequently, the
oscillations decay and the decay is faster, the
shorter the characteristic relaxation time (see Fig.
5).

FIG. 5. Dependencies of average values 〈l(q)〉 of the
chain node occupancy on discrete time q, calculated
for the set of parameters (19) with g = 6 by numerical
simulation with averaging over 50 million trajectories.

In Fig. 7, the dependence of the efficiency
(15) on the load force for the parameters (19),
obtained as a result of simulation with a discrete
time change, is compared with the theoretical
dependence (9), obtained with a continuous
change in time. The stopping-point force is fs ≈
4.16, and the maximum efficiency value reaches

FIG. 6. Dependencies of the average values 〈w(q)〉 of
the accumulative energy variable, which determines
the energy input into the system, on the discrete time
q, calculated for the set of parameters (19) with g = 6
by numerical simulation with averaging over 50 million
trajectories.

0.71 at f ≈ 3.3. The analytical dependence
η on f (9) with a continuous change in time
reproduces well the simulation results, except
for the maximum region: the maximum value
of the efficiency reaches 0.605 at f ≈ 3.2.
The theoretical value of the stopping-point force
reproduces the simulation result fs ≈ 4.16 with
good accuracy.

FIG. 7. Efficiency of the ratchet operating due to
dichotomous shifts of the double-well potential profile
with the parameters (19) for half a period as a function
of the load force. The markers correspond to discrete-
time simulations at g = 6 and averaged over 50
million trajectories. The curve is calculated by Eq.
(9) obtained with the continuous change in time with
k0τ = 2g = 12.
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4. Discussion and conclusions

In this paper, the method of Parrondo’s
paradoxical games with discrete time variation
is used to simulate the energy characteristics of
ratchets that operate due to hopping diffusion in
a periodic double-well potential profile fluctuating
for half a period. The time dependences of the
work performed by the particle against the load
force (output energy) and the energy transferred
to the particle when switching potentials (input
energy) have been calculated. We showed that
the average displacements of a Brownian particle
experience jumps at the moments of shifts of the
potential profiles, and then, for time intervals
shorter than the lifetime of the potential profiles,
either remain constant if the load force is absent
or decrease with discrete time otherwise. The
average values of the energy entering the system
change only at the moments of potential profile
shifts. These changes are positive at low load
forces, but they can also have alternating negative
contributions with a general tendency to increase
the input energy at high forces. The ratchet
efficiency has been calculated as a function of the
load force at the moments of potential switching.

This value ceased to depend on the time when the
process became steady. Two sets of parameters
of the potential relief have been used, with
energy barriers of the order of and exceeding the
thermal energy. The simulation results showed
that, in the second case, the ratchet efficiency can
be high, up to 70.%, since the reverse particle
current is blocked. The nonmonotonic function
describing the dependence of the efficiency on the
load force was compared with a similar function
obtained for the antisymmetric kinetic ratchet
model with a continuous change in time. The good
agreement between the results makes the game
theory approach promising in simulation of the
energy characteristics of ratchets.
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