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“Quantal Theory of Gravity” (QTG) is a new undertaking that describes the behavior of classical and
guantum particles in a gravitational field — and, in fact, any field the object at hand interacts with — on
the basis of the law of energy conservation. QTG successfully combines metric and dynamical
methodologies via a conjoint quantum mechanical formulation. Accordingly, a wave-like test object
consisting of a quantal part and a corpuscular part — whose energies are initially identical and which
start as concentric — must get torn apart when it engages gravity; and such a test object should then be
treated separately as a two-entity problem. We further show that the said problem can be reduced to a
single-entity problem. This straightforwardly delivers a new quantal equation of motion, and points to
a novel metric expression of space-time wherefrom one can reverse-engineer all of the classical
findings of the past century. Said feature constitutes one of the principal novelties in this contribution.
Thus, QTG and the General Theory of Relativity (GTR) yield, within the measurement precision,
identical results for classical problems, except singularities, through though totally different means.
What is more, QTG separately explains the propagation of projectile-like objects such as high-energy
y-quanta (which thus do not behave wave-like); in which case, QTG predicts the nullification of
gravitational attraction. This constitutes another principal novelty of QTG, the manuscript at hand
brings up (which is backed by a recent experiment). Finally, we show how GTR could have so
successfully coped with the known classically measured results only (and amazingly though) as a
consequence of the quantal application of QTG and its single-entity approach. That constitutes the
final and most cardinal novelty we herein bring to attention.
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1. Introduction

The current undertaking, which we hereafter call Quantal Theory of Gravity (QTG), deals
with massive quantum objects in the approximation of a classical gravitational field. It is
principally based on the law of energy conservation and is in full symbiosis with Quantum
Mechanics (QM). It has no precedent, which justifies why we do not herein feel the need to
delve into quantum theories of gravity only trying to circumvent the difficulties about advanc-
ing General Theory of Relativity (GTR), along with efforts spent to quantize it. Moreover, we
find it important to emphasize that QTG is a full and working alternative to GTR, and not
merely a complementary theory put together to salvage GTR.

Section 2 lays out the fundamental features of QTG.

In Section 3, we frame a series of quantum mechanical theorems led to by the pioneering
Yarman’s Approach (YA) [1]. A principal and novel aspect of QTG is that a gravitating test
object gets torn apart, where the quantal part and the corpuscular part extend off-center and
where such a formalism should then be treated separately. Nevertheless, we relegate this two-
entity problem for a future work.



All the same, we show in Section 4 that the whole task can be reduced to a single-entity
conceptualization; we handle it via fixing the motion of the test object altogether to the mo-
tion of its corpuscular part, wherefrom we derive the equation of motion for the quantal
(wave-like) case. We show that, in the case of weak gravity, said solution agrees with all of
the centennial space-time findings attributed to the success of GTR. However, in the limit of a
strong gravitational field, the predictions of GTR and QTG turn out to be very much different;
in particular, QTG excludes singularities.

Section 5 features two familiar classical problems: i) the gravitational deflection of visi-
ble light, and ii) the precession of the perihelion of a planet, where we show that both theories
agree with each other within the achieved measurement precision.

Further, in Section 6, we present an ad hoc metric expression of QTG wherefrom one can
independently derive all of the known results so far thought to validate GTR.

In Section 7, we outline an attempt towards the quantum mechanical deployment of QTG
by starting with the expression of the law of energy conservation and the de Broglie relation-
ship written in quantum mechanical operator form, which can be reduced under weak gravity
to a Schrodinger-type Equation written for gravity.

We conclude in Section 8 by underlining the remarkable coincidence of the confirmed
predictions of GTR [2] and QTG, but only with regards to our wave-like case and within the
upcoming single-entity approximation, whilst pointing out the existence of a unique phenom-
enon — i.e, the practically null deflection of high-energy y-quanta behaving projectile-like
(and not wave-like) in the presence of gravity [19]. This latter result totally falls outside the
scope of GTR, which should thus be conclusively tested.

We remind that the words quantal and wave-like are used interchangeably in this paper.
Likewise, we use the terms projectile-like and corpuscle-like interchangeably.

2. Fundamental aspects of QTG

QTG originates from YA [1, 3, 4], which is grounded upon the following postulate:

- The rest mass — or the same, rest energy (if one supposes the velocity of light to be uni-
ty) — of an object interacting with a host body is less than its rest mass my., measured in
empty space; and this, as much as the static binding energy Eg it delineates in the given
forcefield.

This postulate expresses, in fact, the energy conservation law in the presence of gravity or
any other non-radiative field. It is indeed so, given that the classical potential energy associ-
ated with the “field”” can be imagined to be not in the field itself, but localized inside the ob-
ject.! This holds true in the case where the gravitational field represents a function of the
state,” which is always valid if one assumes gravitational waves to be neglected absent — thus,
for the vast majority of problems. Our approach can naturally be extended to any non-
radiative force field such as the bound electromagnetic (EM) field for electrically charged
particles — which, in the absence of EM radiation, can indeed be described as a function of the
present space-time coordinates [5].

! For this reason, we will particularly avoid the usage of the term “potential energy” in the text, and rely instead
on the term “static binding energy”; meaning the energy one has to furnish to quasistatically lower a client
entity from infinity to a given altitude above the center of the source body, or vice versa, to bring it from the
location of concern, still quasistatically, back to infinity. The “static binding energy”, unlike “potential
energy”, is always a positive quantity.

2 What this means is that the “field” represents a function of the present space-time coordinates of the source
body, and does not depend on the prehistory of its motion. It is akin, for instance, to what gets realized in clas-
sical electrodynamics with respect to a bound EM field.
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Thus, the overall energy Eoveran Of a stationary closed system made of a test object of rest
mass my,, (defined at infinity) bound to a source body of ponderable rest mass M must remain
constant; and, in the case where M>> my,,, we can write [3,4]

Eouear =9M..C° (1- E;/m,,¢*) = Constant, (1)

where Eg is the static binding energy the test object acquires vis-a-vis the source body (with
both being strictly at rest at the onset), c is the speed of light in vacuum, and gis the Lorentz
factor associated with the test object.

At a first glance, one tends to question whether the mass of a supposedly indivisible
elementary particle such as the electron will decrease in gravity, too. It is useful to recall that
the concepts of “mass” and “energy” are the same had c been taken to be unity. So, any “mass
decrease” is synonymous with “internal energy diminution”, and it is precisely what happens
when a test object is embedded in a gravitational field according to the present approach.
There is effectively an easy way to check this out, and the measurements do in fact
corroborate us. It is sufficient to replace the electron bound to an atomic nucleus with a muon.
The bound-muon decay-rate is then retarded precisely due to the decrease of its rest mass in
accordance with T. Yarman’s quantum mechanical theorems to be stated below [6].

We would hence like to point out that, in QTG, under the constant energy framed by
Eq. (1), the test object’s rest mass m(r) varies with the change of its distance r to the host
object as assessed by the distant observer through the corresponding dependence of the static
binding energy on r. This characteristic fundamentally distinguishes the present theory from
Newtonian mechanics.

In order to determine the expression of Eg(r), we adopt a gravitational force attraction
expression resembling Newton’s law of gravitation in principle, but in a form novelly imply-
ing a rest mass decrease for the gravitating client object [1, 3, 4]; that and also a gravitational
constant G as assessed by the distant observer, which is different from Gg as measured locally
like Cavendish did on Earth (as will be elaborated on soon):

=GMr‘r2(r)l

Distant Observer r

(22)

Thus, one may notice that we are no more within the classical Newtonian bounds. It is all
the more so since even the 1/r? dependence of the gravitational force is not borrowed from
Newton’s law of gravitation, but can be shown to be a requirement imposed by T. Yarman’s
guantum mechanical theorems which we will expound below [1].

We should emphasize that Eq. (2a) is nothing but the adoption of the YA postulate ex-

pressed by Eqg. (1), which precisely means the test object of original rest mass my.. becomes a

variable quantity depending on its spatial location with respect to the host. This, in turn, im-
plies a corresponding variation of the space-time metric of the test object with the variation of
its spatial coordinate r.

Eq. (2a) further manifestly signifies that the metric of space-time is different for a “dis-
tant observer” compared to what it will be for the “local observer” attached to the test mass

mMy-. The “distant observer”, or “remote observer”, is attached to, as usual, a frame of refer-

ence situated at a far enough distance where there is practically no effect of gravity by the
host. Conversely, the “local observer” is attached to the co-moving frame on the surface of
the test object. Lengths and durations are naturally measured by the local observer situated on
the surface of the test object as being different in comparison to what the distant observer
measures [1]. We will see below how transformations can be made between the quantities
measured by the local observer and those measured by the distant observer.



We emphasize that Eq. (2a) is written for the distant observer only with regards to inter-
acting masses at rest — where r is the distance between M and m(r) as assessed by the distant
observer; with G not being a constant quantity when assessed by the remote observer, since
the latter differs from the gravitational constant G, as measured by the local observer attached
to the test object the way we will detail below.

Next, we define the distance r( of the test object to the host body as measured by the local
observer attached to the test object; e.g., he could do this via sending a signal unaffected in
principle by gravity (see below) to the host and measuring the period of time it will take for
the beam to go forth, bounce back, and return.

It is also worth noticing that, just as in GTR, the time rate of clocks located at different
spatial points turn out to be different in general in the presence of gravity (see below). This
means, in particular, that the distance ro measured by the local observer to the host differs, in
general, from the distance r occurring between the same objects but as measured by the dis-
tant observer. (Take heed, nevertheless, of the fact that we use the wordings “host body” and
“source body” synonymously, just like “test object” and “client object” stand for the same
thing for us.)

The present approach accordingly furnishes an invariant expression between G, Gy, r and
ro in terms of [1]

G G
PR (2b)

r I

Based on this, we can re-write Eq. (2a) as

F _ g, M), (20)

re

Distant Observer

This is the gravitational force measured by the distant observer between the test object
and the host, with both being at rest, and with rq assessed by the local observer attached to the
test object.

One can moreover express Eq. (2c) as [1, 3, 4]

I:Local Observer — GO % ! (Zd)
which defines the gravitational force between the test object and the host (where both are
again at rest) as assessed by the local observer attached to the test object, and with r referring
to the distant observer.

Eq. (2d) specifies that, in the case where r is measured by the distant observer, we imply
a force as assessed by the local observer, and when we have ro as measured by the local ob-
server in Eq. (2c), we imply the same force but as assessed by the distant observer. We em-
phasize that in Egs. (2a) — (2d) both masses M and m(r) are at rest with respect to each other.

The force law stated by Eq. (2d) and written in view of the local observer attached to the
test object allows the determination of the static binding energy taking place in Eq. (1). For
this purpose, we displace the test mass m(r) being at rest at r quasistatically from r to r+dr.
The energy dE we deliver to it is

dE=F(ocal observer dr. (Ze)

Unlike the common viewpoint, and in the absence of radiation losses, T. Yarman has pos-
tulated instead that [3, 4] the surplus dE must be stored inside of m(r), thus becoming
m(r+dr); and if m(r+dr) is now set to a free fall, the kinetic energy dK the said test object
would acquire on the way from r+dr to r ought to be compensated by the transformation of a
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minimal rest mass dm(r) out of its internal energy, so that dk=dE=c’dm(r). This, then owing
to the law of energy conservation, entails the relationship [3, 4]

dmne =G, M r”;(r) . @3)

The integration of Eqg. (3) yields:

mrc® =m,c’e*?, @
where we posed
a()=GM/rc*. ®)
The static binding energy Eg(r) according to Eq. (4) becomes
Ey(r)=m,¢’ —m(r)c’ =m,c’[1-e" ]. (6)

In the corresponding expression for the static binding energy for the distant observer, the
distance r in Eq. (5) must be expressed in terms of ro.
Next, combining Egs. (6) and (1), we obtain:

EOverall = gn.bwe—a = Constant . (7)

Hence, the equation of motion for a test particle acquires the general form
d
—(ym,,e*)=0, 8
o (mo.e7) ®)

which shows that its solution does not depend on the mass of the test particle.

Therefore, the postulate (1) is fully compatible with the weak equivalence principle
(where the motion is, in effect, independent of the mass of the object under consideration). It
is furthermore in full harmony with the outcome of E6tvis-type experiments [7].

What is more, YA also implies the validity of both local Lorentz invariance and local po-
sition invariance, which makes it compatible with the strong equivalence principle, too.

Furthermore, we wish to point out that we arrived at the motional equation Eq. (8) only
on the basis of Egs. (1) and (2d) without any explicit adoption determination of any space-
time metric.

This already indicates that QTG does not belong to the category of purely metric theories
of gravity, but rather combines both metric and dynamical characteristics.

Next, we emphasize that YA and its basic postulate (1) are applicable to any entity in-
cluding a quantum of light, where the photon rest mass is assumed to be non-zero no matter
how small it might be and how much it may lie below the limits of actual measurement capa-
bilities [8-10]. Note that not assuming a photonic rest mass insurmountably remains, in gen-
eral on the other hand, at odds with the wave-particle duality, as argued, e.g., in [12]. Thence,
photons seem to must anyhow possess a finite rest mass and cannot ever exactly attain the as-
ymptotic upper bound velocity c.

The present framework does not, as such, make any distinction between ordinary matter
and a photon whether or not they behave wave-like or corpuscule-like.

3. T. Yarman’s quantum mechanical theorems between mass-energy-
frequency-length and their implications: Identification of the two-entity
problem



As shown in [3, 4], the variation of the rest mass of any particle given by Eq. (4) induces a
corresponding variation of its temporal unit Ty and spatial unit Ly (both measured in empty
space and at rest) owing to the intrinsic quantum mechanical relationship of YA between the
quantities “mass-energy-frequency-length”.

Thus, consider a relativistic or a non-relativistic quantum mechanical description of a
given object, depending on whichever is appropriate. Said description points to an internal
dynamic (such as, e.g., that of a diatomic molecule) which consists of a regularly repetitive
“clock motion” (such as, e.g., the vibration of the given molecule) realized in a ““clock space”
(such as, e.g., the average distance between the atoms of the molecule) during a “unit period
of time” (such as, e.g., the inverse of the frequency of the vibrational motion of the molecule).
The gquantum mechanical description of concern is supposed to be based on K particles alto-
gether. In this framework, the theorem stated below is fulfilled [3, 4].

Theorem 1: If the rest masses my (k =1, ..., K) constituting the object at hand are multi-
plied by the arbitrary number &, then the total energy eigenvalue E; associated with the clock
motion of the given quantum object at rest in the field is increased as much — or the same, the
unit period of time T, of the motion associated with this energy is decreased as much. The
characteristic length L, to be associated with the space the clock motion takes place in is also
decreased as much. In mathematical words, these results can be re-phrased as:

[(Mo, k=1, ..., K)>Em, k=1, ..., K)] P (Eo;—XEy), (To—>To/x), and (Lo—Lo/x). (9)

We note that this theorem, along with Eq. (4), already predicts the frequency shift of the
electromagnetic radiation emitted by any excited state of the object at hand in the presence of
gravity — i.e., the gravitational redshift — regardless of the definition of the metric properties
of space-time. Thus, we state the following theorem.

Theorem 2: The unit period of time T, of the clock of the test object, measured at infinity
and at rest, retards quantum mechanically due to the mass deficiency it undergoes in gravity
as much as the static binding energy it delineates within the field under consideration. Con-
currently, its original space size Lo in which it is installed stretches as much.

Apart from the foregoing elaborated cases, the relativistic mass of any wave-like behav-
ing object in motion — for instance, the relativistic mass m; of a photon measured in vacuum —
gets increased during the gravitational fall, where the object speeds up following the relation-
ship shaped by de Broglie [8]; i.e.,

mc®=hfi, m=mo. /(1-v;%/c?)*?, (10a), (10b)

with h being the Planck constant, m being the initial relativistic mass of the test object, v; be-
ing its initial velocity, f; being its initial quantal frequency, and my.., being its rest mass before
it engages gravity.

Let us stress that the de Broglie relationship (10a) has a general validity and is applicable
to any wave-like behaving ordinary body, including evidently a wave-like behaving photon.
Still, the test object at hand may not act wave-like in the medium of concern; in which case,
we would not be able to start with Eq. (10a). (This leads, in turn, to the nullification of gravi-
tational attraction aswe will elaborate below.)

The philosophy de Broglie developed along with Eq. (10a), and the way he derived his
wavelength relationship as Ag=h/p, is summarized in Appendix A; p here is the momentum of
the test object at hand.

The appearance of the rest mass my. in EQ. (10b) may be taken to mean that this equation
is principally written for the local observer.



In any event, Eqgs. (10a) and (10b) can be extended to any test object characterized by the
original rest mass my, When it engages gravity with the instantaneous wave-like frequency f
and the instantaneous velocity v=\Vi at a given altitude and time, so as to allow one to write

MyC*=hf, My=g Moo, (10c), (10d)
Thereby, we state the next theorem.

Theorem 3: In a wave-like (quantal) case, given that the initial mass my., decreases by
e based on Eq. (1), the quantity (1-vi%/c°)? accordingly decreases as much. Thus, the initial
relativistic mass m=my.(1-vi2/c’)  increases as much to become my=me" at the given alti-
tude. By the same token, the initial frequency f; increases as much to become f=fie"; which
makes that the corresponding wavelength A=\;e® shortens as much.

We notice that Theorem 3 provides us with a straightforward explanation of the Pound &
Rebka experiment [11] (see Section 4 for details). One can moreover note that the essence of
Theorem 3 constitutes a concrete measurement of the de Broglie frequency’s increase in mo-
tion [8] (next to the relativistic decrease of the said frequency by the same amount), which
happens to be an intriguing topic debated for a long time.

Next, using Eq. (4), we transform Eqg. (10d) to the form

EOverall = gm)mcze_a =My CZG—a = mCZ = Constant . (lOe)
For an easier presentation, we propose to multiply the above equation by my..:
(gmy..)(m.e? ) =m,m,e® =m,, xConstant / ¢’ = Constant' . (10f)

Thus, we have two equations, (10c) and (10e), written for two unknown variables: i) f or
y, 1i) and a. We can express them in terms of two distinct masses: i) the quantal mass
mw=hf/c? operating en bloc, and ii) the corpuscular mass my.e ™ pertaining to the core compo-
nent of the particle at hand. We can refer to the core as the kernel in the case of a photon [12].

Note that both the quantal mass my=hf/c” and the core rest mass my..e“ are equal to the
proper rest mass my., when they are measured in vacuum.

The quantal mass my is, by its nature, the same as what a local observer would assess.

The mass my =hf/c? is a wave-like quantity, which is thus to be considered effective lo-
cally if any quantum mechanical interaction between the test object and gravity were to arise.

The mass ymo.€ °, on the other hand, is measured as referred to the distant observer. The
energies hf and ymy.e°c? are clearly different from each other, and their motions will be de-
scribed via different equations, as shall be seen below.

While hf and ymy.e“c? are concentric in the absence of gravity, they get torn apart in
gravity and extend off-center if tracked by the remote observer as elaborated on in Appendix
B. Anyway, both masses in question are locally identical.

All the same, my=hf/c? speeds up in a fall as viewed by the distant observer. The
necessary energy for this is supplied by a minimal transformation of the core’s rest mass
Mow€ %, Which will recoil a fortiori as we will elaborate on further below. The two masses of
concern are then no more concentric as assessed by the distant observer.

Take heed that the value of my=hf/c? represents a proper value when assessed by the
remote observer. Its fall velocity v=vi¢ is moreover the same for both the remote observer and
the distant observer given that, under the present approach, periods of time (i.e., durations)
and lengths are transformed conformally in gravity [1].

Come what may, the mass my; =hf/c? will interact quantally in a wave-like regime, and in
such a case, both the local observer and the remote observer will agree on the manner of its
interaction.



While all this necessitates the treatment of the test object as a two-entity model, we shall
nevertheless concentrate on treating it as a single-entity in this paper.

We remind that Theorem 3, following de Broglie’s fundamental setup, refers solely to the
wave-like (quantal) case, and is no longer applicable to an object interacting non-quantally
with gravity. We will also consider this as an independent issue below.

We additionally like to emphasize that Theorem 1 demarcates a ubiquitous scaffolding
which holds at every stage of the organization of matter [13].

Had the quantities Ty and L, entering into Theorems 1 and 2 for some object with the rest
mass My, been embedded in a gravitational medium at an altitude r from the host body, then
the corresponding quantities (at rest) would become T(r) and L(r) when assessed by a resting
distant observer outside the interacting system, both of which would then be a function of Eg
(see Eqg. 6); i.e,

TO _
e me (112)
_ Ly _
= e e (110)

Let us stress that the transformations (11a) and (11b) for the “local unit period of time” T,
and the “local unit length” L, are to be written for the object at hand when it is considered at
rest in gravity. Otherwise, and in case we have a quantal motion at hand, Theorem 3 must be
exercised.

At this stage, we can relate the distance r between the host and the test object, as assessed
by the distant observer, to the same distance ro, but as measured by the local observer [1, 3,
4]:

r=roe". (11c)

Thus, because the pace of the local clock is slower than that of the twin clock situated far
away sitting next to the distant observer, the number of ticks registered by the local clock for
a round trip signal sent to the host (which is supposedly unaffected by gravity, and which is
possible in cases when the signal behaves in a corpuscular fashion) will be less than the same
number of ticks registered but by the distant observer. The differential of Eq. (11c) yields [1,
3,4]:

e
dr —dr01+a : (11d)
so that dr and dr are practically the same in a weak gravity. Recall that Egs. (11a) — (11d) are
written in the static case — i.e., where the objects are practically at rest with respect to each
other. That is to say, they do not involve the peculiarities of Theorem 3.

The equation of motion of the test particle can, on the other hand, be directly determined
through the differentiation of Eq. (7) [7, 14, 15].

In such a way, QTG successfully combines the properties of both metric and dynamical
theories; and such a combination, as shown, ensures compatibility between gravitation and
QM [4, 11, 14]. In other words, it is the qguantum mechanical rest mass decrease in gravity (or
any field the test object interacts with) which leads to the known gravitational redshift
together with size stretching the way delineated by Theorems 1 and 2.

Recall that QTG can equally handle a wave-like behaving particle and a corpuscle-like
behaving particle (which we will deal with alittle ahead).

In the wave-like case, we anticipate the following: While, say, the wavepacket hf built on
just the proper rest mass my., [cf. Egs. (10c) and (10d)] gets accelerated in a free fall, the mass
of the core my,.€® supplying the necesssary energy will a fortiori recoil (see further below); so
the object eventually gets torn apart.



During the lagging behind of the gravitating core mp.€® in comparison to hf/c? cruising
just a bit ahead which, under the current simplified single-entity model, is the only constituent
the distant observer can track, i) the wavelength A remains to be associated with the
wavepacket hf, and ii) T is ascribed to the locally fixed twin clock’s mass my..e® when
assessed by the remote observer.

Thus, hereinafter, we save the subscript “o”, or similarly “;
which shall then be differently assessed by the remote observer.

Hence, when the proper energy wavepacket hfo=hf; ticks as observed by a locally fixed
observer, in order to cross a proper distance equal to the wavelength Ap=A;, it would spend a
proper period of time Ty=T,; thereat as referred to a fixed local twin clock associated with the
twin rest mass my., Situated at the given altitude in the possession of the said local observer.

According to such a conception, the two quantitites A and T, based on the local underlying
quantitites Ao and To, will therefore be transformed in different manners from the viewpoint of
the distant observer.

In the case where, in a gravitational fall, hfy and my., are supposed to move with the same
velocity vy for the locally fixed observer, we are to write for the fall velocity Veyre Of the
recoiling core my,.€°, the way assessed by the distant observer,

_1(r) et
CT(r) TE

, to label proper quantities,

=n,e* (12)

in full accordance with Theorem 3.

A cross-check of this result, based on the momentum conservation between the
wavepacket energy hf and the core’s instantaneous rest energy my.€°c? will be provided
below.

4. The general setup of the problem pertaining to a wave-like regime and
the equation of motion of the single-entity in a radially symmetric gravity

Addressing Eqg. (8), and carrying out its differentiation, we obtain [3, 4]:

JGMMET Ao <% The (13a)
rc ¢ J1-v’/c

Note that, here, vy pertains to the velocity of the test object, which is the same for both
the quantal mass my=hf/c? and the mass of the core my..€® of the test object when measured
locally as expressed in Eq. (12). Moreover, these two masses are naturally identical in vacuum
and at rest according to de Broglie’s setting (Eq. (10a)).

The above equation leads to
_GM (
r2c?

v, dv,

1-v,?/c?)dr = =

(13b)
Take heed that this equation happens to feature a suppression factor in front of the New-
tonian force term.
One can, in keeping with Theorem 3, re-arrange Eq. (13b) as follows to arrive at QTG’s
wave-like regime [3]:

GMrr]ea

= dr—vd(meav) (14a)



This makes the current undertaking compatible with centennial findings thought up to
now to confirm Einstein’s GTR in view of his adoption of the equality of the gravitational
mass and the inertial mass, aside from the increase of yet the quantal mass in gravity under
QTG [Eq. (10a)].

While Eq. (14a) is, so far, the same equation as (13b), still, it says that the initial quantal
mass m=hf;/c? increases exponentially in a gravitational fall — which, however, is ensured in
our approach by the exponential decrease of the core’s mass my. as expressed by Eq. (13a).
Any singularity is henceforth excluded in our case.

Theorem 3, on the other hand, makes certain that, in a gravitational fall, a quantal mass
increase takes place together with a length contraction in full concordance with what GTR
proposes; i.e., conjoint mass increase and length contraction in gravity, together with time
dilation in the radially symmetric metric. In QTG, though, the latter property is secured on the
basis of Theorem 2.

In other words, no mass increase would take place in our quantal case without a conjoint
mass decrease.

Take further heed that the process underlined via Eq. (14a) removes the supressing factor
(1-vp?/c?) that appears in front of the gravitational force. Let us stress that this happens in our
quantal case and shall not take place if the test object at hand does not behave quantally in
gravity.

Eq. (14a) is therefore a key equation of QTG. Based on it, one can derive all the known
experimental results considered up until today to confirm GTR. As a first example, in Subsec-
tion 4.1, we will show how the outcome of the familiar Pound & Rebka experiment [11] can
be easily understood within the framework of our approach.

Then, in Subsection 4.2, we will derive the angular momentum conservation law.

Eq. (14a) shall further allow us to pin down the velocity Vcore Of the core of mass mp..e*
that gets recoiled in a gravitational fall as assessed by the remote observer.

4.1 Equation of motion of the quantal part hf: Pound & Rebka result

Let us remind that we consider the locally measured quantal mass hf/c’=mp..(1-v?/c?)™? and
the corpuscular mass my.€° of the test object, which is assessed by the remote observer, as
distinct quantities no matter whether or not they are both written based on the mass my.. They
are not equal in the first place unless they are at rest and in vacuum. Hence

e'=my/C, (14b)

where C is a constant.
Next, combining Egs. (14a) and (14b), we obtain:
GM m,

T dr = v,d ("LfVo), (14c)
where v is the velocity of the mass hfo/c?=my(1-vo*/c?) ™2 as gauged by the locally fixed ob-
server — and, the way we conceptualized the setup at hand, it has the same value for both the
local observer and the remote observer given that lengths and periods of time stretch by the
same amount as viewed by the remote observer [cf. Theorem 2, and Egs. (11a) and (11b)].

Thus, the instantaneous fall velocity v=vi; of the quantal mass hf/c? is the same as v, giv-
en that the lengths and the periods of time under the present approach effectively stretch by
the same amount in gravity.

Next, we remind the relationship:

r-drv,-dy,

= , 14d
rdr v,dv, (149)

10



and, combining Eqgs. (14c) and (14d), as well as using the equality vi=Vo, we obtain

GMm; r _ d(vhf fTLf)
r’or dt

Eq. (14e) describes the motion of the quantal mass mw=hf/c? in gravity [cf. Egs. (10c) and
(10d)], and it is precisely how we readily tapped the outcome of the Pound & Rebka
experiment in [11]. The above equation implies the identity of the gravitational mass and the
inertial mass just like it is asserted under GTR; but in QTG, this happens only when the test
object behaves wave-like.

Also, Eq. (14e) is valid for both the local observer and the remote observer, except that,
in view of the distant observer, r should ultimately be replaced by ree” [cf. Egs. (2¢) and
(11¢c)].

Further on, one has to recall that Eq. (14a) allows the treatment of the quantal mass hf/c?
and the mass of the core my.€® as a single-entity. The full two-entity solution shall be
handled elsewhere.

Using Eq. (3), we can present Eq. (14a) in the form

o

which expresses the momentum conservation pertaining to the wave-like case.
It can be written alternatively as

|dm|c* = m,ve*d(€Y,) - (15b)

(14e)

2

C
rom= (e ) (152

Reading Eq. (15a), we can conclude that the core of the local mass my. of the said entity
depletes the infinitesimal rest mass |dm| through an infinitely short gravitational fall involving
a de Broglie-like phase propagation velocity c*/voe®® [8] (cf. Appendix A)

This governs the exchange of energy between the core my, and the wavepacket hfy, thus
delivering an infinitesimal kick forward to hfy. It further implies that the core a fortiori recoils
in a gravitational fall and its cruise velocity Vegre IS

Vcorezvoe_za . (15c)

This result is the same as that of Eq. (12).

Briefly, this means that the core mg..€°, as assessed by the remote observer, must come to
cruise behind the wavepacket hf, again as assessed by the remote observer.

We can now depart from Eqg. (15b), or the same Eq. (14c), in treating the object at hand
as a single-entity, where its motion is nailed to that of the core my.€°. Thus, in the said
model, the object made of the masses hf/c? and my.e™ altogether moves with the velocity Veore
as expressed by Eq. (15c). (Otherwise, as conveyed, hf would move with the velocity
V=V0= Vh.)

4.2 Angular Momentum Conservation and Equation of Motion for a single-entity

Recalling that dr/dt=Vvis, and using the equivalent of c®dm following Eq. (3), we get from Eq.
(15a)

GME r_d(v,€)

2

r r dt

It can be checked via Eq. (14b) that this is the same equation as Eq. (14e), except that we
keep the term €” instead of the Lorentz coefficient.

(16)
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Eq. (16) is our equation of motion for a single-entity where i) v at the rhs should yet be
reverted to Veore Via EQ. (12), and ii) r should yet be reverted to ro via Eq. (11c) as discussed in
Section 2 given that we now work in the single-entity regime.

With regards to the analysis of Eq. (16), we shall first derive the angular momentum con-
servation law. For this purpose, we multiply both sides by the tracking vector r:

GMEr_dnE) (172)
r r dt
The Ihs of the latter equation is null, and so must be the rhs:
[d(v0 ¢ ) /dt]x r=0. (17b)

Let us add to this the vector quantity (dr/dt)xvee” which — given that vy and vy lie in the
same direction — amounts to zero. Hence, we obtain:

(dr/dt)xv, € +[d(voea)/dt]xr :[d(rxvoea)/dt]:o. (18)

The integral of this vector equation must then be a constant vector which we designate
by p:
rxv,e =p. (19)

The vector p obviously represents the same constant quantity both in view of the local
observer and in view of the distant observer. All the same, recalling that we have to revert to
ro when p is assessed by the distant observer [see Eg. (2b)], and using Eq. (12), we get for the
distant observer

r, e xve®e =rxve™ =p. (20)

In order to compose the total angular momentum, we have to multiply Eq. (19) by the
overall constant relativistic mass Moverai= Eoverall/C* the way coined by YA [see Eq. (7)]; thus,
the angular momentum vector P becomes a new constant to be written as:

I»nOveraIIe‘la r-O XV = P * (21)

This quantity constitutes a constant of the motion of the test particle as long as we con-
ceive it to be a single-entity at this stage. The other constant is provided by the total energy
expressed by Eq. (7) which, in effect, is what we wrote straightforwardly as a special ad-
vantage provided by the current approach.

Based on the stated properties, we can present the acceleration vector dv/dt of the test ob-
ject in terms of its tangential component and radial component to retrieve further information
about the motion that the test object will delineate. The calculations are furnished in Appen-
dix C, which yield

2 a(r. -
dv_ GOS/I {e’4a[l+ VLJ"_O_M} , (22a)

2 2
dt r c)r, rc

The force term over here is still written as assessed by the local observer attached to the
test object [see Eq. (2d)]. The above equation, when viewed by the remote observer, must
then be written via Egs. (2¢) and (11c) as

dv_ GM e_z{e.m[ﬁﬁ)r_o_w} (22b)

dt I’ c?Jr, 1,
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Note that the term €2 does not essentially change the final solution, for, it can be consid-
ered merely to serve in reducing the host mass M, which would simply push the orbits of the
test object just a little bit outward were we to operate under a weak gravitational field.

Egs. (22a) and (22b) thence furnish all the measured results that are indistinguishable
from those led to by GTR (see, e.g., [16]).

Recall that, although we did so far work in a spherically symmetric geometry in just the
way set up through the rest mass decrease conceptualization [see Eq. (4) and Theorems 1 and
2], the possible extension of our approach to a non-spherical symmetry is somewhat trivial.
For example, the gravitational redshift of a test object located near a spherically non-
symmetric host mass constitutes just a matter of the familiar type of Newtonian integration of
the effect created by an infinitely small mass of the given geometry over the entire host body.

5. Application of QTG to select problems

Next to the gravitational redshift — which, as we have shown, represents a quantum mechani-
cal phenomenon — we will consider two other known astronomical phenomena as classical
examples with regards to the applicability of Eq. (22a): i.e, i) the gravitational deflection of
visible light, and ii) the precession of the perihelion of a planet.

The solution to the first one is trivial. Indeed, consider a light beam propagating from
ro=-o0 to ro=+oo tangentially to the source of gravity (e.g., a star). The second term within the
brackets on the rhs of Eq. (22a) can be written as -4cos6, with 8 being the angle drawn by the
tracking vector ro, and the velocity vector ¢ being associated with light. We can assume for
simplicity that the light beam travels rectilinearly towards the impact point of the source of
gravity. In such a case, 8 varies from p to 0, and the integral of cos@ is therefore vanishing
throughout the path of light. On the other hand, we can consider the exponential term e*® as
unity, given that, say, for the Solar surface, a turns out to be about 10°°. The first term within
the brackets on the rhs of Eq. (22a), in the case we have vy=c, then becomes 2.

What all this really amounts to is just stating that the Newtonian force term per unit mass
—i.e,, GoM/r¢® — gets merely multiplied by virtually speaking, factor 2. So, just like in GTR,
the radial component of the gravitational force exerted by the source of gravity on the client
object amounts to twice the classical Newtonian force — but extraordinarily, only in the wave-
like case of QTG, which led to Eq. (22a). Take notice that this was already conspicuous from
Eqg. (12).

Next, we consider, still in the wave-like case, the precession of the perihelion of a planet
as scrutinized by a distant observer, and work out in Appendix D the solution that QTG fur-
nishes; which amounts to an identical result as compared to what is led to by GTR [17] within
the measurement precision. As seen till now, the calculations are straightforward and, unlike
GTR, are based on the two constants we could write directly via our Egs. (1) and (20) even
without the determination of the metric of space-time.

We finalize this Section with the most striking result of QTG: i.e, its power to describe
projectile-like entities where Theorem 3 no longer holds — wherefore the equation of motion
reduces to Eq. (13b) which, after re-arrangement, gets to be written as

v  GM[, v \r
— = |1

dt r cr
One can see that this equation yields practically zero gravitational deflection when the
velocity of the test object tends to ¢, and such a result becomes exciting when we realize that
the said equation is well applicable to high-energy y-quanta that always delineate projectile-
like behavior. Thus, QTG predicts almost no gravitational bending for such projectile-like en-
tities; our prediction regarding this can be found in [18]. All this remains entirely at odds with

(23)
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metric theories of gravity where the metric of space-time cannot depend on the energy of the
particles. It is therefore no wonder that experimental results on the subject matter are definite-
ly in conflict with GTR [19].

6. The space-time metric in QTG

It can be shown that the motional equation (22b), if we overlooked the term € multiplying
the force term on the rhs, could be obtained independently via the minimization of action as
defined in the standard way through the ad hoc metric expression

c’dt * =e?**c’dt’ —dr’e™ —r/e™ (dg’® +sinqdf ) (24a)

in spherical coordinates — thus for the quantal case only. Astonishingly enough, this is, except
for ro, nothing else but the Yilmaz metric [20, 21]. In arriving at it, Hiseyin Yilmaz basically
aimed to repair the singularity pitfall of GTR after having noticed that no singularity occurs in
Einstein’s accelerated elevator gedanken experiment.

In view of Eq. (11d), the above metric equation can be re-phrased as

c’dt > = e c?dt® —dr?e®™® —r? (dq2 + sin’qdf 2) : (24b)

which is, this time, reduced to the Schwartzschild metric in the case of weak gravity where
€ ~1-2a — thus establishing a remarkable bridge that was unrealized until now between the
Yilmaz metric and the Schwartzschild metric in the given gravity constraints.

Egs. (22a) and (22b), together with Egs. (24a) and (24b), but separately from each other,
lead to all of the verified relativistic effects — viz., gravitational bending of light, advance of
the perihelion of elliptical orbits, Shapiro delay (see, e.g., [22]), etc. — all within the quotidian
measurement precision. At the same time, QTG drastically modifies the concept of a “black
hole” (BH). Essentially, just the way we had elaborated on earlier [14], Egs. (22a) and (22b),
and thereby Egs. (24a) and (24b) as well, entail no singularities or event horizons; hence any
particle gathering a sufficient amount of energy inside of a “BH of the QTG type” can break
out. In such a way, we resolve the information paradox [14]. Note further that, as underlined
in Section 2, the coordinate r entering into the parameter a in the above metric expressions
should be reverted to ro; in which case, at sufficiently high a, the present approach hints at
anti-gravity.

Anyway, the final umpire in choosing between QTG and standard theory remains exper-
imentation. More importantly, the metric expression given by Eq. (24a) that we have provided
with regards to our solution Eq. (22a) is not even mandatory, but is rather constrained to the
framework of our single-entity model and constitutes nothing but an artefact (just like, in fact,
our single-entity model itself). This will become even clearer following the derivation we aim
to present with regards to our two-entity approach to be tackled in a subsequent paper.

Note that, in the corpuscular case of QTG we reviewed above, a different metric can
straightforwardly be written (using the standard notation) in view of Egs. (11a) and (11b) [1]:

S? = Gt —r¢?, =506 (24c), (24d)
7. Quantum mechanical deployment of the present approach

T. Yarman, together with the late Rozanov, made an attempt to develop a quantum mechani-
cal deployment of the current undertaking in [23]. They started with Eq. (7), and via squaring
it, they wrote

PG + '™ =

Overall ?

(25)
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with po being the magnitude of the overall relativistic momentum of the test object moving
with the velocity .

Next, they considered the quantum mechanical equivalent of the momentum of the test
object to write (with the standard notation):

Po(r) =-iAV, (26)

where 7 is the reduced Planck Constant.
For a stationary system, Eq. (26) leads to a novel quantum mechanical equation

—n*Vy (r)c? +mg c'e®y (N=Egqay (1) (27)

with y (r) being the eigenfunction.
This equation can be reduced to a Schrodinger-type equation through the equality

ESchr = EOverall - rn()oocg (28)

ifaand g /(m,c?) are very small as compared to unity. Thus:

1 M m,,
_Ehzva’ o — G I‘—Toy o = Egn s 0 (29)

where y ., becomes the new eigenfunction within the adopted approximation.

This approach interestingly leads to the Planck mass if we wished to pin down the mass
of the two identical objects bound to each other at the ground state with twice the Planck
length as their separation distance. It can equally be applied to the atomic world as T. Yarman
originally suggested in [3]. But all this lies outside of the scope of the current article.

The exciting quest, on the other hand, is that our root equation (7) engenders both a
quantal description — but in a corpuscular manner [Eq. (22a)] — and a full quantum mechanical
description of the system at hand [Eq. (29)]; and both appear to be correct. The former de-
scription would mean that electrons in the atomic world, still behaving quantally (given how
we obtained the description through a “de Broglie setting” —i.e., Egs. (10a) and (10c)), move
virtually in geodesics; and the latter would mean that we can profit from our quantum me-
chanical insights to describe complex gravitational systems behaving quantally, too. This yet
falls outside of the scope of the present contribution as well.

We would like to add that our root equation (7) allowed us both i) to develop a cosmolog-
ical model in [24] based on the current approach, where we could naturally deduce dark ener-
gy as a fossil acceleration of the early accelerated expansion the universe might have deline-
ated at the beginning (which appears to be at the order of 10 x Earth’s acceleration g), and ii)
to explain the outcome of the measurements achieved by the LIGO and VIRGO installations
[15].

8. Conclusion

Eq. (1), as the basis of Yarman’s Approach (YA), expresses the law of energy conservation
for gravity and, in general, for any non-radiating field. An attractive advantage of the under-
taking at hand is that it is written straightforwardly in an integral form and remains in full
symbiosis with QM. It also reflects the known fact that any non-radiating field can be given
as a function of the state (see, e.g., [5]).

Next, we considered Egs. (10c) and (10d), and furthermore Eq. (12), which constitute, in
the quantal case of QTG, a plausible approximation to represent the structure made of the
mass of the wavepacket hf/c? and that of the core mp.€®. These normally move conjointly but
with different velocities, for they are conjectured to tear themselves apart over the long haul
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when engaging gravity, given that the core my€* recoils whence fueling the speeding up of
hf in a gravitational fall.

Such an event is conjectured for the first time herein, and our solution well predicts the
emission of positrons and electrons from nearby a supermassive body. It is owing to the fact
that an EM radiation falling in will eventually get torn apart and break down into its constitu-
ents. We remind that the quantal mass my=hf/c? is based on the original core’s mass Mo,
which, in turn, remains locally unaltered; recall that what is going to determine whether an
object will interact quantally with gravity is evidently the mass value my=hf/c® it assumes
locally.

We could thus treat a quantally behaving object made separately of the wavepacket hf
and the core my..€ as a single-entity. Thereby, we fixed the motion of the object made of hf
and my€® to the core’s motion, which a fortiori lags behind hf/ ¢ this brought up Eq. (12) as
a plausible basis which can, in effect, be interpreted as the slowing down of the velocity of the
test object in our single-entity case. Yet, in our approach, this is merely a useful artefact. It is
further worth recalling that we tapped the rhs of Eq. (12), and more essentially, the philoso-
phy we introduced to describe it, in our Eg. (15c), which constitutes an extension of Eq. (14a)
— which, in turn, promptly led to the Pound & Rebka results [11].

In gravitation, said behaviour, as implied by Eq. (12), remarkably turned out to be the
same as that framed by GTR (barring yet metric singularities and the notion of an ““event
horizon); this is so much so that we ended up with a metric expression (24a) which is com-
patible with our motional equation (22a).

A crucial question thence arises: How could Einstein succeed to put together GTR that
well copes with the centennial observations based on the equivalence between the effect of
acceleration and the effect of gravitation in conjunction with his Clock Hypothesis (CH)?

As is known, this hypothesis supposes that Einstein’s gedanken rotating clock is affected
by just its tangential motion, and acceleration has no effect on it, as such [2].

However, our recent experiments [25-27] severely put at stake the CH.

How then could the CH work so well under the framework of GTR?

The answer now becomes clear; as the spatial and temporal transformations experienced
by the clock in a tangentially uniform translational motion the way assumed by Einstein —i.e.,
mass increase, size contraction, and period of time stretching — precisely occur solely in the
quantal case of a free-falling object, which constitute the germane analogues of our Theorems
1, 2 and 3 — with the exception that the relativistic mass increase of the object at hand, follow-
ing Egs. (8c) and (8d), is fueled by a tiny rest mass deficit and the recoil of the photon kernel
in QTG’s wave-like regime.

Without this intricate piece of the puzzle, GTR was and could never be harmonized with
QM.
Whenever the test object does not behave quantally, QTG predicts practically no light
bending [18]; whereas GTR fails entirely (just like all other metric theories) in this regard —
seeing as high-energy y-quanta are observed not to bend when traversing over Earth’s surface
[19].

More importantly, the metric expression we have provided under Eq. (24a) with regards
to our solution Eq. (22a) is not even mandatory, but is rather constrained to the framework of
our single-entity model insofar as designating nothing other than an artefact (just like, in fact,
our single-entity formulation itself). This is so much so that the metric to be written for a cor-
puscle-like behaving object [see Eq. (24d)] is not even the same as the one we wrote for a
wave-like behaving object [see Eq. (24a)].

Anyway, the final umpire in choosing between the current approach and GTR remains to
be experimentation.
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Additionally, the present approach can be applied to all bound systems no matter what
the force field coming into play may be. A good example is our prediction about the decay-
rate retardation of a muon bound to an atomic nucleus [6].

Otherwise, GTR (known to be incompatible with QM) and the wave-like case of the cur-
rent undertaking come to remarkably coincide, whereby QTG predicts almost the same results
as GTR; be it through totally different means and save for the abandonment of singularities,
event horizons, and black hole information paradoxes in our gravitation theory [14] that al-
ways upholds the law of energy conservation and remains in full symbiosis with QM.

Appendix A: The insight de Broglie had behind writing mic>=hf; and his derivation of
the wavelength relationship [8]

It is unfortunately not widely recalled nowadays that the classical de Broglie relationship
about the wavelength Ag for a test object of momentum p, i.e.

Ae=h/p, (A1)

which constitutes the foundation of Quantum Mechanics (QM), is derived based on Eq. (10a)
of the text [8]. Note that de Broglie considered here the test object as being initially at rest.
Thus, de Broglie assigned an intrinsic periodical phenomenon of frequency fo. to the test ob-
ject of rest mass my., at hand and wrote

MoeC= hfgeo. (A2)

We can grasp this via thinking of fy. as the frequency of the subsequent EM radiation
had the original mass my. been entirely annihilated. Such an argumentation was not known to
de Broglie at all by the time he published his doctorate thesis in 1924, though [8]. Given that
there may be several oscillatory motions inside mo.c? one can perhaps more realistically de-
nominate hfy. as the “overall wavepacket energy” encompassing altogether the energy mpe.c?
and whose characteristic frequency is after all fye..

Further on, as a generalization, one can apprehend Eqg. (10a) with my. already being in
motion. In de Broglie’s understanding, the overall oscillatory energy hfo. is not absolutely
confined within the boundaries of mu.c* but rather has tails extending to the entire space,
though with magnitudes quickly dying away along both directions of the itinerary the motion
takes place in. An example de Broglie provides for this is the Bohr quantization rule he de-
rived based on Eq. (A2). It brings about a standing wave that materializes athwart the fixed
orbit of the electron as it supposedly moves around the proton in an Hydrogen atom — and we
will review this shortly in the next Appendix.

The oscillatory energy hfy. is indeed not confined within the bounds of my..c* at all. It
contrariwise extends to the entire orbit in the case of a charge revolving around a proton, inso-
far as culminating in the known picture of atomic orbitals.

No matter how “archaic” Eq. (A2) may look nowadays, it still constitutes, as we will
summarize momentarily, the basis of QM. In effect, de Broglie thought that, when my. is
brought to a translational motion with the velocity v, it gets increased special relativistically
by the Lorentz coefficient coming into play. According to his Eq. (ii), so must fo. to0; which

then becomes f = f, /v1-v*/c?. Conjointly, fo. must, as implied by the Special Theory of

Relativity (STR), become fainter to assume the value f* = f,_+1-v*/c?. He could finally re-

move such an annoying dichotomy via adopting the idea that the phases of the two oscillatory
motions of frequencies f and f* are in constant harmony with each other if the wave repre-
senting the increased frequency f moves with the velocity c?v. (Note anyway that a superlu-
minal displacement of the phase not carrying any energy whatsoever is not prohibited by
STR).
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Thence, de Broglie came to write, with regards to his wavelength Ag of Eq. (i),

2

%zIszlstw/\/l—vzlcz. (A3)
This equation, via using Eq. (ii), leads, in turn, to the usual de Broglie relationship —i.e.,
Eq. (Al):

n (Ad)

h
I = =
" mv/Ni-vic P

As one can see [cf. Eq. (A3)], had the rest mass m,.. been brought to a motion of
velocity v, the de Broglie wavelength Ag would be made of the increased de Broglie frequency
f. The passage from Eq. (iv) to QM is straightforward if one writes, as usual,

p(r)=—iav . (A5)

Clearly, Egs. (A4) and (A5) are in full conformity with each other. All this is tantamount
to saying that Eqg. (A2) we brought up in the text in reference to Louis de Broglie is not “ar-
chaic” after all.

Appendix B: Louis de Broglie’s derivation of the Bohr quantization rule as it pertains to
the Hydrogen (H) atom, which hints at his insight behind writing mic>=hf;: How in the
present undertaking does the H atom get torn apart in a gravitational fall?

It will be useful to recall that Louis de Broglie, via his relationship Eq. (A3), was able to de-
rive the Bohr quantization rule as it pertains to the Hydrogen (H) atom [8] featuring an elec-
tron revolving around the proton. This is transcribed, along with the familiar notation, as

2prmv. =nh, n=1,2, ... (B1)
or the same, as
lgp =nh,n=12, .. (B2)

It is written at an initial state (i) in empty space where the proton is assumed to be at rest.
All quantities of interest are defined accordingly; m=yimy.., is the relativistic mass of the elec-
tron in its orbit, My is the rest mass of the electron, y; is the Lorentz coefficient in relation to
the velocity v; of the electron in its orbit, r; is the radius of the orbit of the electron, Ag; is the de
Broglie wavelength associated with the electron in its orbit (thereby exhibiting a stationary
wave in the orbit), and p; is the momentum of the said electron in its orbit.

Let us designate the initial stationary characteristic wave frequency f; of the electron in its
orbit in vacuum as

fi=mc?h=yimoC/h. (B3)
This is the de Broglie frequency entering into Eq. (A3), where we will have to write
CPVi=gif; (B4)

for the electron in the H atom in vacuum.

Thus, we see that the de Broglie wavelength 45;, together with the de Broglie frequency f;
coming into play with Eq. (B3), both go beyond the boundaries of the electron mass my. in-
asmuch as covering up the entire orbit.

Suppose now that the H atom undergoes a gravitational fall; this is certainly a more
complicated occurrence than the fall of a single-entity, which was undertaken in the text. Still,
one interesting case is where the electron’s orbit remains perpendicular to the radial direction
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throughout the fall. The de Broglie characteristic wave frequency f of the electron in the said
H atom at the given altitude would, as implied by Eq. (B3), have increased to the extent that it
reads as

hf=MC*=YrayiMoeC’, (B5)

where yra=Y is the Lorentz coefficient associated with the fall velocity v=Vg4.

Note that Eq. (B5) embodies no other quantity than y in relation with the gravitational fall
in question. The increase of hf; is, on the other hand, ensured by the decrease of the electron’s
rest mass my. (in accordance with Theorems 1 and 2) which, as explained in the text, must a
fortiori recoil. Accordingly, the orbit of the electron of rest mass my..e® will not any more be
centered at the proton’s center, nor shall the orbit of the instantaneous quantal mass hf/c?.
According to the present model, they altogether constitute a torus around the proton’s center.
The lower part of the torus encompasses the orbit of the quantal mass hf/c?, and the upper part
encompasses the orbit of the corpuscular electron of rest mass my.e*.

It would further be interesting to consider what happens in the general case where the H
atom gravitates without having the electronic orbital plane perpendicular to the radial
direction. This however remains outside of the scope of the current contribution.

In brief, there arises two distinct masses in a fall in the example we considered: i) the
quantal mass m=hf/c? which, in the present case, reads as m=yraiyimoe, and ii) the corpuscular
mass me® which, again in the present case, reads as me*“=yra1yime€”. They are locally indis-
tinguishable, for, the proper observer has no means to determine that the core’s mass my. gets
decreased. So, locally, both masses in question are the same. But, as viewed by the distant ob-
server, m=hf/c? speeds up during the fall. The necessary energy for this is supplied by the
core’s mass me®, which a fortiori recoils. The two masses are then no more concentric as as-
sessed by the distant observer.

It is surely interesting that Richard Feynman’s intuition from many decades ago, which
we have come across when we studied the famous Feynman Lectures, “Optics: the Principle
of Least Time”, Chapter 26 — and more precisely what he wrote under Sub-Section 26-5, i.e.,
“A more precise statement of Fermat’s principle” — aligns with the topic at hand. He verba-
tim says this [28]:

- The following is another difficulty with the principle of least time, and one which peo-
ple who do not like this kind of a theory could never stomach. With Snell’s theory we
can “understand” light. Light goes along, it sees a surface, it bends because it does
something at the surface. The idea of causality, that it goes from one point to another,
and another, and so on, is easy to understand. But the principle of least time is a com-
pletely different philosophical principle about the way nature works. Instead of saying
it is a causal thing, that when we do one thing, something else happens, and so on, it
says this: we set up the situation, and light decides which is the shortest time, or the
extreme one, and chooses that path. But what does it do, how does it find out? Does it
smell the nearby paths, and check them against each other? The answer is, yes, it does,
in a way. That is the feature which is, of course, not known in geometrical optics, and
which isinvolved in the idea of wavelength; the wavelength tells us approximately how
far away the light must “smell”” the path in order to check it. It is hard to demonstrate
this fact on a large scale with light, because the wavelengths are so terribly short. But
with radiowaves, say 3-cm waves, the distances over which the radiowaves are check-
ing arelarger.

Such an analogy serves to describe exactly what happens with regards to that which we
tried to convey in the text around Egs. (10a) — (10e). There, we elaborated on how the de
Broglie frequency f of a wave-like behaving test object in a gravitational fall gets increased,
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and the necessary impetus is supplied by a minimal depletion of the core’s rest mass Mo.€°,
which necessarily makes the latter recoil.

We consequently tackled the same idea in this Appendix with regards to a gravitating H
atom, where we discovered that, according to the present approach, the H atom’s said orbit
becomes de-centered (see above).

As to the fall of a single-entity, we can now re-phrase what we said above in the light of
Feynman’s insight in reference to de Broglie’s original writing of hf=mc? [cf. Eq. (10a) of
the text and also Appendix A]:

- When a wave-like behaving test object undergoes a gravitational fall, the entire
wavepacket slides downward toward gravity to the extent that it is no more mostly lo-
calized inside the test object’s mass boundaries, which thence allows the wavepacket’s
forward tail to “smell”” further ahead, and the particle thus chooses the path it finally
does. For this, the wavepacket and the factual mass de Broglie equated with the energy
of the test mass at hand must effectively get de-centered.

Appendix C: Equation of motion for the single-entity setup
First of all, we address Eq. (20) and obtain roxv=pe™*. We then take its time derivative
d(r, xv) dv da
N0 o x——=4p| == |e* Cl
dt ° dt p( dt j (1)

where the term dr, /dtxv is, owing to Eq. (11d) of the text, practically equal to dr/dtxv; the
latter amounts to vxv, thus vanishes. Accordingly, via Eg. (20), we arrive at

dv da
rOXE: rOxv(—4Ej. (C2)

We notice that the vector dv/dt is not exactly oriented along the radial direction due to the
fact that what is angular momentum-wise conserved is roxve® =p, and not the quantity roxv
[see Eq. (20)]; so roxdv/dt does not vanish.

Next, we write for the total acceleration vector:

dt dt tangential dt radial
Therefore,
dv dv dv
2 halhl == . C4
rox dt rox( dt jtangential " rox( dt jradial ( )
The last term of Eq. (C4) vanishes, and hence,
dv dv
" ( ot ]tangemia ©
Thus, in view of Eg. (C2) and the definition of a we posed along with Eq. (5),
(QJ = v(ﬁi] . (C6)
At rorgertia rodt

Now, we recall that r should eventually be converted to ry as implied by Eq. (2¢). We
have, on the other hand, the equality
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— =2 =y C7
dt r, dt r (©7)
Thus:
(ﬂj =V arn.v =4v Ggl\él fo -V , (C8)
dt tangential r r0 rc r0

Therefore, in the orbital plane we obtain

(ﬂ) _ 4V[G3N2' %_-V}(d_VJ | (C9)
dt rec at ) i

The last term on the rhs is yet to be determined; this means we have to calculate the
difference between the lhs and the first term of the rhs. Thus, we return to Eq. (7) and re-
phrase the overall energy expression for the unit mass in the form

E it =C'€° (1-V€® /¢ )_]/2 : (C10)
which yields
vov=Vv =ce® —c’e® [EL .. (C11)

The derivative of this equation with respect time is

dv drf{da , 4 6a 6,62
V.- —=—| —c€® ———cC’e
dt dt[ r FEZ e } (C12)
We then plug Eqg. (C9) into Eg. (C12):
2v-4v Gg'\f LY +2v-(ﬂ] _a ﬁcze‘4a —;Lcee‘Ga : (C13)
rc I’0 dt radial dt r r.Eunitmass

Recall that dr/dt can be written as v-ro/ro [See Eq. (C7)]. Further, we re-arrange and use
Eq. (C10):

3a (1-ve?/c? |
v(%) _y .r—{z—acze% _ ( / )cee’Ga _ 4 (% o -VJ . (C14)
radial

| r rc'e® r’c’ o,
This leads to
3a (1-v’e®/c? ]
av _10| 28 ogta _ ( — / )cﬁe’6a Y\ Ggl\élr_o : (C15)
at Joasia | T rce rec r,
or to

r r r-c

dv (,GM .. GM a a G,M .
(_j :_0(2 e 3(1—v2e4 /cz)e4 ]—4v2[ gzr—"], (C16)
radial

orto
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2
(dv] :r—O{Z—G"M gt _32M gua 3 GM V—}—4v2 [—GOM r—OJ : (C17)
radial

dt | r’ r? r’ ¢ r’c’
orto
dv r,| GM G,M v,
p =——= 02 e + O2 %e—n,a : (C18)
at ) ga | r r- c
Therefore,
2
[ﬂ] =Gl g, Yo |ho . (C19)
dt radial r c r.O
We can thus compose the total acceleration as follows:
2 4(r,-v)v
ﬂ: _GolzvI e—4a 1+V_(; r_o_ (O 2) ) (CZO)
dt r cr, r,C

Appendix D: Orbital precession calculation for the single-entity case
To calculate the precession of the perihelion of a planet, we start with Eq. (20):

rLvsing = pe®, (D1)

where 0 is the angle between the vectors ro and v. Note that v,=vsin@ constitutes the
magnitude of the velocity component lying along the direction perpendicular to ro.
Hence, the angular velocity w=dg/dt=v,/r, becomes

W_i_L_ pe—4a

= ) D2
dat re (b2)

Introducing the radial component of the velocity v,=dr/dt, and using the relationship
V’=V4+V2., we obtain

V2 = (dr/dt)” +rZ(dj /dt)’. (D3)
Next, combining Egs. (7) and (12) of the text, we get
A C6e—6a
v2:(:2£e41 —— J (D4)
nit mass

Eunit mass IS, by construct, a constant scalar written for a unit mass; Eunit mass/C> @mounts to
unity within the span of about 10°®, e.g., in the case of Mercury. Therefore, we can write

(dr/dt)” + 17 (dj /dt)" =c?(e™ —e™). (D5)
Using Eq. (D2), we get
(dr/dt)” + roz( peja J =2 (e‘461 —e® ) (D6)

o

or
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(dr/dt)2 =c2(e*“"’1 —e6a)—r02[ peja ] , (D7)

or

—4a 2 2
dt =dr [cz(e““’”1 —e‘ea)—roz[ pe2 ] } : (D8)

Next, we use Eg. (D2) to replace dt:

-1/2
. d C2 eAa _e6a 1
g == ¥__2 . (D9)
Iy P fo
Let us pose p=GM/c?, u=1/r and square both sides:
2
dU Cz(e4ru _e(Sru )
{WJ e (D10)

We now consider the derivative of this equation with respect to ¢:

2 2. 4ru 2 .2ru
5 d'l;I d_.u:4r d.uce2 _2rce2 d.u_2ud_.u, (D11)
d°)d d p p° dj dj

which we re-arrange as

2 2,41 u 2,2ru
st
In a weak gravitational field, one can write e =1+ ru. Hence, Eq. (D12) yields:
2 CZ CZ
d.uz +ul1-6r°’— |=r — (D13)
dj p p
versus the corresponding Newtonian equation
dzu onian CZ
(%j + Unentonian = T F . (Dl4)

The function u(g) of Eq. (D13) thus becomes

2
u(j )=(rc* p*)/(1-6r2c?/ p2)+Clcos[ /1—6r2%j ] (D15)

where C; is a suitable constant. Therefore,

2
u(j );(r c2/ p2)+Clcos( /1—6r2%j } (D16)

versus the corresponding Newtonian equation
Uyenonian (| ) =T €2/ p*+Ccos(j ). (D17)
The precession angle during one revolution is therefore equal to

23



2 2
f precession 2p [1_ 1/1_ 6 Gczl\I;IZ J ) (D18)

where we have used the definition p=GM/c?. In a weak gravity, this amounts to
G*M?
CZ p2 !

= 6m (D19)

(p precession

which is identical to the prediction of GTR within the measurement precision.
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