
PHYSICAL REVIEW B 108, 085411 (2023)

Interlayer interaction, shear vibrational mode, and tribological properties of two-dimensional
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The potential energy surface (PES) of the interlayer interaction of infinite twisted bilayer graphene is
calculated for a set of commensurate moiré patterns using the registry-dependent Kolmogorov-Crespi empirical
potential. The calculated PESs have the same shape for all considered moiré patterns, and the unit cell size of the
PESs is inversely related to the unit cell size of the moiré pattern. The amplitude of PES corrugations is found to
decrease exponentially upon increasing the size of the moiré pattern unit cell. An analytical expression for such
a PES including the first Fourier harmonics compatible with the symmetries of both layers is derived. It is shown
that the calculated PESs can be approximated by the derived expression with an accuracy within 1%. This means
that different physical properties associated with relative in-plane motion of graphene layers are interrelated and
can be expressed analytically as functions of the amplitude of PES corrugations. In this way, we obtain the shear
mode frequency, the shear modulus, the shear strength, and the barrier for relative rotation of the commensurate
twisted layers to a fully incommensurate state for the considered moiré patterns. This barrier may possibly lead
to robust macroscopic superlubricity for a twisted graphene bilayer with a commensurate moiré pattern. The
conclusions drawn should be valid for diverse two-dimensional systems of twisted commensurate layers.
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I. INTRODUCTION

Structural superlubricity, i.e., the mode of relative motion
of the layers with vanishing or nearly vanishing friction [1,2],
has attracted considerable attention in the context of discovery
of graphene and other two-dimensional (2D) materials; see
Ref. [3] for a review. First this phenomenon was observed
for nanoscale contacts between graphene flakes at the tip of
a microscope probe and a graphite surface [4–6]. A wide set
of atomistic simulations has been devoted to superlubricity
for 2D systems with a finite size of the contact area where
the edge or rim contribution to the static friction is dominant
[4,6–16]. Recently, not only nanoscale but also micro- and
macroscale superlubricity has been found in systems of 2D
layers [17–20]. These studies raise interest in possible factors
which cause the static friction and can restrict superlubricity
for a macroscale incommensurate contact area [3,8,18,21–23].
The following possible reasons of very low but nevertheless
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nonzero static friction have been considered: (1) the contri-
bution of incomplete unit cells located at the rim area of one
of the layers forming a moiré pattern (rim contribution) [8],
(2) incomplete static friction force cancellation within com-
plete unit cells of a commensurate moiré pattern (area
contribution) [8], (3) the motion of domain walls of large com-
mensurate domains formed upon relaxation of moiré patterns
[3,18,21], and (4) the contribution of atomic-scale defects
[18,22,23]. This paper is devoted to the detailed study of the
area contribution to the static friction by the example of the
twisted graphene bilayer.

Whereas for very small twist angles, the size of the moiré
pattern unit cell is large [24] and, therefore, formation of
commensurate domains separated by incommensurate domain
boundaries occurs during the structural relaxation [25], for
twist angles far from the coaligned orientation (0◦, 60◦, and
so on), the size of the moiré pattern unit cell is smaller than
or comparable to the width of commensurate domain walls
(about 10 nm for bilayer graphene [26]). For such angles,
relaxation to the commensurate domains is not possible, and a
set of commensurate moiré patterns can be observed [24,27].
Twisted bilayer graphene with a commensurate moiré pattern
has an interlayer interaction energy that is slightly lower than
in a fully incommensurate state [7]. Thus one can expect that
such patterns can be formed preferably for the corresponding
range of twist angles. Here we propose that the energetic
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preference of commensurate moiré patterns can also lead to
the robust superlubricity. This is why the study of tribological
properties of 2D systems with commensurate moiré patterns
is of high interest.

The tribological properties are determined by the potential
energy surface (PES) of the interlayer interaction, that is,
the dependence of this energy on coordinates describing the
relative in-plane displacement of 2D layers. Previous atom-
istic calculations allowed the area contribution to the static
friction of the twisted graphene bilayer to be distinguished
for a few commensurate moiré patterns [7,8,28]. Cancella-
tion of the static friction force within complete unit cells of
commensurate moiré patterns of a graphene bilayer [8,22,23]
and double-walled carbon nanotubes [29–31] has been also
demonstrated. However, the symmetry and shape of the PES
of the interlayer interaction for commensurate moiré patterns
of infinite twisted graphene bilayers has not been studied yet.
Recently, we proposed a hypothesis that such PESs in diverse
2D materials with layers aligned in the same or opposite
directions can be universally described by the first spatial
Fourier harmonics [32]. This hypothesis has been confirmed
by calculations of PESs for different 2D materials [32–39]
and 2D heterostructures [40–43]. Moreover, this hypothesis
is valid also for double-walled carbon nanotubes [30,44–48],
where only Fourier harmonics compatible with the symmetry
of both walls contribute to the PES of the interwall interaction
[44,47]. By analogy with double-walled nanotubes, one might
expect that the PES for the interlayer interaction of twisted
layers of an infinite commensurate moiré pattern is deter-
mined by Fourier harmonics compatible with the symmetries
of both layers, i.e., with the symmetry of the whole moiré
pattern. In such a case, the approximated PES depends on a
single parameter, and the set of physical quantities determined
by the PES are interrelated [35,39].

Here we calculate the PESs for a wide set of infinite com-
mensurate moiré patterns of twisted graphene bilayers using
the registry-dependent Kolmogorov-Crespi potential [49] and
show that these PESs can be excellently approximated by
the first Fourier harmonics which are compatible with the
symmetry of the whole moiré pattern. The PES approximation
derived is used to obtain analytical expressions for a set of
physical quantities of moiré patterns determined by the PES
such as the shear frequency, the shear modulus, the shear
strength, and the barrier for relative rotation of the layers to
a fully incommensurate state.

The paper is organized in the following way. In Sec. II, the
model of the superlubric system and the calculation methods
are described. Section III is devoted to our results from the
PES calculations and approximations by Fourier harmonics
as well as estimates of physical quantities determined by
the PES. The conclusions and a discussion are presented in
Sec. IV.

II. METHODOLOGY

A. Structure of the commensurate twisted graphene bilayer

Let us consider first the structure of the commensurate
twisted graphene bilayer. The commensurate moiré pattern
(n1, n2) is defined by the indices n1 and n2, which are coprime
numbers [27]. It has been shown that for each moiré pattern

(n1, n2), there is a twin pattern (n′
1, n′

2) with greater indices n′
1

and n′
2 with the same size of the unit cell [24,27]. In the pairs

of indices of twin moiré patterns, (n1 − n2)/3 is not an integer
for the smaller pair of indices, whereas (n′

1 − n′
2)/3 is an in-

teger for the greater indices. Examples of twin commensurate
moiré patterns are shown in Fig. 1.

If (n1 − n2)/3 is not an integer, the unit cell of the com-
mensurate moiré pattern (n1, n2) is defined by lattice vectors
L1 and L2 [see Fig. 1(a)]

L1 = n1a1 + n2a2, L2 = −n2a1 + (n1 + n2)a2,

where a1 and a2 are lattice vectors of the bottom graphene
layer.

If (n′
1 − n′

2)/3 is an integer, the same equations give the
vectors, one of which corresponds to the diagonal of the moiré
pattern unit cell [see Fig. 1(b)]

L′
1 = n′

1a1 + n′
2a2, L′

2 = −n′
2a1 + (n′

1 + n′
2)a2.

In this case the indices n1 and n2 which determine the moiré
pattern unit cell

L(u)
1 = n1a2 + n2a1, L(u)

2 = −n2a2 + (n1 + n2)a1

for given n′
1 and n′

2 can be found from any of the equations

L′
1 = L(u)

1 + L(u)
2 , L′

2 = 2L(u)
1 − L(u)

2

in the form

n1 = n′
1 + 2n′

2

3
, n2 = n′

1 − n′
2

3
.

The angle θ of relative rotation of graphene layers of the
commensurate moiré pattern (that is, the angle between the
vectors a1 and a′

1) is defined as

cos θ = n2
1 + 4n1n2 + n2

2

2
(
n2

1 + n1n2 + n2
2

) .

In the case where (n1 − n2)/3 is not an integer, the angle
ϕ between the lattice vector a1 and the lattice vector of com-
mensurate moiré pattern L1 = n1a1 + n2a2 is

ϕ = 30◦ − θ

2
.

The area of the unit cell of moiré pattern (n1, n2) is

S = SgNc =
√

3a2
(
n2

1 + n1n2 + n2
2

)
2R

,

where Sg = √
3a2/2 is the area of the unit cell of graphene,

a = |a1| = |a2| is the graphene lattice constant, and Nc =
(n2

1 + n1n2 + n2
2)/R is the number of unit cells of graphene

per unit cell of the commensurate moiré pattern; the parameter
R = 3 if (n1 − n2)/3 is an integer, and R = 1 otherwise.

Pairs of twin commensurate moiré patterns with the same
size of the unit cell and with different symmetry of the stack-
ing just after the relative rotation of layers were considered
as different in the original work by Mele [27]. However, one
commensurate moiré pattern in such a pair can be obtained
from the other by the translational displacement t of one of
the layers in the layer plane (see Fig. 1). Here we study the
PES of the interlayer interaction energy as a function of the
coordinates describing the in-plane relative displacement of
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FIG. 1. (a) and (b) Schemes of twin commensurate moiré patterns (2,1) and (4,1) of a twisted graphene bilayer, respectively, with the same
size of the unit cell. Lattice vectors a1 and a2 of the bottom graphene layer and a′

1 and a′
2 of the top layer, lattice vectors L1 and L2 of the

commensurate moiré pattern, angle θ of relative rotation of the graphene layers, and angle ϕ between the lattice vector a1 of the bottom layer
and the lattice vector of commensurate moiré pattern L1 are indicated. The translational displacement t of the upper layer that converts one
moiré pattern into the other is shown by thick black arrows.

the layers. Evidently, the moiré patterns related by the transla-
tional displacement t correspond to the same PES. Thus only
one pair of moiré patterns with the indices n1 and n2, where
(n1 − n2)/3 is not an integer, are considered here for the PES
calculations.

B. Computational details

The ratio of the PES corrugations to the average interlayer
interaction energy is extremely small for twisted graphene
bilayers [7,8,23]. Simultaneously, the size of the simulation
cell and the number of computational runs for each con-
sidered moiré pattern are too high to study the PES of the
interlayer interaction by ab initio methods. Thus we use clas-
sical potentials in this paper. At this moment, there are no
experimental data on physical properties of systems of twisted
layers that can be used to fit parameters of classical poten-
tials for description of the interlayer interaction (or check
the adequacy of existing potentials for twisted layers). The
parameters of the popular Kolmogorov-Crespi and Lebedeva
potentials (Tables S1 and S2 of the Supplemental Material
[50]) for the interaction between graphene layers were fitted
to the PES of the interlayer interaction of coaligned lay-
ers (with zero twist angle) obtained by density functional
theory (DFT) calculations [34,49]. In the case of the Lebe-
deva potential, the experimental data on the frequency of
in-plane interlayer vibrations of coaligned layers were also
taken into account [35]. Nevertheless, corrugations of the PES
computed for infinite commensurate moiré patterns using the
Lebedeva potential do not exceed the calculation accuracy
[22,23]. At the same time, they are finite and well defined for

commensurate moiré patterns with the smallest unit cells
when the Kolmogorov-Crespi potential is used [7,8,23]. The
explanation of this discrepancy between the Kolmogorov-
Crespi and Lebedeva potentials is discussed in Sec. III B.
In this paper, all calculations are performed using the
Kolmogorov-Crespi potential, which allows us to analyze the
shape of the PES determined by the symmetry of the com-
mensurate twisted graphene bilayer. However, we emphasize
that the results obtained here are only of qualitative nature.

The PES calculations have been carried out under periodic
boundary conditions. Simulation cells of height 100 Å have
been used for all the considered moiré patterns. The bond
length between atoms in the graphene layers is taken to be
equal to 1.42 Å. The upper graphene layer is placed at the
interlayer distance of 3.46 Å [which is determined here on
the example of the (2,1) moiré pattern to be optimal for the
Kolmogorov-Crespi potential] and is rigidly shifted with re-
spect to the bottom layer with steps of 0.0168 and 0.0193 Å
in the zigzag and armchair directions of the bottom layer,
respectively. Further calculation details which are different for
eight considered moiré patterns with the smallest sizes of the
unit cell are listed in Table I.

III. RESULTS

A. PES of the twisted graphene bilayer

The amplitude �U of PES corrugation (i.e., the difference
between maximum and minimum values of the interlayer in-
teraction energy, �U = Umax − Umin) exceeds the calculation
accuracy only for five out of eight considered moiré patterns

085411-3



ALEXANDER S. MINKIN et al. PHYSICAL REVIEW B 108, 085411 (2023)

TABLE I. Calculation details for the considered commensurate
moiré patterns with coprime indices (n1, n2): the angle θ of relative
rotation of graphene layers, the number of atoms Nc in the moiré
pattern unit cell, the simulation cell size in the units of moiré pattern
unit cells, the total number of atoms Na in the simulation cell, and
the cutoff radius Rc of the Kolmogorov–Crespi potential.

(n1, n2) θ (deg) Nc Cell size Na Rc (Å)

(2,1) 21.787 7 18 × 18 9072 16
(3,1) 32.204 13 18 × 18 16848 16
(3,2) 13.174 19 10 × 10 7600 16
(5,1) 42.103 31 11 × 11 15004 70
(5,3) 16.426 49 9 × 9 15876 70
(7,2) 35.567 67 6 × 6 9648 50
(7,3) 26.008 79 6 × 6 11376 50
(7,5) 10.993 109 5 × 5 10900 50

with smaller sizes of the unit cells. Calculated PESs for these
moiré patterns are shown in Fig. 2. For three out of eight
considered moiré patterns with larger sizes of the unit cells
(equivalent to the smaller sizes of the unit cells of the PES
as shown below), the amplitude of PES corrugations is lower
than the artifacts related with the finite value of the cutoff ra-
dius of the potential. Calculated PESs for these moiré patterns
are shown in Fig. S1 of the Supplemental Material [50].

Two types of PESs have been found. The PESs of the first
type have a triangular lattice of minima and a honeycomb
lattice of maxima, whereas the PESs of the second type, in

contrast, have a triangular lattice of maxima and a honey-
comb lattice of minima. As discussed in Sec. III B, the PES
shape is described for both PES types by the same expression
which contains only the first spatial Fourier harmonics and,
therefore, only a single energetic parameter. The difference
between the two types of PESs is determined by the sign of
this parameter.

It should be noted that the number of unit cells of the
PES per unit cell of graphene is the same as the number Nc

of unit cells of graphene per unit cell of the moiré pattern
(see also Sec. III B). The dependence of the amplitude �U
of PES corrugations on the number Nc is shown in Fig. 2(f).
The amplitude �U decreases nearly exponentially with the
decrease in the size of the unit cell of the PES or, equivalently,
with the increase in the size of the unit cell of the moiré
pattern. The analogous exponential decrease in the amplitude
of PES corrugations with the increase in the size of the unit
cell of the moiré pattern was observed previously for rigid
finite graphene layers [7] where the rim contribution to static
friction is dominant. Note that the extremely low values of the
amplitude �U for the moiré patterns with the smaller sizes of
the PES unit cell make evident the necessity of using classical
potentials for the PES calculations.

B. Approximation of the PES by the first Fourier harmonics

PESs of the interlayer interaction in diverse hexagonal 2D
materials can be closely approximated by the expressions
containing only the first spatial Fourier harmonics deter-
mined by the system symmetry. The adequacy of such an

FIG. 2. (a)–(e) Potential energy U (per atom of the upper layer) of the interlayer interaction of a twisted graphene bilayer as a function of
the relative displacement of the layers in the zigzag (x, in angstroms) and armchair (y, in angstroms) directions of the lower layer computed
at the optimal interlayer distance of 3.46 Å for commensurate moiré patterns with coprime indices (a) (2,1), (b) (3,1), (c) (3,2), (d) (5,1), and
(e) (5,3). The energy is given relative to the minimum. (f) Amplitude of PES corrugations, �U (per atom of the upper layer), as a function of
the number Nc of unit cells of the PES per unit cell of graphene. The indices of the considered moiré patterns are indicated.
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FIG. 3. Triangular lattice (orange dots) and its reciprocal lattice
(blue dots). The lattice vectors a1 and a2 (|a1| = |a2| = a) as well as
the reciprocal lattice vectors b1 and b2 are shown. The graphene hon-
eycomb lattice is shown with gray lines. Coordinate x corresponds to
the zigzag direction of the graphene layer.

approximation was demonstrated for coaligned graphene lay-
ers [33–35,37,38], hexagonal boron nitride (h-BN) [37,39],
hydrofluorinated graphene [32], a graphene/h-BN het-
erostructure [41–43], and double-layer graphene with a
krypton spacer [40].

These approximations are based on the following consid-
erations. The translational symmetry of the PES for an atom
adsorbed on a triangular lattice is the same as the transla-
tional symmetry of the triangular lattice; that is, Ua(r) =
Ua(r + n1a1 + n2a1), where a1 and a2 are the lattice vectors
(|a1| = |a2| = a, and the angle between the vectors is 60◦;
Fig. 3), for any integer n1 and n2. This means that the Fourier
transform of Ua(r) consists of harmonics corresponding to
vertices of the reciprocal lattice with the lattice vectors b1

and b2 such that ai · b j = 2πδi j (|b1| = |b2| = 4π/
√

3a, and
the angle between these vectors is 120◦; Fig. 3). Taking into
account only the first Fourier harmonics with wave vectors b1,
b2 and b1 + b2, the PES for an atom on a triangular lattice can
be approximated as

δUa(r) = Ua,1Re
[
eib1r + eib2r + ei(b1+b2 )r], (1)

where δUa is the deviation from the average interaction energy
between the atom and the lattice; point r = 0 corresponds to
the case when the atom is located on top of one of the lattice
atoms.

For x and y axes chosen along one of the lattice vectors (a1)
and in the perpendicular direction [4],

δUa(x, y) = Ua,1[2 cos (kyy) cos (kxx) + cos (2kyy)], (2)

where kx = 2π/a and ky = 2π/
√

3a.
To get the potential energy of an atom on a honeycomb

lattice, it is necessary to sum up the expressions for two sub-
lattices separated by a/

√
3 along the y axis (in the armchair

direction). This leads to a sign change for the second term of
Eq. (2). For two coaligned honeycomb layers, it is necessary
to sum up once more the contributions of two sublattices of
the adsorbed layer. This leads to another sign change in the
equation. Thus the PES of coaligned honeycomb layers is
described by an equation similar to Eq. (2) [33–35].

Now let us consider twisted honeycomb lattices. Let a1

and a2 be the lattice vectors of the bottom layer and a′
1

and a′
2 be the lattice vectors of the upper one. The PES of

twisted honeycomb lattices is periodic with respect to transla-
tion along any of these lattice vectors: U (r) = U (r + n1a1 +
n2a2) = U (r + n′

1a′
1 + n′

2a′
2), where n1, n2, n′

1, and n′
2 are

any integer numbers. Thus the harmonics that contribute to
the Fourier transform of the PES of twisted honeycomb lat-
tices should comply with the condition G = m1b1 + m2b2 =
m′

1b′
1 + m′

2b′
2, where b1 and b2 are the lattice vectors of the

reciprocal lattice of the bottom layer, b′
1 and b′

2 are the lattice
vectors of the reciprocal lattice of the upper one, and m1,
m2, m′

1 and m′
2 are some integer numbers. This means that

these Fourier harmonics correspond to overlapping vertices
of the reciprocal lattices of the twisted layers. The reciprocal
lattices of the twisted honeycomb layers are also two twisted
honeycomb lattices forming a commensurate moiré pattern
similar to one in real space. Therefore the first Fourier terms
contributing to the PES in this case correspond to the lattice
vectors of this moiré pattern of the reciprocal lattices. They
have length B = bL/a, where L is the period of the moiré
pattern, and are rotated with respect to the reciprocal lattice
vectors by the same angle ϕ as the moiré pattern vectors
are rotated with respect to the lattice vectors in real space.
As a result, the PES of twisted honeycomb layers can be
approximated in the same form as Eq. (2) if we consider the
x′ and y′ axes to be aligned along one of the moiré pattern
vectors and in the perpendicular direction as well as increase
the wave vectors by a factor of L/a = √

Nc:

δU (x′, y′) = U1(2 cos (k′
yy′) cos (k′

xx′) + cos (2k′
yy′)), (3)

where δU = U − Uav is the deviation from the average PES
energy Uav = const, x′ = x cos ϕ − y sin ϕ, y′ = y cos ϕ +
x sin ϕ, k′

x = √
Nckx, and k′

y = √
Ncky. Thus the PES of the

interlayer interaction of an infinite graphene bilayer with a
commensurate moiré pattern has the same shape as the PES
for a graphene bilayer with coaligned layers (presented in
Refs. [33–35,38]) and differs only by the PES amplitude and
the period, which is lower by a factor of

√
Nc.

The derived equation (3) is used here for the approximation
of the calculated PESs. To fit the amplitude �U of PES corru-
gations, the single parameter of the approximation is chosen
as U1 = 2�U/9. The relative deviation ε of the approximated
and computed PESs is found as the root-mean-square devia-
tion divided by �U . As can be seen in Table II, this relative
deviation varies from 0.02% to a maximum of 1% for all the
considered moiré patterns. The relative deviations in previous
studies of PESs of coaligned layers are about 1% for graphene
[34,35], 0.1–0.3% for h-BN [39], 0.3% for a graphene/h-BN
heterostructure [43], and 3% for hydrofluorinated graphene
[32]. We believe that the simple shape of the PES obtained
here is a universal property of commensurate twisted bilay-
ers consisting of various 2D materials analogous to that of
coaligned commensurate bilayers.

It should be noted that for coaligned graphene layers, Ua,1

in Eq. (2) is positive and corresponds to the repulsion between
the atoms of the upper and lower layers [33–35,37,38]. In the
case of a moiré pattern, the PES is determined by the sum of
contributions from many atoms within the moiré pattern unit
cell, and U1 in Eq. (3) can be positive or negative (Fig. 2 and
Fig. S1 of the Supplemental Material [50]) depending on at
which symmetry points there is more repulsion between the
layers.
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TABLE II. Approximation parameters U1, relative root-mean-square deviations ε, shear mode frequencies f , shear moduli C44, shear
strengths τ , and barriers �Urot for relative rotation of the commensurate twisted layers to an incommensurate state estimated for different
moiré patterns based on calculations with the Kolmogorov-Crespi potential.

Moiré pattern U1 (eV/atoma) ε f (cm−1) C44 (Pa) τ (Pa) �Urot (eV/atoma)

(2,1) −2.02 × 10−5 1.04 × 10−2 9.153 3.91 × 108 1.67 × 107 6.07 × 10−5

(3,1) 4.66 × 10−6 5.34 × 10−3 4.233 8.37 × 107 1.12 × 106 6.99 × 10−6

(3,2) 4.34 × 10−7 3.33 × 10−3 1.561 1.14 × 107 1.26 × 105 6.50 × 10−7

(5,1) 1.15 × 10−9 2.04 × 10−3 0.103 4.91 × 104 4.25 × 102 1.72 × 10−9

aPer atom of the upper layer.

Let us discuss the discrepancy of the PESs obtained here
using the Kolmogorov-Crespi potential and the results of the
calculations using the Lebedeva potential, where no corru-
gations which exceed the calculation accuracy are observed
for the (2,1) moiré pattern [22,23]. The PES of the inter-
layer interaction for coaligned graphene layers obtained by
dispersion-corrected DFT (DFT-D) calculations is excellently
approximated by the first Fourier harmonics [33–35,38]. The
Lebedeva potential was specifically designed to reproduce this
property of the PES, so that the relative root-mean-square
deviation of the approximated and computed PESs is within
several percent for the Lebedeva potential. A similar deviation
for the Kolmogorov-Crespi potential is 20 times greater [34].
The greater deviation of the Kolmogorov-Crespi potential is
related to the considerably larger amplitudes of Fourier har-
monics other than the first ones (which exactly reproduce
the approximated PES) including those compatible with the
symmetry of commensurate twisted graphene bilayers and
therefore responsible for the shape of corresponding PESs.
This explains the discrepancy of the results obtained using the
Kolmogorov-Crespi and Lebedeva potentials.

Equations (2) and (3) are derived based on the system
symmetry and make sense not only for the interlayer inter-
action energy but also for other properties of 2D materials.
For example, Eq. (2) was used to approximate the interlayer
tunneling contribution to the Hamiltonian of graphene layers
in Ref. [51]. Considering the Brillouin zone for twisted layers,
the authors derived for them the explicit Hamiltonian and
analyzed their band structures. A similar study was also per-
formed for a graphene/h-BN heterostructure [41,51]. The use
of Eq. (3) taking into account the symmetry of commensurate
twisted bilayers might be considered to further simplify such
models.

C. Properties related to the PES

A number of physical properties associated with the rela-
tive in-plane motion of the layers are determined by the PES at
a constant interlayer distance [32,35,39,43]. Since the PES is
described by a simple expression involving just one energetic
parameter [see Eq. (3)], all these properties can be described
analytically as functions of this parameter. Below, we use the
PES for the considered moiré patterns to estimate the shear
mode frequency, the shear modulus, the shear strength, and
the barrier for relative rotation of the commensurate twisted
layers to an incommensurate state.

The frequency of the shear mode E2g, in which adjacent
layers slide rigidly in the opposite in-plane directions, can be

found from the PES curvature in a given energy minimum
[32,35,39,43] as

f = 1

2π

√
1

μ

∂2U

∂x′2 = 1

a

√
1

μ
Ueff , (4)

where Ueff = (a/2π )2∂2U/∂x′2 is the second-order derivative
of the energy per carbon atom of the upper layer in en-
ergy units and μ is the reduced mass. The latter for bilayer
graphene is calculated as μ = mC/2, where mC is the mass of
a carbon atom.

From Eq. (3), it follows that the PES curvature corre-
sponds to Ueff = NcU1 = (2/9)Nc�U for moiré patterns with
U1 > 0 and −2NcU1 for U1 < 0. The shear mode frequen-
cies estimated for different moiré patterns using the values
of the parameter U1 derived from the calculations with the
Kolmogorov-Crespi potential are listed in Table II. They all
are within 10 cm−1 and are considerably smaller than the
shear mode frequency for the coaligned graphene layers:
35 cm−1 [34,36] and 21–34 cm−1 [52] according to DFT cal-
culations and 28 ± 3 cm−1 [53] and 32 cm−1 [54] according
to experiments. Indeed, as follows from Eq. (4), the frequency
depends on the square root

√
�UNc of the product of the

amplitude �U of PES corrugations and the number Nc of unit
cells of graphene per unit cell of the commensurate moiré
pattern. Since �U decreases exponentially with the growth
of Nc [Fig. 2(f)], the shear mode frequency also gets reduced
upon increasing Nc.

The PES curvature also determines the shear modulus
[32,39]

C44 = d

σ

∂2U

∂x′2 = 16π2d√
3a4

Ueff , (5)

where σ = √
3a2/4 is the area per carbon atom and d =

3.46 Å is the interlayer distance. The shear moduli estimated
for different moiré patterns do not exceed 0.4 GPa (Table II).
This is an order of magnitude smaller than the DFT result for
the coaligned graphene bilayer of 3.8–4.1 GPa [52] because
the shear modulus is proportional to �UNc.

The PES also determines the static friction force fs for
moving the layers as a whole, i.e., the maximal first derivative
of the potential energy along the minimum energy path (MEP)
between adjacent energy minima and, correspondingly, the
shear strength τ related to it as τ = fs/σ (here the force is
taken per atom of the upper layer). Analogous estimates of
shear strength have been performed first for commensurate
double-walled nanotubes [55]. For U1 > 0, the MEP between
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adjacent energy minima corresponds to the line x′ = 0 and
y′ from a/

√
3Nc to 2a/

√
3Nc in Eq. (3). The force along the

MEP is given by

−∂U

∂y′

∣∣∣∣
x′=0

= 2k′
yU1(sin (k′

yy′) + sin (2k′
yy′)), (6)

and the force extrema are determined by the equa-
tion cos (k′

yy′) + 2 cos (2k′
yy′) = 0. The latter equation gives

that the maximal absolute force is achieved for cos (k′
yy′) =

−(1 + √
33)/8 for the considered MEP. From this, we find

that the shear strength is τ = 6.183
√

NcU1/a3 for U1 > 0.
For U1 < 0, the MEP corresponds to y′ = 0 and x′ from 0

to a/
√

Nc in Eq. (3). In this case,

−∂U

∂x′

∣∣∣∣
y′=0

= 2k′
xU1 sin (k′

xx′). (7)

The maximal absolute force is achieved for x′ = a/4. Corre-
spondingly, the shear strength is τ = 16π

√
NcU1/

√
3a3.

The shear strength τ values estimated for different moiré
patterns are within 0.02 GPa (Table II). From typical DFT
values for the amplitude of PES corrugations for coaligned
graphene layers of about 15 meV per atom of the upper layer
[35,52], we deduce that the shear strength in that case should
be about 0.22 GPa, i.e., an order of magnitude greater. As seen
from the above equations, the shear strength for moiré patterns
is proportional to

√
Nc�U .

When the graphene layers are rotated with respect to each
other by an arbitrary angle that does not correspond to any
commensurate moiré pattern, the area contribution to the PES
vanishes, and the PES of an infinite incommensurate twisted
bilayer becomes flat. Therefore the interaction energy in such
a fully incommensurate state can be found as an average
over the PES: Urot = 〈U 〉x,y [32,35,39,43]. The barrier �Urot

for relative rotation of the layers to a fully incommensurate
state can thus be obtained by subtracting the energy in the
minimum from Urot. From Eq. (3), one gets �Urot = 1.5U1

for U1 > 0 and −3U1 for U1 < 0. The values of the bar-
rier estimated for the moiré patterns considered are within
0.06 meV per atom of the upper layer (Table II). Obvi-
ously, they are much smaller than the previous predictions for
the coaligned graphene bilayer of 4 meV/atom [56,57] and
5 meV/atom [35].

Structural superlubricity can be lost via rotation of the
layers with the same lattice constant to the commensurate
ground state with coaligned layers [1,4–7,9,11–13,58]. Robust
superlubricity has been recently achieved for systems with a
lattice mismatch such as heterostructures composed of layers
of different 2D materials [20] or layers of the same 2D mate-
rial under different applied tensions [13,17]. For such robust
superlubric systems, the relative rotation of the layers to a
commensurate interface with the loss of superlubricity is not
possible. Here we propose that robust superlubricity can also
be achieved for systems in which rotation of the layers to the
commensurate ground state with coaligned layers is possible
but hindered by a barrier. For twisted commensurate layers,
such a rotation should occur through a fully incommensurate
state. Although the barriers between the local minimum of a
twisted commensurate state and a fully incommensurate state
calculated here are rather small, they might be sufficient to

prevent the relative rotation of layers for a sufficiently large
contact area and thus ensure robust macroscopic superlubric-
ity. Further macroscale investigations would be needed to
confirm this hypothesis.

It should be kept in mind that the values of the physical
quantities obtained in this section and listed in Table II are
based on calculations with the Kolmogorov-Crespi potential
[49] but its adequacy for twisted graphene layers has not been
proven. Nevertheless, the potential gives a reasonable depen-
dence of the amplitude �U of PES corrugations on the size
of the unit cell of the moiré pattern [Fig. 2(f)] and thus should
properly describe the trend in the evaluated physical quantities
for different moiré patterns. Once a more reliable potential
for twisted graphene layers is available, it can be used to
obtain more accurate estimates based on the equations given
above. On the other hand, as soon as any of these physical
quantities is accessed experimentally (by analogy with the
measurements for coaligned graphene layers [53,54]), classi-
cal potentials can be refined to improve the description of the
PES of the twisted layers on the basis of the above formalism.
We also believe that the simple shape of the PES can be a uni-
versal property for commensurate twisted bilayers consisting
of diverse 2D materials. This means that physical properties
of moiré patterns of other 2D materials can be estimated in a
similar way.

The results of the geometrical analysis presented here are
derived without taking into account structural relaxation. Our
calculations show that accounting for structural relaxation
does not lead to changes in the shape of the PES and it is
still described by the first Fourier harmonics (whereas some
increase in the amplitude �U of PES corrugations occurs).
Thus all the equations presented here are still valid. The in-
fluence of structural relaxation on structural and tribological
properties of commensurate moiré patterns will be considered
elsewhere.

IV. DISCUSSION AND CONCLUSIONS

PESs of the interlayer interaction have been calculated for
a set of commensurate moiré patterns of twisted graphene
bilayer using the registry-dependent Kolmogorov-Crespi po-
tential. The amplitude of PES corrugations is found to exceed
the calculation accuracy only for five moiré patterns with the
smaller unit cell sizes. All calculated PESs have the same
simple shape which corresponds to the symmetry of com-
mensurate moiré patterns, and the size of the unit cell of the
PESs is inversely related to the unit cell size of the moiré
pattern. The amplitude of PES corrugations exponentially de-
creases with increasing unit cell size of the moiré pattern.
An analytical expression which is based on the first Fourier
harmonics describing the PES has been derived. The calcu-
lated PESs can be approximated by the derived expression
with an accuracy within 1% relative to the amplitude of PES
corrugations. Since the derived expression contains a single
energetic parameter, it has been used to estimate a set of
physical quantities determined by the PES such as the shear
mode frequency, the shear modulus, the shear strength, and
the barrier for relative rotation of the commensurate twisted
layers to a fully incommensurate state. We propose that the
latter barrier might prevent the rotation of the layers from the

085411-7



ALEXANDER S. MINKIN et al. PHYSICAL REVIEW B 108, 085411 (2023)

twisted commensurate state to the ground commensurate state
through a fully incommensurate state and therefore can possi-
bly lead to robust macroscopic superlubricity for a sufficiently
large contact area.

Not only can the approximation by the first Fourier
harmonics be applied for consideration of the interlayer inter-
action energy, but also, for example, such an approximation
for coaligned layers was used for the analysis of electronic
properties of twisted graphene [51] and a graphene/h-BN het-
erostructure [41,51]. Moreover, since the approximation of the
PES of the interlayer interaction by the first Fourier harmonics
is a universal property for coaligned layers of diverse 2D
materials [32], we believe that the simple shape of the PES
obtained here for a twisted commensurate graphene bilayer
can also be universal for any commensurate moiré patterns
consisting of layers of diverse 2D materials.

The raw data for the calculated PESs required to reproduce
our findings are available to download [59].
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