РАЗДЕЛ VIII ГЕОИНФОРМАЦИОННОЕ КАРТОГРАФИРОВАНИЕ И МОДЕЛИРОВАНИЕ ДЛЯ УПРАВЛЕНИЯ ПОЧВЕННО-ЗЕМЕЛЬНЫМИ РЕСУРСАМИ

УДК 631.524.84:631.41

АГРОЭКОЛОГИЧЕСКАЯ ОЦЕНКА СКЛОНОВЫХ ЗЕМЕЛЬ В УСЛОВИЯХ ЦЕНТРАЛЬНО-ЧЕРНОЗЕМНОГО РЕГИОНА

Г.П. Глазунов

ФГБНУ «Курский федеральный аграрный научный центр» ул. К. Маркса, 70б,305040, Курск, Россия, email: gennadij-glazunov@yandex.ru

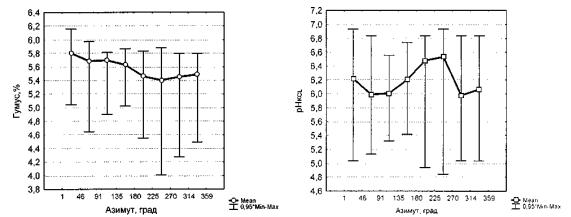
Исследования проводили с целью изучения зависимости показателей плодородия почв и урожайности сельскохозяйственных культур от морфометрических параметров рельефа для усовершенствования подходов к агроэкологической оценке земель и обеспечения рационального использования природно-ресурсного потенциала агроландшафтов. Объектом исследования являлись черноземные почвы различной степени смытости и выщелоченности. На основе проведённых исследований выполнена агроэкологическая оценка производственного участка в агроландшафте с куполообразной формой рельефа. В результате проведения исследований, получены данные для усовершенствования подходов к агроэкологической оценке почв агроландшафтов со сложной формой рельефа на основе цифровых технологий, необходимые для оценки степени изменчивости параметров почвенного плодородия, направленные на рациональное использование природно-ресурсного потенциала агроландшафтов.

Ключевые слова: склоновый агроландшафт, ГИС-технологии, агроэкологическая оценка, адаптивно-ландшафтная системы земледелия.

Для развития земледелия принципиально важно получение новых знаний, обеспечивающих рациональное использование агроландшафтов, что требует разработки новых подходов к их оценке. Объективная агроэкологическая оценка земель агроландшафта требует работы с большим объемом информации. Она включает в себя не только систему оценки агрономически значимых параметров почвенного плодородия, но и показатели, характеризующие рельеф и геологическое строение местности, определяющие продукционные процессы в агроландшафте [1, 2].

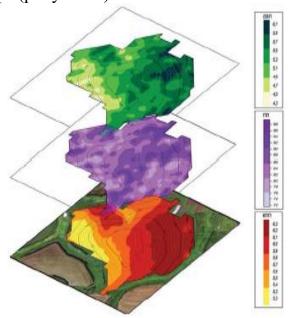
Географические информационные системы служат наиболее эффективным средством обработки и визуализации информации, позволяющим работать с базами данных, содержащими массивный объем информации.

Это даёт возможность пользователям проводить анализ информации в соответствии с задаваемыми критериями и оперативно осуществлять выбор мероприятий для решения поставленных задач по конкретным территориям. Использование ГИС-технологий создает реальные условия для использования морфометрического анализа не только для картографирования и описания рельефа, но и для оценки параметров почвенного плодородия [2, 3].


Исследования выполняются на базе лаборатории агрохимии и агроэкологического мониторинга ФГБНУ «Курский ФАНЦ» в Медвенском районе, Курской области на производственном участке с куполообразной формой рельефа с использованием описательного, профильного, морфологического, картографического, статистического, сравнительно-аналитического методов анализа и ГИС-технологий на основе современных методик с использованием программных средств Microsoft Office, QGIS 3.8.3, Surfer 14.0, OziExplorer, SAS Planet, Grid и геодезического оборудования. Применение ГИС-технологий проводилось с использованием разработок отечественных, зарубежных авторов и авторского подхода. Объектом исследований являются черноземные почвы различной степени смытости и выщелоченности в агроландшафте с куполообразной формой рельефа.

На основе массива данных геопозиционирования и нивелирной съёмки (шаг сетки - 50 м) полигона в склоновом агроландшафте была создана цифровая модель рельефа. Основная территория участка имеет уклоны до 3 градусов 0...1° – 12 %, 1...2° – 28 %, 2...3° – 31 %, 3...4° – 19 %, 4...5° – 8 % и 5...6° – 2 % площади пашни. Согласно расчетам, для среднемноголетних агроклиматических условий (сумма активных температур более 10° составляет 2635 °С, годовые осадки 547 мм, осадки теплого периода 284 мм) коэффициенты относительной (по сравнению с водоразделом) теплообеспеченности варьируют по территории от 0,923 до 1,067, при этом различия сумм активных температур более 10°С на самых холодных северо-восточных и самых теплых юго-западных склонах могут составлять от 2432 до 2811 °С, а гидротермический коэффициент в пределах территории меняется от 1,01 до 1,17.

В ходе полевых исследований установлено, что формирование почвенных ресурсов продуктивности пашни происходит в соответствии с агроэкологическими условиями ландшафта в зависимости от рельефа. Максимальные различия базовых параметров агрохимических свойств черноземных почв наблюдаются между северо-восточными и юго-западными склонами (табл. 1, рис. 1).


Агрохимические параметры плодородия пахотного слоя почвы

Показатель	X±sd	Lim	V,%	
Гумус, %	5,58±0,34	4,226,55	6,1	
Р₂О₅, мг/кг	129,4±32,7	56249	25,3	
К2О, мг/кг	138,2±31,2	91239	22,6	
рНксі	6.18±0.58	5.17.3	9.4	

Рис. 1. Изменения содержания гумуса (а) и кислотности (б) пахотного слоя чернозема в зависимости от направления склонов

Оценка ресурсов продуктивности пашни проведена на основе среднемноголетних агроклиматических параметров для данной территории, комплексной оценки свойств почв, а также исходного анализа микроклиматических различий на основе комплексной оценки морфометрических параметров рельефа (рисунок 2).

 $Puc.\ 2.\ Последовательный анализ морфометрических параметров и относительные величины теплообеспеченности (ST/ST<math>_0$)

Выявлено, что климатический потенциал продуктивности пашни на территории полигона исследования составляет $59,0\pm3,6$ ц з.е./га с размахом варьирования от 49 ц з.е./га на склонах юго-западного направления до 63 ц.з.е/га на склонах северо-восточных направлений. Параметры плодородия чернозема типичного, согласно комплексной оценке по содержанию гумуса, подвижных фосфора, калия и кислотности р H_{KCl} составляет в среднем $85,7\pm5,3$ с размахом варьирования от 71 до 100 баллов. Базовая и действительно возможная продуктивность пашни оценивается в $30,1\pm2,9$ и $53,5\pm3,5$ ц з.е./га соответственно (рис. 3, табл. 2).

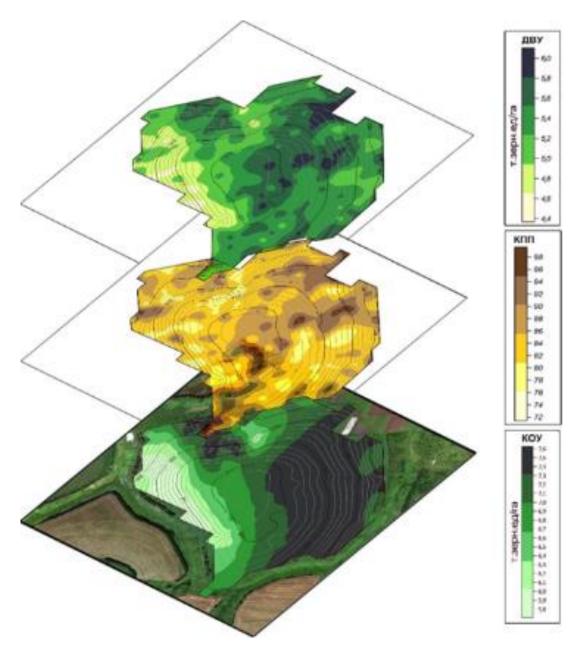


Рис. 3. Оценка ресурсов продуктивности пашни

ресурсы продуктивности на неследуемом политоне					
Показатель	X± sd	Lim	V,%		
Морфометрические параметры					
Превышения, м	208,06±6,13	191,5217,0	2,95		
Уклон, град	2,4±1,2	0,35,9	49,1		
Азимут, град.	173,8±116,1	1,0359,0	66,8		
Гидротермические условия					
ST/STo*	$0,995\pm0,032$	0,9231,067	3,2		
ST> 10°C	2622±85	24322811	3,4		
ΓΤΚ / HTK	1,086±0,035	1,011,17	3,3		
Ресурсы продуктивности					
КПП / СРР	59,0±3,6	49,362,7	6,0		
ΠΠ / SFI	85,7±5,3	71,2100,0	6,2		
БП/ВР	$30,1\pm 2,9$	22,038,0	9,7		
ДВП / RPP	53,5±3,5	43,161,1	6,5		

ST/STq* - относительный коэффициент теплообеспеченности склонов; ST > 10° C - сумма температур более 10° C; Γ TK - гидротермический коэффициент Селянинова; КПП - климатический потенциал продуктивности пашни, ц.з.е/га; ПП - показатель плодородия почвы; БП - базовая продуктивность пашни, ц.з.е/га; ДВП - действительно возможная продуктивность пашни, ц.з.е/га

В соответствии с этим наибольшая величина урожая зерна озимой пшеницы формировалась на склоне северо-восточной экспозиции (52,2 \pm 7,7 ц/га), а наименьшая отмечалась на склоне юго-западной экспозиции (41,2 \pm 8,4 ц/га).

Для оценки продукционных возможностей пашни осуществляли последовательный расчет величин базовой урожайности (Yb), которой можно достичь без применения удобрений, и действительно возможной продуктивности сельскохозяйственных культур (ДВП) на основе комплексной оценки агрохимических показателей и климатически обеспеченной урожайности (КОУ) с учетом среднемноголетних агроклиматических параметров:

ДВП= Yb+ (ПП
$$_i$$
 – ПП $_{min}$)·(КОУ - Yb)/ (ПП $_{max}$ - ПП $_{min}$),

где Yb — базовая урожайность; KOУ — климатически обеспеченная урожайность; $\Pi\Pi_i$, $\Pi\Pi_{max}$, $\Pi\Pi_{min}$ — комплексный балл оценки качества почвы соответственно для оцениваемого участка, максимального и минимального по оценочной шкале.

Установлено, что урожайность озимой пшеницы зависит от микроклиматических различий, неоднородности показателей почвенного плодородия и морфометрических характеристик рельефа и описывается следующей полиномиальной зависимостью:

$$Y = 1,022 - ДВ\Pi - 2,31$$

где: Y — урожайность озимой пшеницы, ц/га; ДВП — действительно возможная продуктивность, ц з.е./га.

Таким образом, проведена комплексная агроэкологическая оценка в склоновом агроландшафте на примере полигона с куполообразной формой рельефа; построены электронные карты, отражающие основные показатели рельефа исследуемой территории. Перераспределение гидротермических условий в направлении повышения теплообеспеченности в юго-западном направлении склонов и снижение относительно водораздельных участков в северо-восточном. Наибольшие различия базовых параметров агрохимических свойств черноземных почв наблюдаются по оси северовосток – юго-запад. Склоны северных направлений (СЗ, С, СВ) имеют более высокую кислотность почв, а южных (ЮВ. Ю. ЮЗ) меньшей; чем участки водоразделов. Наибольшая величина урожая зерна озимой пшеницы формируется на склоне северо-восточной экспозиции.

Библиографические ссылки

- 1. *Самсонова В. П., Кротов Д. Г., Лаврешова Е. Ю.* Пространственная изменчивость агрохимических свойств сельскохозяйственных угодий Брянской области. Агрохимия, 2017. № 7. С. 11–18.
- 2. *Рухович О. В.* Пространственное распределение характеристик урожая озимой пшеницы с использованием методов геоморфометрии / О. В. Рухович, А. В. Перминов, О. И. Иванова, Т. С. Дорофеева // Актуальные проблемы науки и образования в области естественных и сельскохозяйственных наук. 2018. Т. 1. № 1. С. 181–186.
- 3. *Лукин С. В., Костин И.Г., Малышева Е.С.* Применение геоинформационных систем для агроэкологического мониторинга сельскохозяйственных земель // Агрохимический вестник. 2019. № 4. С. 8–13.