ВЛИЯНИЕ СЕВООБОРОТА И МИНЕРАЛЬНЫХ УДОБРЕНИЙ НА БИОЛОГИЧЕСКИЕ СВОЙСТВА ПОЧВЫ ПОД ЯРОВЫМ ЯЧМЕНЕМ

Т.А. Дудкина

Курский федеральный аграрный научный центр, Курск, Россия, email: dt5dt@mail.ru

Исследования были проведены в стационарном полевом опыте ФГБНУ Курского федерального аграрного научного центра в 2021-2022 годах в посевах ярового ячменя. Почва опытного участка — чернозём типичный тяжелосуглинистый среднемощный с содержанием гумуса в слое $0-40~{\rm cm}-5,2~{\rm \%}$. Целью работы являлось изучение действия двух севооборотов и доз минеральных удобрений на показатель биологической активности почвы — целлюлозоразрушающую способность. В почве под ячменём в среднем за два года исследований по большинству фонов удобренности целлюлозоразрушающая способность почвы в слое $0-20~{\rm cm}$ была выше в зернопаропропашном севообороте с сидеральным паром, чем в зернопаропропашном севообороте с чёрным паром, что вызвано поступлением в почву значительного количества свежего растительного материала. Внесение минеральных удобрений оказывало положительное действие на рассматриваемый показатель. Под действием удобрений этот показатель возрос в среднем в 1,3 раза.

Ключевые слова: целлюлозоразрушающая способность почвы; севооборот; сидеральный пар; минеральные удобрения; яровой ячмень.

Важнейшим свойством почвы является её плодородие, под которым понимают способ почвы обеспечивать потребность растений в почвенных факторах жизни. Различают плодородие потенциальное (естественное) и эффективное (приобретенное под влиянием обработки, удобрений, севооборота, мелиорации и других факторов) [1].

Плодородие характеризуется рядом показателей. Один из важнейших – биологическая активность почвы. Для диагностики интенсивности биологических процессов в почве часто используют показатель скорости разложения целлюлозы. На данный показатель оказывает влияние множество факторов, как природных, так и антропогенных.

В связи с большим количеством синтезируемой в природе целлюлозы микроорганизмы, её разлагающие, играют очень важную роль в процессе минерализации и круговороте углерода [2].

Значение определения этого показателя заключается не только в характеристике плодородия почвы, но и в том, что он может быть одним из критериев экологического состояния почвы и агроэкосистемы в целом.

Ранее в Курской области уже проводились исследования по влиянию факторов биологизации земледелия и минеральных удобрений на биологическую активность почвы в севооборотах с зерновыми культурами. Выявлено их положительное действие на свойства почвы, фитосанитарное состояние посевов и урожайность сельскохозяйственных культур [3, 4, 5, 6, 7].

Материалы и методы исследований. В опытном хозяйстве ФГБНУ Курского федерального аграрного научного центра, расположенного в селе Панино Медвенского района Курской области, проводили исследования в 2021-2022 годах в стационарном полевом опыте по изучению влияния севооборота и минеральных удобрений на биологическую активность, в частности на целлюлозоразрушающую способность почвы, в посевах ячменя. Опытный участок расположен на водораздельном плато с уклоном 3°. Опыт развёрнут во времени и пространстве в трёхкратной повторности с систематическим расположением делянок. Площадь посевной делянки составляет 202,5 м². Почва опытного участка – чернозём типичный тяжелосуглинистый среднемощный содержанием c гумуса слое 0-40 cm - 5.2 %.

Таблица 1 Схема расположения сельскохозяйственных культур в пятипольных севооборотах

Севооборот				
Зернопаропропашной	Зернопаропропашной			
с чёрным паром	с сидеральным паром			
1. чёрный пар	1. сидеральный пар (горох)			
2. озимая пшеница	2. озимая пшеница			
3. сахарная свёкла	3. сахарная свёкла			
4. кукуруза на силос	4. кукуруза на силос			
5. ячмень	5. ячмень			

В опыте предусмотрено 4 уровня удобренности: без удобрений (контроль), NPK-30, NPK-40, NPK-52 кг д.в. на 1 га пашни. Технология возделывания ячменя общепринятая для Центрально-Чернозёмной зоны. В годы исследований, рассматриваемых в статье, на опыте выращивался сорт ячменя Суздалец, рекомендованный для возделывания в ЦЧО, Северо-Западном, Центральном регионах.

Для определения целлюлозоразрушающей способности почвы в посевах ячменя использовали метод закладки в почву льняных полотен [8]. Для размещения тканевых образцов на глубину 0–10 и 10–20 см почвенного горизонта использовали оригинальный инструмент (Инструмент для

создания щели при закладке в почву образцов ткани и фотобумаги для изучения биологической активности почвы. Патент на полезную модель. RU 191810. 22.08.2019), разработанный и запатентованный нами, который позволяет создать щель с ровной поверхностью отвесной почвенной стенки с последующим плотным прижатием к ней ткани.

Биологические показатели почвы, как правило, не константны, а легко изменяются под действием метеорологических факторов и приемов агротехники. Тем не менее в нашем опыте проявилось действие исследуемых факторов на целлюлозоразрушающую способность почвы.

В почве под ячменём в среднем за два года исследований по большинству фонов удобренности скорость распада клетчатки в почве в слое 0-20 см была выше в севообороте с сидеральным паром (табл. 2). Это связано с поступлением в почву большого количества свежего органического вещества при заделке в неё сидеральной культуры. Как видим, действие зелёного удобрения прослеживалось даже в последней культуре севооборота, через четыре года после проведения сидерации. Только при наибольшей в опыте норме внесения минеральных удобрений NPK-52 кг. д.в. на 1 га пашни этот показатель был больше в севообороте с чёрным паром.

Таблица 2 Целлюлозоразрушающая способность почвы под ячменем в 2021–2022 годах, % разложения образца ткани к исходному весу

	Минеральные	Слой почвы, см		
Севооборот	удобрения, кг д.в. на 1 га пашни	0-10	10-20	0-20
Зернопаропропашной с чёрным паром	Контроль	16,4	25,7	21,1
	NPK-30	22,6	35,0	28,8
	NPK-40	22,6	31,3	27,0
	NPK-52	25,0	37,6	31,3
Зернопаропропашной с сидеральным паром	Контроль	17,5	33,1	25,3
	NPK-30	28,3	37,9	33,1
	NPK-40	27,1	34,9	31,0
	NPK-52	24,7	31,2	28,0

Активность микроорганизмов почвы, разлагающих целлюлозу, в слое почвы 10–20 см была в 1,5–2,0 раза больше, чем в слое 0–10 см, что связано с лучшими условиями увлажнения в нижележащем горизонте. Закономерности, отмеченные для слоя почвы 0–20 см, были характерны также для слоёв 0–10 и 10–20 см.

Внесение минеральных удобрений оказало положительное действие на целлюлозолитическую активность почвы. Под действием удобрений этот показатель возрос в среднем в 1,3 раза. В севообороте с чёрным паром

самый высокий уровень целлюлозолитической активности был отмечен на самом высоком фоне удобрений — NPK-52, в севообороте с сидеральным паром — при внесении NPK-30 кг. д.в. на 1 га пашни, а при повышении нормы внесения скорость распада клетчатки в почве снижалась.

Таким образом, сидеральный пар и внесение минеральных удобрений в наших исследованиях явились факторами, положительно влиявшими на показатель биологической активности почвы — целлюлозоразрушающую способность почвы. Активность микроорганизмов, разрушающих целлюлозу, в слое почвы 10–20 см была больше, чем в вышележащем горизонте.

Библиографические ссылки

- 1. Сигов В. И., Шурыгина Т. Д. Словарь по земледелию. М.: Россельхозиздат, 1987.
- 2. Мишустин Е. Н., Емцев В. Т. Микробиология. М.: Агропромиздат, 1987. 368 с.
- 3. *Тимонов В. Ю., Долгополова Н. В.* Влияние уровня биологизации на микробиологическую активность почвы // Аграрная наука сельскому хозяйству. Материалы Всероссийской научно-практической конференции. Курск, 2009. С. 227–229.
- 4. Долгополова Н. В., Павлов А. А. Биологическая активность и плотность почвы при возделывании яровой твердой пшеницы // Вестник Курской государственной сельскохозяйственной академии. 2012. № 4. С. 31–33.
- 5. Дудкин И. В. Научное обоснование приёмов и систем регулирования засорённости посевов сельскохозяйственных культур в ландшафтном земледелии лесостепи Центрального Черноземья : автореферат диссертации на соискание ученой степени доктора сельскохозяйственных наук / Всероссийский научно-исследовательский институт земледелия и защиты почв от эрозии. Курск, 2009. 38 с.
- 6. Дудкин В. М., Акименко А. С., Дудкин И. В., Брежнев К. Е. Эффективность факторов биологизации земледелия в лесостепи Центрального Черноземья // Доклады Российской академии сельскохозяйственных наук. 1998. № 1. С. 25–27.
- 7. Долгополова Н. В. Агробиологическое обоснование разработки технологий возделывания яровой твердой пшеницы в адаптивно-ландшафтном земледелии лесостепи Центрального Черноземья : автореферат дис... доктора сельскохозяйственных наук / Брян. гос. с.-х. акад. Брянск, 2014.
- 8. *Мишустин В. Н., Востров И. П., Петрова А. Н.* Методика определения целлюлозолитической активности почвы. М.: Наука, 1987.