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Abstract: The influence of various mechanical influences (transfusion, stirring, vibration, shaking,
etc.) and magnetic installations (used in the application of spin chemistry methods) on colloidal
solutions of protein and water, which are often used in pharmaceutical production, was studied. It
has been shown that when mechanical influences are applied, physical and chemical properties of
water and aqueous colloids of the IgG protein are changed. Magnetic fields do not have a significant
effect on water; however, variation in a number of physical and chemical characteristics is observed
in protein colloids. Moreover, the effect after exposure to magnetic fields with a frequency of 8 Hz is
higher compared to the effect after exposure to magnetic fields with a frequency of 50 Hz. This effect
persists even at extremely low concentrations of IgG protein molecules. The measurement system
proposed in this work makes it possible to monitor the state of protein molecules in a non-invasive
mode. In the future, optical and potentiometric methods built into flow systems can be used at all
stages of the production of protein pharmaceuticals.

Keywords: water; protein colloids; immunoglobulin G; magnetic fields; mechanical influences

1. Introduction

Protein-based drugs have been used in therapy for a long time. It is believed that the
first purified protein used in medicine was the digestive enzyme pepsin. This happened
shortly after the discovery of pepsin by T. Schwann in 1836 [1]. Almost two centuries
have passed since then, and today medicine is increasingly using protein drugs in a wide
variety of areas of clinical practice [2]. Enzyme-based protein preparations are the most
widely used in medicine [3] and cosmetology [4]. Enzymes are mainly used 1. In medical
diagnostic kits; 2. To eliminate enzyme deficiency in order to compensate for congenital
or acquired functional deficiency; 3. For lysis of blood clots and removal of non-viable
structures; 4. In the treatment of malignant neoplasms; 5. For detoxification, etc. [5]. In
addition to enzymes, immunoglobulins (antibodies), protein-based vaccines, interferons,
and regulatory proteins are used in medicine [6]. Separate mention should be made of
protein poisons [7], including neurotoxic ones [8,9]. Protein-based drugs have a number of
undeniable advantages. First, proteins can be specific targets for drugs and can themselves
act on specific targets, which leads to minimization of side effects. Secondly, proteins can
be used to replace or enhance natural proteins in the body, which leads to the correction
and/or normalization of biological processes. Thirdly, proteins have great potential in the
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field of personalized medicine, since molecular biology makes it possible to create protein
molecules that best suit the individual needs and characteristics of the patient. It is already
clear that in the future protein drugs will have many new opportunities and prospects in
the field of medicine [10–13]. For example, a new class of pharmaceutical protein drugs
based on gradual technology has recently emerged [14]. Gradual technology is based on the
step-by-step processing of a pharmaceutical substance of a protein origin, at each stage of
which its dilution is accompanied by controlled exposure using an automated microfluidic
system. It is known that new physical properties of protein solutions can be detected after
vibrational exposure during the preparation of the protein dilutions [15,16].

In the early stages, living organisms were the main source of proteins in medicine.
Currently, recombinant protein drugs that are produced in bioreactors dominate [17]. The
general method for obtaining a recombinant protein can be reduced to the following stages:
1. Molecular cloning of the gene; 2. Transformation of bacterial cells; 3. Selection of clones of
super-producers; 4. Reproduction of clones; 5. Protein isolation; 6. Protein purification [18].
The main problem in this case is the problem of incorrect structural arrangement of protein
chains in space and, as a result, the production of an inactive protein [19]. In some cases, up
to 70% of the protein preparation has incorrect structural folding. Non-invasive monitoring
of the structure of recombinant proteins at all technological stages will avoid unnecessary
production losses.

Not all production facilities are built new for the production of protein preparations;
the production of protein preparations is often integrated into existing technological lines.
Most pharmaceutical production in the countries of the former Warsaw Pact has sources
of mechanical vibrations (mixers, pumps, shakers) with frequencies of 4.4–12 Hz in their
production lines. It has been known for almost a century that, under mechanical stress,
the activity of protein molecules can significantly decrease [20] due to structural damage.
Also, pharmaceutical production in the countries of the former Warsaw Pact often uses spin
chemistry methods, namely magnetic fields with a frequency of 8–10 Hz. An integral part
of all pharmaceutical production is also the alternating field of electrical networks with a
frequency of 50 Hz [21]. The influence of changes in magnetic and hypomagnetic conditions
on biological objects and molecules is discussed in detail in recent review works [22,23]. The
purpose of this work is to develop methods for monitoring the state of protein preparations
when using technological lines of existing production facilities.

It is shown that using general laboratory methods (optical and potentiometric control)
and partially rheometry allows us to obtain the information about protein molecules’ state
in solutions with IgG concentrations from 1 mg/mL. The influence of the most commonly
used mechanical influences and the effects of magnetic fields on the physical and chemical
properties of protein solutions have been studied. The influence of the impacts used in
technological lines on the properties of protein solutions obtained using gradual technology
has been studied. It has been established that magnetic fields and mechanical influences
lead to modifications of physical and chemical properties of aqueous immunoglobulin
G colloids. The proposed measurement system makes it possible to monitor the state of
protein molecules in a non-invasive mode.

2. Materials and Methods
2.1. Aqueous Immunoglobulin G Colloids

In this study, normal human immunoglobulin G (IgG) solutions (Microgen, Moscow,
Russia) with IgG concentration of 100 mg/mL were used. To prepare experimental samples,
initial solutions were dissolved in deionized water (18 Mom × cm).

2.2. Potentiometric Measurements

For potentiometric measurements, we used the SevenExcellence pH meterS 400 labo-
ratory complex (Mettler Toledo, Zürich, Switzerland) with electrodes for measuring pH
InLab Expert Pro-ISM, redox potential InLab RedOx (all Mettler Toledo, Zürich, Switzer-
land). To measure the specific conductivity of liquids, a SevenExcellence Cond meterS
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700 conductivity meter with an InLab 731-ISM electrode (Mettler Toledo, Zürich, Switzer-
land) was used. To measure the concentration of molecular oxygen, a Seven2Go pro S9 DO
meter (Mettler Toledo, Zürich, Switzerland) was used. All measurements were carried out
in the thickness of the liquid with laminar mixing of the liquid at a speed of 60–100 rpm.
After each measurement, the electrodes were washed with deionized water until com-
pletely clean, which was monitored using standard deionized water readings. Details of
the methods have been described previously [24,25].

2.3. Optical Methods

To obtain the information about refractive indexes of protein solutions, automatic
multiwavelength refractometer Abbemat MW (Anton Paar, Graz, Austria) was used. Pa-
rameters of the experiments are as follows: sample volume—1 mL, temperature—25 ◦C,
wavelength—632.9 nm.

Absorption spectra measurements were obtained using two-beam spectrophotometer
Cintra 4040 (GBS Scientific Equipment Pty Ltd., Melbourne, VIC, Australia). Experiments
were carried out at room temperature (~22 ◦C). Quartz cuvettes with an optical path of
10 mm were used for control and experimental solutions.

Three-dimensional fluorescent maps were obtained using an FP-8300 spectrofluorime-
ter (Jasco Applied Sciences, Dartmouth, NS, Canada). 10 × 10 mm Quartz cuvettes (Jasco
Applied Sciences, Dartmouth, Canada) were used for these measurements. Experiments
were carried out at room temperature (~22 ◦C). A standard measurement regime was
used, details of which are described in [26]. Two-dimensional fluorescence spectra were
measured at an excitation wavelength of 280 nm.

Hydrodynamic diameters of molecules in solutions were measured using Zetasizer
Ultra Red Label (Malvern Panalytical Ltd., Malvern, UK). Standard polystyrene cuvettes
(DTS0012) were used for these experiments. Experiments were carried out at 25 ◦C. Size
distributions were calculated with Malvern ZS Xplorer software (version 2.0.1.1) [27].

2.4. Ultrasonic Spectroscopy

Ultrasonic spectroscopy evaluates the speed of passage of acoustic waves through the
control and test samples. This method enables estimating the amount of water entering
the hydration shell of the macromolecule: the hydration number, which allows one to
evaluate the conformational state of the macromolecule. The measurement principle is as
follows: liquid samples (control and experimental) with a volume of 1 mL are placed in
their own compartment, in each of which two plane-parallel piezoceramic plates are fixed
at the edges, performing the function of electro-acoustic transducers. Two harmonic signals
are used: the first signal with a 6–8 MHz frequency is applied to one of the plates, and
the other signal with resonances is taken from the other plate, the characteristics of which
depend on the material of the cell and on the properties of the sample being measured.
Many quantities are measured (number of peaks, frequency, and width) among which one
resonant peak is automatically selected for the control and test sample, and at the output
of the device, the ratio of the frequencies of this peak from the measuring and reference
cuvette is given. The magnitude of this frequency ratio depends, first of all, on the density
of the solution. The temperature during these experiments was 25 ◦C, which was recorded
in two cuvettes with an accuracy of 0.01 ◦C. Details of the method have been described
previously [28].

2.5. Dynamic Viscosity Measurement

Dynamic viscosity measurements were carried out using a SmartPave 102 rheometer
(Anton Paar GmbH, Graz, Austria). The dynamic viscosity of the aqueous solutions was
measured at 25 ◦C. The shear rates during the experiments varied from 100 s−1 to 1000 s−1.
A DG26.7 measurement set was used in these experiments. We worked in the dry heating
mode, in which there is no water flow around the sample. The sample volume was 3.8 mL.
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A data analysis was performed using RheoCompass™ software, version 1.30 (Anton Paar
GmbH, Austria). Details of the method have been described previously [29].

2.6. Mechanical Vibration Effect

When conducting experiments, influences similar to those used on technological lines
of pharmaceutical production were used. A special device was developed for implement-
ing mechanical effects with different frequencies and amplitudes on samples (mixing in a
turbulent flow in the vertical direction), described in detail in [30]. A vertical drilling ma-
chine, PBD 40 (Bosch, Gerlingen, Germany), with a lever for performing vertical vibrations
was used as the basis of the device. Two modes of vibration impacts were used with the
following characteristics: an amplitude of 20 mm with a frequency of 4.4 Hz (acceleration:
0.8 m/s2) and an amplitude of 20 mm with a frequency of 12 Hz (acceleration: 2.7 m/s2).

2.7. Exposure to Magnetic Fields

When conducting experiments, influences similar to those used on technological lines
of pharmaceutical production were used. The 3-axis installation for exposure to magnetic
fields was used in these experiments. The installation consists of three pairs of coils located
perpendicular to each other. The size of the largest pair of coils is 85 cm. The installation
includes the MP sensor FGM3D/100 (Sensys GmbH, Bad Saarow, Germany), an electronic
field control unit, amplifiers, ADC/DAC USB-6343 (National Instruments, Ostin, TX, USA)
for connecting the installation with a computer, and software. The system can create
constant and alternating magnetic fields inside with induction from −60 to 60 µT. The
inhomogeneity of the magnetic field in the center of the installation (a cube with a side of
5 cm) does not exceed 0.5%. The system is designed in such a way that it can compensate
external magnetic field fluctuations: the compensation rate is more than 103 at a 1 Hz
frequency, and at a frequency of 50 Hz, the compensation is approximately 40 times. The
following modes were used in the work:

• Vertical axis: alternating magnetic field induction of 55 µT at a frequency of 8 Hz, and
a constant MF of 0 µT (residual field < 20 nT). All other axes are 0 µT, both in constant
MF and in alternating.

• Vertical axis: alternating magnetic field induction of 55 µT at a frequency of 50 Hz, and
a constant MF of 0 µT. All other axes are 0 µT, both in constant MF and in alternating.

2.8. Statistic Calculations

Origin 2021, SigmaPlot 11.0, and GraphPad Prism 9.5.1. programs were used to
analyze experimental data. Data from at least six independent experiments were used for
averaging. Results are shown as mean values with standard deviations or means with
standard errors. At least six measurements were used.

3. Results and Discussion
3.1. Study of the Physicochemical Properties of Aqueous IgG Colloid of Different Concentrations

Absorption spectra of aqueous IgG solutions are shown in Figure 1a as a function of
concentration. The wavelengths attributed to local minima and maxima are as follows:
250 nm and 280 nm, 285 nm. It has been established that detailed optical absorption
spectra are observed at a minimum concentration of IgG molecules of 0.1 mg/mL. The
spectrum still remains characteristic at IgG concentration of 0.01 mg/mL. It is shown that
when protein concentration is 0.001 mg/mL, the peak that corresponds to aminoacidic
residues (280 nm) is no longer observed. The optical density of IgG solutions is minimal
in the wavelength range 310–800 nm, but the optical density increases with increasing
concentration of IgG molecules. It is known that the molecules of most proteins, including
antibodies, do not absorb in the wavelength region 450–800 nm [31]. Typically, changes
in optical density in such wavelengths are associated with light scattering rather than
absorption [32], which in turn is associated with either denaturation of molecules or their
aggregation [33]. To answer this question, the change in the hydrodynamic diameter of
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light scatterers in aqueous IgG colloids with concentrations of 0.01–10 mg/mL was studied
using the DLS method.
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Figure 1. Changes in the physical and chemical properties of an aqueous colloid depending on
the concentration of IgG. (a) Optical density changes of IgG solutions depending on the concen-
tration of IgG. Internal figure shows the optical absorption in the wavelength range 400–800 nm.
(b) Measurement with DLS method of the hydrodynamic diameter of light scatterers (IgG solutions)
(concentrations: 0.01–10 mg/mL). (c) Changes in dynamic viscosity of aqueous IgG colloids with
different content of antibodies at different shear stresses (M ± SD, n = 6). (d) Study of the frequency
ratio in a measuring cell with an aqueous IgG colloid (concentration: 0.01–1 mg/mL) and a reference
cell with water using ultrasonic spectroscopy (M ± SD, n = 6). *—statistical difference relative to
samples not containing protein (t-test, p < 0.05).

Figure 1b shows measurements of the hydrodynamic particle diameter in a protein
colloid containing different concentrations of IgG molecules. It has been shown that using
the DLS method, in colloids with protein concentrations of 1 and 10 mg/mL, particles with
a hydrodynamic diameter of ~10 nm are observed, corresponding in size to individual IgG
molecules (immunoglobulin G molecules have sizes of about 10 nm (15 × 8 × 4 nm) [34].
Also, a fraction of 30–50 nm is observed in the size distribution; these are probably antibody
aggregates. When the protein concentration is reduced to 0.1 and 0.01 mg/mL, no peak
associated with individual antibody molecules is observed in the size distribution. This
detects a fraction with sizes of 100–200 nm. Obviously, individual IgG molecules do not
disappear. At low concentrations, scattering from individual molecules is a “mask” by
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larger objects. To illustrate this thesis, we repeated the experiment with measuring the size
of immunoglobulin, but in this case, to reduce the number of aggregates, the protein colloid
was filtered using a membrane filter with an average pore size of 200 nm. The intensity
particle size distribution results and autocorrelation functions for these measurements
are presented in Appendix A (Figure A1). It is well-known that the intensity of light
scattering from this fraction is several orders of magnitude less than from any fraction in
a colloid containing 10 mg/mL protein. There are no light scatterers in freshly distilled
water. Usually, the experiments used water that had been in contact with atmospheric
gases for quite a long time. In such water, there are peaks in the region of 150–200 nm,
with low light scattering intensity. It was previously shown that with prolonged contact of
freshly distilled water with atmospheric gases, the water becomes saturated with oxygen
and nitrogen molecules [35]. In this case, nano-sized clusters of gases, so-called bubstons,
are formed in water [36]. The characteristic size of bubstons was determined earlier and is
equal to 100–200 nm [37]. It can be assumed that the observed scatterers are most likely
bubbles of dissolved gases—bubstons.

It is obvious that when the size distribution of objects in a colloid changes, a change in
many physicochemical properties of the solution should be observed. Figure 1c shows the
dynamic viscosity of IgG colloids at different concentrations at different shear stresses. It
is shown that the dynamic viscosity of a protein solution increases at low shear stresses,
which indicates that the protein colloid is a non-Newtonian fluid. The dynamic viscosity
of solutions with IgG concentration of 0.01 mg/mL is close to deionized water viscosity,
and the minimum detectable concentration is ~0.1 mg/mL. This observation is in good
agreement with known data; it was previously shown that the minimum IgG concentration
detectable with viscometry is ~0.1 mg/mL [38]. It should be noted that the viscosity of
colloids depends not only on concentration, but also on temperature [39], pH [40], ionic
strength, cation–anion environment [41], and the like [42–44]. Progress in viscometry
research can be found in a literature review [45].

Colloidal protein solutions are characterized by pseudoelasticity, a decrease in dy-
namic viscosity with increasing shear stress [46]. In our experiments, pseudoelasticity
was also observed. Additionally, it should be noted that the tabulated value for water,
0.87 mPa × s (25 ◦C), which does not depend on shear stress (Newtonian fluid), is not very
different, but differs from what we measured. Water viscosity measurements in a rheometer
can vary from 0.87 mPa × s to 0.94 mPa × s. Dynamic viscosity measurements are highly
dependent on the geometry and volumes of the rotor and stator, especially when miniature
attachments are used [47]. In such systems, there is a decrease in the absolute accuracy of
measurements, while there is another significant advantage—a small volume—which is
more important for measuring expensive protein solutions.

To assess the density of solutions, aqueous antibody colloids were studied using
differential ultrasonic spectroscopy. Figure 1d shows the relationship between the resonant
frequencies of the measuring and reference cuvettes. It is shown that only when the
concentration of IgG in the aqueous solution is 1 mg/mL or more are significant differences
detected with the ultrasonic spectroscopy.

Refractive indexes (RIs) of aqueous IgG colloids are shown in Figure 2a. Refractive
index measurements of aqueous IgG solutions are shown in Figure 2a. It was shown that
the RI of water and an aqueous colloid of antibodies (10 mg/mL) differs by more than
10−3 RI. Differences compared to the control are observed in aqueous antibody colloids
with a concentration of 0.1 mg/mL or more. A summary plot on a logarithmic scale, with
the solvent contribution subtracted, is presented in Figure 2b. An increment of 0.19 g/mL
is set aside as a “theory”. This increment is typical for most proteins and varies slightly
depending on their amino acid composition [48]. The graph shows that almost the entire
curve for IgG dissolved in water lies below the increment line of 0.19 g/mL, which may,
for example, indicate that the IgG molecules are poorly dissolved in water. There may
be another explanation for the results obtained. For example, a discrepancy with theory
may be caused by other factors: changes in the hydration shell of IgG or differences in
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the protein increment for a solvent from 0.19 g/mL. Previously, in [49], the relation of the
increment of the RI of lysozyme in dependence with the chosen buffer was shown. The
increment changes in the study had a wide range of variation from 0.153 to 0.272 depending
on the buffer used. In general, the discrepancy between experimental data and theory
requires further and more careful study.
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Figure 2. Refractive index of aqueous colloid as a function of IgG concentration. (a) Refractive
index of IgG colloids with protein concentrations of 0.0001–0.1 mg/mL measured at a wavelength
of 632.9 nm (M ± SD, n = 6). (b) Differential refractive indexes of different samples relative to the
solvent according to the data from Figure 3a. An increment of 0.19 g/mL is set aside as a “theory”.
*—statistically significant difference relative to samples not containing protein (t-test, p < 0.05).

The specific conductivity of water and aqueous IgG protein colloids is shown in Figure 3a.
It has been shown that the conductivity of protein colloids (IgG concentration < 1 mg/mL)
does not differ much from the conductivity of water. The significant increase in specific
electrical conductivity of solutions is observed at IgG concentration of 10 mg/mL.

Figure 3b shows the molecular oxygen content of water and aqueous colloids with
different protein concentrations. It has been shown that significant differences in dissolved
oxygen are visible only at the protein concentration of 10 mg/mL. Possibly, when the
concentration of IgG is significantly high, the process of binding molecular oxygen with
polar, positively charged amino acids in the protein (lysine, arginine, histidine) becomes
noticeable. An alternative explanation is the displacement of gas molecules from water by
dissolved molecules [50].

Figure 3c shows the redox potential values of water and aqueous colloids with different
protein concentrations. At different concentrations of protein molecules, the values of the
redox potential are observed, both higher and lower compared to the values of the control
water. Multidirectional concentration trends can be explained by different surface charges of
proteins. For IgG colloid, a “bell-shaped” dependence on protein concentration is observed.
This form is most likely due to the fact that with increasing concentration, the protein passes
the isoelectric point, which for IgG corresponds to pH ≈ 7.0 [51]. Therefore, for “small”
concentrations, the protein surface is positively charged, and for “high” concentrations,
it is negatively charged. Although the differences are visible to the naked eye, the large
dispersion of data characteristic of this method makes it possible to distinguish between
water and a 0.1 mg/mL IgG solution. Obviously, to confirm the assumption made about the
influence of pH on the values of the redox potential, it is necessary to measure the impact of
the concentration of IgG molecules on the pH values of the aqueous IgG colloid. Figure 3d
shows the pH changes in water and in aqueous protein colloids. It has been shown that
with increasing concentration of IgG in an aqueous colloid, the pH value increases. In the
range of protein concentrations of 1–10 mg/mL, the pH value becomes more than 6.5; that
is, the protein colloid passes the isoelectric point.
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Figure 3. Changes in specific electrical conductivity (a), molecular oxygen concentration (b),
oxidation–reduction potential (c), and pH (d) of an aqueous colloid depending on the concentration
of IgG protein molecules (M ± SD, n = 6). *—statistically significant differences relative to samples
not containing protein (t-test, p < 0.05).

Normalized 3D fluorescence spectra of aqueous solutions with different IgG concen-
tration are shown in Figure 4. It has been shown that the protein is reliably detected in an
aqueous colloidal solution up to concentrations of 10−4 mg/mL. In this case, it is recorded
as fluorescence (~λex = 280 nm, ~λem = 330 nm) caused by aromatic amino acid residues.

Thus, it has been established that most simple general laboratory methods can clearly
distinguish between water and an aqueous colloid of antibodies with a concentration of at
least 0.1–1.0 mg/mL; the only exception to the rule is fluorescence. Since the manuscript
is devoted to the research of methods for control of quality of protein drugs in aque-
ous colloids, it was necessary to establish the possible influence of third-party physical
influences present in pharmaceutical production. Today, in pharmaceutical production,
various mechanical impacts are quite often used (transfusion, stirring, vibration, shaking,
etc.) [52]. We conducted a literature study and found that the most common mechanical
impacts are impacts with frequencies of about 4.4 and 12 Hz. Also, modern spin chemistry
methods are often used in production [21]. Installations for spin-chemical reactions that
allow exposing samples to weak alternating magnetic fields usually have frequencies of the
order of 8–10 Hz (frequency close to the main Schumann resonance) [53], and an integral
part of the background is an alternating field with a frequency of 50 Hz, characteristic of
electrical networks.
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Figure 4. Three-dimensional fluorescence spectra of IgG protein after excitation at a wavelength of
240–320 nm, at different protein concentrations (mg/mL). (A)—10−4, (B)—10−6, (C)—10−8, (D)—0.

3.2. Influence of Magnetic Field and Mechanical Action on the Physicochemical Properties of
Aqueous IgG Colloids

The change in the optical density of an aqueous colloid with an IgG antibody concen-
tration of 1 mg/mL was studied after external alternating magnetic field exposure with
frequencies of 8 and 50 Hz, as well as mechanical stirring with frequencies of 4.4 and
12 Hz (Figure 5a). It has been shown that the shape of the curves characterizing optical
absorption remains unchanged under all influences. There is no mixing of the maxima
or minima of the curves. This allows us to assert that no significant destructive processes
or intense chemical reactions occur in an aqueous colloid [54]. At wavelengths greater
than 330 nm, there is no significant increase in optical absorption. An increase in optical
absorption in aqueous protein colloids in the longer wavelength region of the visible range
is usually associated with intense processes of denaturation or aggregation [55]. In this
case, the spectra differ in intensity at the optical absorption peak (~280–290 nm). It should
be noted that in the graph, the standard deviation is shown only upward in order to avoid
overlapping curves. It has been shown that statistically significant differences are observed
only between groups that were inside the setup with a magnetic field with frequencies of 8
and 50 Hz.
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Figure 5. Physical and chemical characteristics of IgG solutions after exposure to an external magnetic
field with frequencies of 8 and 50 Hz, as well as mechanical stirring with frequencies of 4.4 and 12 Hz
(M ± SD, n = 6). (a) Change in the optical density of an aqueous colloid with an IgG concentration
of 1 mg/mL after physical exposure (errors for SD are depicted only upward in order to avoid
overlapping of the curves). (b) DLS measurement of the hydrodynamic diameter of light scatterers in
solutions with IgG concentration of 10 mg/mL. (c) Change in dynamic viscosity of protein solutions
with different concentrations of IgG at shear stresses of 100 s−1. (d) Study of the frequency ratio in
a measuring cell with an aqueous IgG colloid (concentration: 0.01–1 mg/mL) and a reference cell
with water using ultrasonic spectroscopy. *—statistically significant differences relative to unexposed
samples (t-test, p < 0.05).

DLS measurements of hydrodynamic diameters in aqueous IgG solutions with protein
concentration of 10 mg/mL are shown in Figure 5b. It has been shown that in aqueous
colloids with IgG concentration of 10 mg/mL, particles with a size of ~10 nm are observed,
corresponding to individual protein molecules. In addition, a fraction with a hydrody-
namic diameter of 30–50 nm is detected, corresponding to small antibody aggregates, and
consisting of 30–60 protein molecules. Using the formula for the relationship between
hydrodynamic radii and light scattering intensities [56], one can easily calculate that there
are about 1500 individual molecules per aggregate in the colloid. Thus, we established
that ~3% of protein molecules are located in aggregates. This explains why no pronounced
scattering is observed in the absorption spectrum in the long-wave region of the visible
range. The shape of the size distribution changes when the aqueous protein colloid is
exposed to an alternating magnetic field (8 Hz). The average size increases to 18 nm, and a
significant broadening of the peak is observed. This broadening is probably explained by
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the presence in the colloid of significant quantities of not only individual protein molecules,
but also dimers, trimers, and larger aggregates. Aggregates with an average size of about
400 nm, consisting of approximately 5 × 104 protein molecules, have also been recorded.
There are about 105–106 individual molecules per aggregate in the colloid. The shape of the
size distribution changes less significantly when the aqueous protein colloid is exposed
to an alternating magnetic field (50 Hz). The average size does not change, although a
significant broadening of the peak is observed. Aggregates with an average size of about
200 nm, consisting of approximately 6 × 103 protein molecules, have also been recorded.
There are more than 106 individual molecules per aggregate in a colloid. When an aqueous
protein colloid is exposed to mechanical mixing at frequencies of 4.4 and 12 Hz, the size
distribution does not change significantly. The average size does not change, although
some broadening of the peak is observed. A significant change in the size distribution can
be considered in the absence of a significant number of aggregates in the diameter range
50–1000 nm. In other words, mechanical stirring can lead to disaggregation of protein
aggregates with a hydrodynamic diameter of 30–50 nm. Obviously, the destruction of
protein aggregates should lead to increasing viscosity of the aqueous colloid [57].

The impact of an alternating magnetic field with frequencies of 8 and 50 Hz, as well
as mechanical stirring with frequencies of 4.4 and 12 Hz, on the change in the dynamic
viscosity of IgG colloids is 0.01–1 mg/mL at a shear stress of 100 s−1 (Figure 5c). These
shear stresses were chosen because they showed the greatest differences between groups
of colloids with different protein concentrations. It was shown that statistical differences
under the influence of physical factors were recorded only at protein concentrations of
0.1–1 mg/mL and only under mechanical influence. It should be noted that the differences
in dynamic viscosity did not exceed 20%. In this case, magnetic fields did not affect
the viscosity of protein colloids. It is probably these qualities of protein colloids that
make it possible to use Brownian relaxation for immunoassays [58]. Today, magnetization
harmonics, induced with a small low-frequency oscillating magnetic field, are actively used
to obtain quantitative information about the microenvironment of magnetic nanoparticles
coated with antibodies [59].

Using differential ultrasonic spectroscopy, the impact of a magnetic field with frequen-
cies of 8 and 50 Hz, as well as mechanical stirring with frequencies of 4.4 and 12 Hz, was
studied on the properties of an aqueous colloid of IgG antibodies with concentrations from
0.01 to 1 mg/mL (Figure 5d). It has been established that the studied effects do not lead
to essential variation in the ratio of resonant frequencies in the measuring cell and the
comparison cell. It was shown that statistical differences under the influence of physical
factors were recorded only at protein concentrations of 1 mg/mL and only under mechani-
cal influence. It should be noted that the differences in the frequency ratio characterizing
the speed of sound in the colloid did not exceed 0.3%. It is known that this relationship
characterizes the change in adiabatic elasticity and/or density of the medium [60]. From
Figure 5b, it can be assumed that the density associated with dynamic viscosity changes
predominantly, while the adiabatic elasticity of the medium should not change significantly.

The impact of an external magnetic field with frequencies of 8 and 50 Hz, as well
as mechanical stirring with frequencies of 4.4 and 12 Hz, on the specific electrical con-
ductivity of an aqueous colloid of IgG protein was investigated (Figure 6a). The specific
electrical conductivity of H2O and the aqueous protein colloid changes under the action of
mechanical mixing with frequencies of 4.4 and 12 Hz. Fundamentally, this is not a priority
result, since an increase in the electrical conductivity of H2O and aqueous solutions after
exposure to mechanical stirring was shown previously [61]. It should be noted that the
conductivity of water under mechanical action increases by almost 50%, while under the
action of mechanical shaking on protein colloids, the conductivity of H2O increases only by
10–20%. It was previously assumed that an increase in the specific electrical conductivity of
H2O under mechanical action is associated with the formation of reactive oxygen species
(ROS) [62,63]. It is believed that the generation of reactive oxygen species begins with
the activation of O2 dissolved in H2O [64]. Briefly, the chain of chemical transformations
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probably looks like this: an oxygen molecule is activated, goes into the singlet state, and
attaches an electron, which leads to the formation of a superoxide anion radical. Under
normal conditions, superoxide anion radicals are immediately protonated, which leads to
the hydroperoxide radical formation, the dismutation of which produces H2O2 and O2 (in
the singlet state at 25%) [65,66]. There is an alternative point of view, according to which
the water molecule undergoes dissociation into a hydroxyl radical, a proton, and an elec-
tron [67]. In this regard, it is important to investigate the influence of the applied physical
influences on the concentration of O2 in the liquid phase of H2O and protein colloids.
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Figure 6. Changes in specific electrical conductivity (a), molecular oxygen concentration (b), redox
potential (c), and pH (d) of aqueous colloid of IgG protein molecules after exposure to alternating
magnetic field with frequencies of 8 and 50 Hz, as well as mechanical mixing effect with frequencies
of 4.4 and 12 Hz (M ± SD, n = 6). *—statistically significant differences relative to unexposed samples
(t-test, p < 0.05).

The impact of an alternating magnetic field with frequencies of 8 and 50 Hz, as well
as mechanical stirring with frequencies of 4.4 and 12 Hz, on the concentration of O2 in
the colloid of IgG protein molecules was investigated (Figure 6b). It has been shown that
the concentration of O2 in H2O and aqueous protein colloids changes under the influence
of mechanical stirring with frequencies of 4.4 and 12 Hz; when exposed to an alternating
magnetic field, a small statistically significant effect is observed at an IgG concentration
of 0.1 mg/mL, although the trend is toward an increase in concentration when exposed
to a magnetic field, and it is also noticeable for other IgG concentrations. In the case of
mechanical action, a rather interesting effect is observed, namely, with mechanical action on
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H2O, the concentration of O2 decreases, and when exposed to a protein colloid, it increases.
It was previously shown that when an aqueous solution of sodium chloride saturated with
atmospheric gases is subjected to mechanical action, a decrease in the concentration of O2
is observed [68]. It has been shown that with mechanical impact on the protein colloid,
the oxygen concentration, on the contrary, increases. This may probably be due to the
absorption of protein molecules on the surface of nanometer-sized gas bubbles, which in
turn leads to the retention of such gas bubbles inside the liquid [69]. At the same time, we
cannot exclude other options conjoint with partial denaturation of molecules of proteins
and the interaction of the hydrophobic core of such partially denatured molecules with gas
molecules [70].

The impact of an alternating magnetic field with frequencies of 8 and 50 Hz, as well as
mechanical stirring with frequencies of 4.4 and 12 Hz, on the redox potential of an aqueous
protein colloid was investigated (Figure 6c). The redox potential of water and aqueous
protein colloids tends to change in different directions. In water, there is a tendency to
increase the value of the redox potential under all influences. In protein colloids, on the
contrary, there is a tendency toward decreasing the redox potential under all influences.
It is known that in H2O, not concentrated aqueous solutions and electrolytes, the redox
potential is largely determined by the concentration of O2 dissolved in the liquid [71]. It
is possible that changes in the concentration of O2 dissolved in the liquid underlie the
observed results.

The impact of an alternating magnetic field with frequencies of 8 and 50 Hz, as well as
mechanical stirring with frequencies of 4.4 and 12 Hz, on the pH value of an aqueous colloid
of proteins was investigated (Figure 6d). The pH of water and aqueous protein colloids
does not change significantly. Minimal statistically significant differences are observed only
when magnetic fields are applied to protein colloids (1 mg/mL). Simultaneously, there is a
tendency to increase the pH value under mechanical influences and decrease the pH value
when exposed to alternating magnetic fields.

The impact of an alternating magnetic field with frequencies of 8 and 50 Hz, as well as
mechanical stirring with frequencies of 4.4 and 12 Hz, on the refractive index of an aqueous
colloid of proteins was investigated (Figure 7a). RI of aqueous protein colloids does not
undergo significant changes after physical exposure. The refractive index changes only by
3 × 10−6 when mechanical stirring with a frequency of 12 Hz is used. It is known that the
RI of protein colloids increases during both protein hydrolysis [72] and denaturation [33]. It
can be assumed that under the influences studied, no essential changes in protein globules
are registered.

The impact of an alternating magnetic field with frequencies of 8 and 50 Hz, as well
as mechanical stirring with frequencies of 4.4 and 12 Hz, on the fluorescence intensity of
an aqueous colloid of IgG protein molecules (1 mg/mL) was studied (Figure 7b). It has
been shown that the fluorescence intensity of aqueous protein colloids does not undergo
significant changes after physical exposure. The only exception is mechanical stirring with
a frequency of 12 Hz, in which case the fluorescence intensity changes by slightly more
than 2%. It is known that the fluorescence intensity can increase upon partial melting of the
protein globule, when the screening effect is removed [73]. In this sense, the fluorescence
intensity data are consistent with the refractive index measurements of protein colloids.
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Figure 7. Change in the refractive index (a) and fluorescence intensity (b) of aqueous colloid of IgG
protein molecules after exposure to alternating magnetic field with frequencies of 8 and 50 Hz, as well
as mechanical stirring with frequencies of 4.4 and 12 Hz (M ± SD, n = 6). The excitation wavelength
when measuring fluorescence is 291 nm, and the protein concentration is 1 mg/mL. *—statistically
significant difference relative to unexposed samples (t-test, p < 0.05).

There are several publications in which it is shown that magnetic fields with induction
of the order of geomagnetic fields affect solutions [22,23]. The paper records the effects of
water treated in a magnetic field, which was then used for watering plants, growing cell
cultures, or drinking for animals and humans [74–77]. Such effects are often dependent on
impurities in the water [78]. There are theoretical works that show that water protons can
be targets of low-intensity magnetic fields [6]. The theories are based on the existence of
metastable states of liquid water. Such states based on structural defects in water can be
long-lived and be sensitive to MF effects [79].

Thus, it has been shown that when stirring in a turbulent flow, variations in the
physicochemical properties of H2O and aqueous colloids of the IgG protein are observed.
Exposing the solutions described above to magnetic fields has no effect on water. However,
in protein solutions, some parameters change. It is interesting to note that protein solutions
are more susceptible to the action of alternating magnetic fields with a frequency of 8 Hz,
and less subject to magnetic fields with a frequency of 50 Hz.

3.3. Duration of Changes in the Physicochemical Properties of Aqueous IgG Colloids after Exposure
to a Magnetic Field and Mechanical Impact

After exposure to a magnetic field or mechanical stirring, measurements were taken
as quickly as possible. It should be taken into account that moving the test tubes from
the exposure installation to the measurement installation several meters away, pouring
liquid into optical cuvettes, and moving the optical cuvette into the device takes some time
(about half a minute). The measurement itself also has a duration from several seconds to
several tens of seconds. It is known that the physical properties of water after the cessation
of physical impact often return to control values quite quickly (from fractions of seconds
to tens of seconds) [80–82]. In this case, changes in the secondary structure of protein
molecules occur orders of magnitude slower due to steric restrictions. For example, after
exposure to ionizing radiation, relaxation of long-lived radical forms of proteins occurs
within several days [83]. In this work, the parameters of colloidal protein solutions were
measured (not pure water and not dry protein molecules). In order to find out how long
changes in the physicochemical properties of aqueous IgG colloids persist after exposure
to a magnetic field and mechanical action, several series of experiments were carried out
(Figure 8).
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Figure 8. Duration of changes in the physicochemical properties of aqueous IgG colloids after ex-
posure to a magnetic field (8 Hz) and mechanical impact (12 Hz). Changes in fluorescence intensity 
(a), refractive index (b), optical density (c), concentration of dissolved molecular oxygen (d). Pro-
tein concentration: 1 mg/mL. Time was counted from the beginning of parameter measurement. 
*—statistically significant differences relative to unexposed samples (t-test, p < 0.05). 
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Figure 8. Duration of changes in the physicochemical properties of aqueous IgG colloids after ex-
posure to a magnetic field (8 Hz) and mechanical impact (12 Hz). Changes in fluorescence intensity
(a), refractive index (b), optical density (c), concentration of dissolved molecular oxygen (d). Pro-
tein concentration: 1 mg/mL. Time was counted from the beginning of parameter measurement.
*—statistically significant differences relative to unexposed samples (t-test, p < 0.05).

The duration of changes in the fluorescence intensity of aqueous IgG colloids after
exposure to a magnetic field (8 Hz) and mechanical action (12 Hz) was studied (Figure 8a).
It was shown that immediately after exposure to a physical factor, maximum changes in the
fluorescence intensity of IgG colloids were observed. When exposed to mechanical shaking,
the fluorescence intensity increased by approximately 5%; when exposed to a magnetic
field, the fluorescence intensity decreased by a similar amount. In general, the data obtained
are consistent with the data presented in Figure 7b. When exposed to mechanical shaking,
the increased fluorescence intensity compared to the control persisted for at least 10 min.
When exposed to a magnetic field for at least 5 min, the luminescence intensity remained
reduced compared to the control. A total of 20 min after exposure, the fluorescence intensity
did not differ from control values.

The duration of change in the refractive index of aqueous IgG colloids after exposure
to a magnetic field (8 Hz) and mechanical influence (12 Hz) was studied (Figure 8b). It has
been shown that when exposed to a magnetic field for 20 min, no significant change in the
refractive index of protein solutions is observed. When exposed to mechanical shaking, the
refractive index increased by approximately 3 × 10−6, which is consistent with the data
presented in Figure 7a. The difference in the refractive index in the group subjected to
mechanical action relative to the control is observed for at least 5 min.

The duration of change in the optical density of aqueous IgG colloids after exposure
to a magnetic field (8 Hz) and mechanical action (12 Hz) was studied (Figure 8c). When
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exposed to a magnetic field, the optical density increased by approximately 5%. When
exposed to mechanical shaking, the optical density indicator at all studied exposure times
was not statistically different from the control values, although it tended to decrease. In
general, the data obtained are consistent with the data presented in Figure 5a. When
exposed to a magnetic field, the increased optical density values compared to the control
persisted for at least 5 min. A total of 10 min after exposure, the optical density of the
colloids did not differ from the control values.

The duration of change in the concentration of dissolved molecular oxygen in aqueous
IgG colloids after exposure to a magnetic field (8 Hz) and mechanical action (12 Hz) was
studied (Figure 8d). It has been shown that when exposed to a magnetic field for 20 min,
there is no significant change in the concentration of dissolved molecular oxygen in protein
colloids. When exposed to mechanical shaking, the concentration of dissolved molecular
oxygen increased by approximately 10%, which is consistent with the data presented in
Figure 6b. When exposed to shaking for at least 10 min, the concentration of molecular
oxygen dissolved in the aqueous IgG colloid remained increased compared to the control.
A total of 20 min after exposure, the fluorescence intensity did not differ from control values.
Thus, it has been shown that after the end of exposure to a magnetic field or mechanical
stirring, the change in the properties of aqueous IgG colloids persists for at least 5–10 min.

3.4. Influence of Magnetic Field and Mechanical Action by Pipettingon the Physicochemical
Properties of Water

In these experiments, an aqueous protein colloid and water were mixed in a ratio of
1/100, and in another, control series of experiments, water and water. This is due to the fact
that our existing installation can mix solutions exactly in the current ratio. Obviously, with
a single pipetting (mixing)of an aqueous protein colloid and water, a protein colloid is also
obtained, albeit with a concentration one hundred times less (0.01 mg/mL). Therefore, we
sequentially diluted the colloid 12 times in a row. As a result, we obtained a solution with an
imaginary protein concentration of 10−24 mg/mL (“IgG (mix)”). Although the protein con-
centration in this solution is less than Avogadro’s number, although a number of researchers
believe that particles of the original substance may remain in such solutions [84,85]. For
control, we carried out similar procedures and acted on a water–water mixture 12 times
(“Water (mix)”). The resulting mixtures were exposed to an external magnetic field with
frequencies of 8 and 50 Hz; no mechanical impact was used.

The impact of an alternating magnetic field with frequencies of 8 and 50 Hz on the
electrical conductivity of H2O was investigated (Figure 9a). It has been shown that the
specific electrical conductivity of H2O does not change under the impact of an alternating
magnetic field with frequencies of 8 and 50 Hz. In the “Water (mix)” group, the specific
electrical conductivity of water does not change significantly after the exposure of an
external magnetic field with frequencies of 8 and 50 Hz. In the “IgG (mix)” group, the
specific electrical conductivity of the sample decreases when exposed to an alternating
magnetic field with a frequency of 50 Hz and in the absence of exposure to a magnetic field.
When analyzing intergroup differences, it was shown that the control in the “IgG (mix)”
group has almost two times lower specific electrical conductivity compared to the control
in the “Water” and “Water (mix)” groups. Similar differences were found when comparing
the specific electrical conductivity under the impact of an external magnetic field of 50 Hz
in the “IgG (mix)” and “Water” groups.
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Figure 9. Changes in specific electrical conductivity (a), molecular oxygen concentration (b),
oxidation–reduction potential (c), and pH (d) of water (“Water”), pipetted (mixed) water (“Wa-
ter (mix)”), and a colloid of IgG protein molecules pipetted (mixed) with water (“IgG (mix)”) after
exposure to external magnetic field with frequencies of 8 and 50 Hz (M ± SD, n = 6). The IgG
mix solution contains an imaginary amount of protein molecules (10−24 mg/mL). *—statistically
significant differences relative to similar samples from the Water group (t-test, p < 0.05).

The impact of a magnetic field (8 and 50 Hz) on the concentration of O2 dissolved in
H2O is shown in Figure 9b. It has been shown that O2 concentration dissolved in H2O does
not change under the impact of an external magnetic field with frequencies of 8 and 50 Hz,
although it tends to increase. In the “Water (mix)” group, the specific electrical conductivity
of H2O decreases under the influence of an alternating magnetic field (8 and 50 Hz). In
the “IgG (mix)” group, the specific electrical conductivity of water does not change when
exposed to an alternating magnetic field with frequencies of 8 and 50 Hz. When analyzing
intergroup differences, it was shown that controls in the “Water (mix)” and “IgG (mix)”
groups contained approximately 10% less dissolved molecular oxygen compared to the
control in the “Water” group. Similar differences were established when comparing O2
concentration under the impact of an alternating magnetic field with a frequency of 50 Hz.

The influence of an alternating magnetic field with frequencies of 8 and 50 Hz on the
redox potential of water was investigated (Figure 9c). The redox potential does not change
significantly under the impact of an alternating magnetic field with frequencies of 8 and
50 Hz in all groups. No intergroup differences were identified either.
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Figure 9d shows how an external magnetic field with frequencies of 8 Hz and 50 Hz
interferes with the pH value. It has been shown that the pH of water in the “Water” group
does not change after exposure to an external magnetic field with frequencies of 8 and
50 Hz, although it tends to increase. In the “Water (mix)” group, the pH of H2O decreases
under the impact of an alternating magnetic field with frequencies of 8 and 50 Hz. In the
“IgG (mix)” group, the pH of the water decreases only when exposed to an alternating
magnetic field with a frequency of 8 Hz. When analyzing intergroup differences, it was
shown that the controls in all groups had no significant differences. Wherein, significant
differences were revealed when exposed to an alternating magnetic field with frequencies of
8 and 50 Hz in the “Water (mix)” and “IgG (mix)” groups compared to the “Water” group.

Thus, the study showed that aqueous solutions of IgG with a calculated concentration
of 10−24 mg/mL are exposed to an alternating magnetic field, thereby exhibiting properties
close to solutions of proteins of significant concentrations (which also respond to the
influence of magnetic field), unlike water, which does not respond to the effects of external
electromagnetic fields.

In general, the effects obtained have many similarities with hormesis and the manifest-
ing dose effect. Let us recall that the phenomenon of a manifesting dose was discovered
during the study of radiation hormesis several decades ago [86]. The essence of the phe-
nomenon is as follows: when a biological object is exposed to a small dose of ionizing
radiation, no changes in the object are detected. If after this the same object and an intact
object are exposed to an electromagnetic field with a significantly higher intensity, then
the changes in the intact object and in the object exposed to small doses of radiation will
be significantly different. The second dose in this case became known as the manifesting
dose [87]. Similar effects are observed for chemical substances, called the preconditioning
effect, when a second administration of a drug can produce the effect of a small dose of the
same or another drug. Various combinations of effects are known, for example, when a
chemical effect is manifested by a physical one or vice versa. The preconditioning effect is
known at the level of the organism [88,89], physiology [90,91], tissues [8,92], cells [93], and
biological residues, liquids, aqueous colloids, and solutions [94,95], and, as shown in this
study, in water.
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Figure A1. Hydrodynamic diameters of IgG solutions after filtration through a filter with an average
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autocorrelation functions obtained from these measurements (b).
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