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Abstract—In this paper we propose an approach to solving 

the problems of extracting and evaluating information features 

from 2D images of bone fractures and bone objects for further 

successful classifying fractures. As parameters or features, the 

textural characteristics of Haralick, local binary patterns of 

pixels for 2D images, Gabor filters, Laws energy texture 

characteristics for 2D images are considered. The analysis 

carried out on basis of information content estimation to select 

the features that are most suitable for solving the problem of 

bone fractures classification. This paper also describes the 

experiments and experimental data. 
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I. INTRODUCTION  

Bone fractures are becoming more common in our 
country. The majority of authors are only concerned about 
whether the bone is broken or not, with very few 
concentrating on the classification of bone fractures. There 
are different feature extraction methods that may be used to 
diagnose bone fractures. Textural parameters of grayscale 
digital images with different modality are used as features [1-
3]. The grayscale representation is important because it 
preserves the structure, not the color, of the objects. The 
color of the object may change depending on the lighting, 
over time, due to other factors. There are a lot of imaging 
methods used in forensic and some of them are laser 
methods, photogrammetry, CT scaning, magnetic resonance 
imaging, multimodal imaging extends the applications of 3D 
digital imaging more by combining data acquired from 
different methods to form a single coupled model. There are 
only some papers devoted to the texture analysis of 2D 
images of bone objects for providing a preliminary decision 
support system. The main task of this paper estimate the 
possibility of using texture features in developing models 
that can automatically detect and classify fractures in human 
bones by decision support system.  

II. DATA PREPARATION  

The original images obtained from a camera with 
different resolutions contain the following elements: 
background, measurement tools and areas of interest 
(example in Fig. 1). For example Fig. 2 and Fig. 3 illustrate 
areas of interest on base images that have been selected. As 
you can see selected rectangular fragments containing 100 % 
of the fracture surface. The images have been converted to 
grayscale representation because the color of an object 

essentially depends on its illumination and changes the 
texture of the objects surface areas of interest [4-17]. 

 

Fig. 1. Example of a base image. 

All available original images were divided into two 

groups. The first group for analysis was formed such that 

selected areas of interest included not only images of 

fractures but also bone fragments without damage. 

   

Fig. 2. Example of a base images from first group. 

The second group for analysis contained only images of 

bone fragments with fractures (skull injuries). 

III. FEATURE ENGINEERING AND ANALYSIS 

The following groups of textural features were studied to 
distinguish between the types of bone damage from the first 
group: 
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Fig. 3. Example of a base images from second group. 

• 13 features of Haralik based on adjacency matrices of 
brightness values [18-19]; 

• local binary pixel images (LBP) [19]; 

• Gabor filters [21]; 

• energy texture characteristics of Laws [21-22]. 

The following variants of LBP signs were used: 

• radius=3, number of patterns=24; 

• radius=5, number of patterns=40; 

• radius=7, number of patterns=56. 

The LBP name of a feature contains its parameters: 
lbp_r<radius>_h<template_index>. After calculating the 
features in each pixel, a histogram of their results was 
compiled. This histogram is the result as a set of features. A 
total of 26 results of LBP histograms within a radius of 3 
were collected; 42 LBP histogram within a radius values of 
5; 58 LBP histogram measurements within a radius of 7. 

The Gabor filters were applied under the following 
parametes: sizes of filter cores are 15, 21 and 31; rotation 

angles are 0, 22, 24, 67, 90, 112, 135, 157. 

The name of the filter characterizes its parameters: 
ks_<kernel size>_th_<rotation angle>. As an estimation, the 
average value of the matrix obtained by filtering the image is 
used. 

The following textural energy characteristics of Laws 
were used: LNLN, ENEN, SNSN, LNEN, ENSN, LNSN where N are 
the dimensions of the base vector, the values of which can be 
taken from the pair [3, 5, 7]. As an estimation for Laws as 
well as for Gabor filters the average value of the matrix 
obtained by filtering the image is used.  

There are at least two important reasons to get rid of 
unimportant features. The first one: the more data, the higher 
the computational complexity. If we work with train datasets, 
the size of the data is not a problem, but, for loaded 
production systems, hundreds of extra features will be quite 
tangible. The second reason is that some algorithms take 
non-informative features as a signal and overfit. There is 
statistical approaches for feature estimation but we used 
other one selection from modeling. The main idea is to use 
some model as an feature importance estimator: for example, 
we can use linear model with Lasso regularization or some 
tree based models (which have natural ability to compute 
feature importance). Then, based on received 
importance/weights we can choose some threshold and take 
features, that have importance above this value. 

We estimate over 180 textural features. For estimation 

the information content of features used mathematical 

apparatus based on the statistical procedures ANOVA. 

ANalysis Of VAriance (ANOVA) - is a statistical model and 

estimation procedures used to analyze the differences among 

means. ANOVA based on the law of total variance. In its 

simplest form, ANOVA provides a statistical test of whether 

two or more population means are equal, and therefore 

generalizes the t-test beyond two means. In other words, the 

ANOVA is used to test the difference between two or more 

means - based on F-statistic [29] - class of statistical tests 

that calculate the ratio between values of the variance, such 

as the variance from two different samples, or the explained 

and unexplained variance using a statistical test; Recursive 

Feature Elimination (RFE) [23] based on L1 norm or Linear 

Support Vector Machines (SVMs) [24]. SVMs 

are supervised learning models with associated 

learning algorithms that analyze data for classification   

and regression analysis. In addition to performing linear 

classification, SVMs can efficiently perform a non-linear 

classification using what is called the kernel trick, implicitly 

mapping their inputs into high-dimensional feature spaces. 

The support vector clustering algorithm, applies the statistics 

of support vectors, developed in the support vector machines 

algorithm, to categorize unlabeled data. These data sets 

require  unsupervised learning approaches, which attempt to 

find natural clustering of the data to groups and, then, to map 

new data according to these clusters. 

The goal of Recursive Feature Elimination (RFE) is to 
select features by recursively considering smaller sets of 
features. The estimator is trained on an initial set of features, 
and the information content of each feature is determined by 
the coefficients of the model. Then the least informative ones 
are removed from the current feature set. This procedure is 
repeated recursively to reduce the set of features until the 
desired number of the most informative features is reached. 

Linear models with L1 norm have sparse solutions: many 
of their coefficients have equal chances. When the goal is to 
reduce the data size for another use by the classifier, the non-
zero coefficients are removed. The linear classifier SVM 
with the parameter C=0.01 was used as estimator. 

The Extremely Randomized Trees (ExtraTrees) model 
implements a collection of trees that fit a set of randomized 

TABLE I.  20 THE MOST INFORMATIVE FEATURES FOR 

IDENTIFYING SURFACE DAMAGE AND BONE FRACTURES 

 

№ Names of Features 

 

Total score 

 

1 lbp_r3_h6 0.026883 

2 lbp_r5_h7 0.026713 

3 lbp_r3_h5 0.023050 

4 lbp_r7_h0 0.020107 

5 lbp_r5_h29 0.020078 

6 lbp_r3_h17 0.019377 

7 lbp_r7_h9 0.018229 

8 lbp_r7_h7 0.017201 

9 lbp_r5_h30 0.016604 

10 lbp_r3_h18 0.015955 

11 lbp_r5_h6 0.015771 

12 lbp_r7_h29 0.014985 

13 lbp_r7_h27 0.014879 

14 lbp_r7_h8 0.014655 

15 lbp_r3_h23 0.014529 

16 lbp_r3_h4 0.013667 

17 lbp_r7_h31 0.013111 

18 lbp_r7_h6 0.013103 

19 lbp_r3_h19 0.013058 

20 lbp_r7_h28 0.012983 

 

https://en.wikipedia.org/wiki/Student%27s_t-test#Independent_two-sample_t-test
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solutions on different subsamples of datasets and uses 
averaging to determine the accuracy of predictions and 
control overfitting. ExtraTrees at each level of the tree selects 
the criteria randomly [25].The random forest construction 
method implements a set of randomly constructed solutions. 
The random forest at each level of the tree selects the base 
criteria of the Gini criterion [26-27].  

In the last two methods, 1000 trees were built. When 
comparing the data, both methods identified 55 features, but 
their originality was somewhat different, as shown in 
Table 1. 

 The results of the selection of the most informative 
features for surface damage and bone fractures are presented 
for the first group for analysis at the Table 1 or Table 2 and 

Fig. 4. On this research set of 27 images of 13 bone objects, 
the most informative features are the LBP type with different 
radii. The results of the selection of the most informative 
features of superficial injuries and bone fractures are 
presented for the second group for analysis at the Table 3 and 
Fig. 5. A total of 181 features were studied using the tools 
described above (ANOVA, Linear SVMs, ExtraTrees, 
Random forests). For example, see Table 3, which present 
the most informative features for the second gtoup of images 
for analysis. 

On the set of 45 images of 6 bone objects, the most 
informative features were LBP-type features with different 

TABLE III. THE MOST INFORMATIVE FEATURES  
IDENTIFIED AT THE 2ND

 GROUP 

ANOVA 
Linear 

SVM L1 

Extra 

Trees 

Random 

Forest 

Combined 

Score 

Fea

ture 
Score 

Fe

atu

re 

Sco

re 

Fe

atu

re 

Sco

re 

Fe

atu

re 

Sco

re 

Fe

atu

re 

Sco 

re 

lbp_ 
r5_ 

h33 

24. 

57 

L7 

E7 

0.00 

40 

Corr
elati

on 

0.0 

13 

lbp_ 
r7_ 

h5 

0.01 

85 

lbp_ 
r5_ 

h34 

2.78 

lbp_ 

r5_ 
h34 

23. 

73 

L5 

L5 

0.00 

09 

lbp_ 

r5_ 
h30 

0.0 

13 

L7 

L7 

0.01

83 

lbp_ 

r7_ 
h50 

2.58 

lbp_ 

r7_ 
h50 

23. 

38 

L7 

S7 

0.00 

07 

lbp_ 

r5_ 
h31 

0.0 

12 

lbp_ 

r5_ 
h6 

0.01 

82 

lbp_ 

r5_ 
h33 

2.55 

lbp_ 

r3_ 
h17 

22. 

63 

L7 

L7 

0.00 

06 

lbp_ 

r5_ 
h29 

0.0 

12 

lbp_ 

r5_ 
h34 

0.01

81 

lbp_ 

r3_ 
h18 

2.55 

lbp_ 

r3_ 

h18 

22. 
33 – – 

lbp_ 

r7_ 

h45 

0.0 
11 

Diffe

renc
eVar

iance 

0.01
81 

lbp_ 

r5_ 

h6 

2.50 

lbp_ 
r7_ 

h51 

22. 

18 – – 

lbp_ 
r5_ 

h34 

0.0 

11 

Corr
elati

on 

0.01 

79 

lbp_ 
r7_ 

h5 

2.43 

lbp_ 

r5_ 
h6 

21. 

59 – – 

lbp_ 

r3_ 
h18 

0.0 

11 

lbp_ 

r7_ 
h50 

0.01 

73 

lbp_ 

r3_ 
h19 

2.28 

lbp_ 

r5_ 
h30 

21. 

55 – – 

Sum

Aver
age 

0.0 

10 

lbp_ 

r5_ 
h33 

0.01 

66 

lbp_ 

r7_ 
h51 

2.28 

lbp_ 

r5_ 
h35 

21. 

08 – – 

Sum

Vari
ance 

0.0 

10 

Vari

ance 

0.01

56 

lbp_ 

r3_ 
h17 

2.25 

lbp_ 

r7_ 

h48 

20. 

91 – – 

Mea

sof 

Corr

elati

on 

0.0 

10 

Mea

sof 

Corr

elati

on 

0.01

55 

Corr

elati

on 

2.25 

 

TABLE II. THE MOST INFORMATIVE FEATURES  
IDENTIFIED AT THE 1ST

 GROUP 

ANOVA 
Linear 

SVM L1 

Extra 

Trees 

Random 

Forest 

Combined 

Score 

Fea

ture 
Score 

Fe

atu

re 

Sco

re 

Fe

atu

re 

Sco

re 

Fe

atu

re 

Sco

re 

Fe

atu

re 

Sco 

re 

lbp_ 
r3_ 

h17 

13. 

64 

L7 

E7 

0.0 

010 

lbp_ 
r3_ 

h5 

0.0 

28 

lbp_ 
r7_ 

h7 

0.0 

37 

lbp_ 
r5_ 

h7 

2.47 

lbp_ 
r3_ 

h18 

12. 

06 

Vari

ance 

0.0 

010 

lbp_ 
r3_ 

h6 

0.0 

28 

lbp_ 
r7_ 

h0 

0.0 

34 

lbp_ 
r3_ 

h5 

2.37 

lbp_ 

r7_ 
h47 

11. 

98 

L7 

S7 

0.0 

023 

lbp_ 

r5_ 
h7 

0.0 

24 

lbp_ 

r3_ 
h5 

0.0 

32 

lbp_ 

r3_ 
h18 

2.33 

lbp_ 

r5_ 
h29 

11. 

97 – – 

lbp_ 

r3_ 
h18 

0.0 

19 

lbp_ 

r7_ 
h6 

0.0 

31 

lbp_ 

r7_ 
h9 

2.26 

lbp_ 

r3_ 
h23 

11. 

39 – – 

lbp_ 

r3_ 
h17 

0.0 

18 

lbp_ 

r3_ 
h18 

0.0 

3 

lbp_ 

r3_ 
h6 

2.23 

lbp_ 

r5_ 
h33 

10. 

96 – – 

lbp_ 

r7_ 
h0 

0.0 

17 

lbp_ 

r5_ 
h9 

0.0 

29 

lbp_ 

r7_ 
h7 

2.22 

lbp_ 

r7_ 
h9 

10. 

72 – – 

lbp_ 

r7_ 
h31 

0.0 

16 

lbp_ 

r7_ 
h9 

0.0 

28 

lbp_ 

r3_ 
h17 

2.20 

lbp_ 

r3_ 

h6 

10. 
29 – – 

lbp_ 

r3_ 

h23 

0.0 
15 

lbp_ 

r5_ 

h7 

0.0 
27 

lbp_ 

r7_ 

h0 

2.10 

lbp_ 

r3_ 

h5 

10. 
26 – – 

lbp_ 

r7_ 

h47 

0.0 
15 

lbp_ 

r3_ 

h6 

0.0 
27 

lbp_ 

r5_ 

h9 

2.04 

lbp_ 

r5_ 

h7 

10. 
09 – – 

lbp_ 

r5_ 

h6 

0.0 
15 

lbp_ 

r5_ 

h6 

0.0 
26 

lbp_ 

r7_ 

h6 

1.85 

 

 

Fig. 4. Total normalized estimates of the information content for all features of fractures and bones for the first group for analysis  
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radii and the Haralik Correlation texture characteristic. The 
results of the selection of the most informative features are 
presented. 

The selected features make it possible to classify and 
quantify damage to bone objects based on their images, see 
Table 1. Testing of the software implementation of the 
method for automated selecting features of 2D high-
resolution images of bone objects useful for identifying 
damage was performed successfully on 72 images of 19 bone 
objects. 

IV. CONCLUSION 

The paper presents an experimental software package for 
2D high-resolution bone image processing in part of 
selecting the most informative features for further 
classification. A complex algorithmic solution is proposed, 
which makes it possible to automate the feature selection for 
further bone image classification and analysis. As we see in 
paper the selected features can be useful for classification of 
bone images and have good practical prospects.  
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