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Abstract

We investigate the distribution of real algebraic numbers of a fixed degree having a close
conjugate number, the distance between the conjugate numbers being given as a function
of their height. The main result establishes the ubiquity of such algebraic numbers in the
real line and implies a sharp quantitative bound on their number. Although the main result
is rather general it implies new estimates on the least possible distance between conjugate
algebraic numbers, which improve recent bounds of Bugeaud and Mignotte. So far the
results à la Bugeaud and Mignotte relied on finding explicit families of polynomials with
clusters of roots. Here we suggest a different approach in which irreducible polynomials
are implicitly tailored so that their derivatives assume certain values. The applications of
our main theorem considered in this paper include generalisations of a theorem of Baker
and Schmidt and a theorem of Bernik, Kleinbock and Margulis in the metric theory of
Diophantine approximation.

1. Introduction

1.1 Separation of conjugate algebraic numbers
The question “How close to each other can two conjugate algebraic numbers of degree n be?” crops
up in a variety of problems in Number Theory and in some applications. Over the past 50 years or
so there has been found a number of upper and lower bounds for such distance. However, the exact
answers are known in the case of degree 2 and 3 only. In order to set the sense in our discussion we
now introduce some quantities.

Throughout this paper we deal with algebraic numbers in C, the set of complex numbers. Let
n > 2. Recall that complex algebraic numbers are called conjugate (over Q) if they are roots of the
same irreducible (over Q) polynomial with rational integer coefficients. Define κn (respectively κ∗n)
to be the infimum of κ such that the inequality

|α1 − α2| > H(α1)−κ

holds for arbitrary conjugate algebraic numbers (respectively algebraic integers) α1 6= α2 of degree
n with sufficiently large height H(α1). Here and elsewhere H(α) denotes the height of an algebraic
number α, which is the absolute height of the minimal polynomial of α over Z. Clearly, κ∗n 6 κn for
all n.

In 1964 Mahler [Mah64] proved the upper bound κn 6 n − 1, which is apparently the best
estimate up to date. It is an easy exercise to show that κ2 = 1 (see, e.g. [BM09]). Furthermore,
Evertse [Eve04] proved that κ3 = 2. In the case of algebraic integers κ∗2 = 0 and κ∗3 > 3/2. The
latter has been proved by Bugeaud and Mignotte [BM09] who have also shown that the equality
κ∗3 = 3/2 is equivalent to Hall’s conjecture on the difference between integers x3 and y2. The latter
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is known to be the special case of the abc-conjecture of Masser and Oesterlé – see [BM09] for further
details and references.

For n > 3 estimates for κn are less satisfactory. At first Mignotte [Mig83] showed that κn, κ∗n >
n/4 for all n > 3. Recently Bugeaud and Mignotte [BM09, BM04] have shown that

κn > n/2 when n > 4 is even,
κ∗n > (n− 1)/2 when n > 4 is even,
κn > (n + 2)/4 when n > 5 is odd,
κ∗n > (n + 2)/4 when n > 5 is odd.

The above results are obtained by presenting explicit families of irreducible polynomials of degree
n whose roots are close enough. Bugeaud and Mignotte [BM09] point out that “at present there
is no general theory for constructing integer polynomials of degree at least four with two roots
close to each other”. In this paper we shall make an attempt to address this issue. One particular
consequence of our results is the following theorem that improves the lower bounds of Bugeaud and
Mignotte in the apparently more difficult case of odd n:

Theorem 1. For any n > 2 we have that min{κn, κ∗n+1} > (n + 1)/3.

Theorem 1 will follow from a more general counting result – Corollary 2 below. In fact, a lot
more is established. We show that algebraic numbers of degree n (algebraic integers of degree n+1)
with a close conjugate form a ‘highly dense’ (ubiquitous) subset in the real line, see Theorem 2.

1.2 The distribution of close conjugate algebraic numbers
First some notation. Throughout, #S stands for the cardinality of S and λ will denote Lebesgue
measure in R. Given an interval J ⊂ R, |J | will denote the length of J . Also, B(x, ρ) will denote
the interval in R centred at x of radius ρ. By ¿ (À) we will mean the Vinogradov symbols with
implicit constant depending on n only. We shall write a ³ b when the inequalities a ¿ b and a À b
hold simultaneously.

Let n > 2 be an integer, µ > 0, 0 < ν < 1 and Q > 1. Let An,ν(Q, µ) be the set of algebraic
numbers α1 ∈ R of degree n and height H(α1) satisfying

νQ 6 H(α1) 6 ν−1Q (1)

and
ν Q−µ 6 |α1 − α2| 6 ν−1Q−µ for some α2 ∈ R, conjugate to α1. (2)

Similarly we define A∗n,ν(Q,µ) to be the set of algebraic integers α1 ∈ R of degree n + 1 and height
H(α1) satisfying (1) and (2). Before we state our main result let us agree that A◦n,ν(Q,µ) will refer
to any of the sets An,ν(Q, µ) and A∗n,ν(Q, µ).

Theorem 2. For any n > 2 there is a constant ν > 0 depending on n only with the following
property. For any µ satisfying

0 < µ 6 n + 1
3

(3)

and any interval J ⊂ [−1
2 , 1

2 ], for all sufficiently large Q

λ


 ⋃

α1∈A◦n,ν(Q,µ)

B(α1, Q
−n−1+2µ) ∩ J


 > 3

4 |J |. (4)
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Remark 1. In principle, the above theorem holds in the case µ = 0, though it is more delicate to
ensure that α2 is real. Also note that in the case µ = 0 the optimal distribution of real algebraic
numbers of degree n (algebraic integers of degree n+1) was first established in [Ber99] (respectively
in [Bug02]). The above result is stated for the unit symmetric interval [−1

2 , 1
2 ]. However, using shifts

by an integer it can be extended to an arbitrary interval in R – see [Ber99] for appropriate technique.

Corollary 1. For any n > 2 there is a positive constant ν depending on n only such that for any
µ satisfying (3) and any interval J ⊂ [−1

2 , 1
2 ], for all sufficiently large Q

#
(
A◦n,ν(Q,µ) ∩ J

)
> 1

2Qn+1−2µ|J |. (5)

Proof. Obviously if B(α1, Q
−n−1+2µ) ∩ 1

2J 6= ∅ then α1 ∈ J provided that Q is sufficiently large.
Then, using (4) we obtain

#
(
A◦n,ν(Q,µ) ∩ J

)
2Q−n−1+2µ > λ


 ⋃

α1∈A◦n,ν(Q,µ)

B(α1, Q
−n−1+2µ) ∩ 1

2J


 (4)

> 1
4 |J |,

whence (5) readily follows.

Corollary 2. Let n > 2. Then for all sufficiently large Q > 1 there are À Q
n+1

3 real algebraic
numbers α1 of degree n (real algebraic integers α1 of degree n + 1) with height H(α1) ³ Q such
that

|α1 − α2| ³ Q−n+1
3 for some α2 ∈ R, conjugate to α1. (6)

Corollary 2 follows from Corollary 1 on taking µ to be n+1
3 . As a consequence of Corollary 2 we

obtain Theorem 1.

2. Auxiliary lemmas

The following auxiliary statement established in [Ber09, Theorem 5.8] is the crucial ingredient of
the proof of all the results of this paper.

Lemma 1. Let f0, . . . , fn be real analytic linearly independent over R functions defined on an
interval I ⊂ R. Let x0 ∈ I be a point such that the Wronskian W (f0, . . . , fn)(x0) 6= 0. Then there
is an interval I0 ⊂ I centred at x0 and positive constants C and α satisfying the following property.
For any interval J ⊂ I0 there is a constant δ = δJ such that for any positive θ0, . . . , θn

λ

{
x ∈ J :

∃ (a0, . . . , an) ∈ Zn+1 r {0} satisfying

|a0f
(i)
0 (x) + · · ·+ anf

(i)
n (x)| < θi ∀ i = 0, n

}
6 C

(
1 +

(Θ
δ

)α)
θα|J |, (7)

where

θ = (θ0 . . . θn)1/(n+1) and Θ := max
16r6n

θ0 · · · θr−1

θr
. (8)

With the view to the applications we have in mind we now estimate Θ.
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Lemma 2. Assume that θ 6 1 and assume that for some index m 6 n we have

θ0, . . . , θm−1 6 k and θm, . . . , θn > k−1 for some real k > 1. (9)

Then

Θ 6 kn−1 max
{

θ0

θ0 . . . θn
,

1
θn

}
. (10)

Proof. By the assumption that θ 6 1, for all r ∈ {1, . . . , n} we have θr > θn+1 = θ0 . . . θn. Therefore
Θ satisfies

Θ 6 1
θ0 . . . θn

max
16r6n

θ0 · · · θr−1. (11)

In view of (9) it is readily seen that

max
16r6m

θ0 · · · θr−1 6 kn−1 max
16r6m

θ0
θ1

k
· · · θr−1

k

(9)
= kn−1θ0 (12)

and

max
m<r6n

θ0 · · · θr−1 6 max
m<r6n

m−1∏

i=0

θi

r−1∏

i=m

kθi
(9)
=

m−1∏

i=0

θi

n−1∏

i=m

kθi 6 kn−1θ0 · · · θn−1. (13)

Combining (12) and (13) with (11) gives (10).

We will be using Theorem 1 with fi(x) = xi (0 6 i 6 n). In this case the Wronskian W (f0, . . . , fn)
identically equals n! and Lemma 1 is applicable to a neighborhood of any point x0 ∈ R. The system
of inequalities in (7) becomes

|P (x)| < θ0, |P ′(x)| < θ1, . . . , |P (n)(x)| < θn, (14)

where P (x) = a0 + a1x + · · ·+ anxn is a non-zero integral polynomial of degree at most n and the
set in the left hand side of (7) is simply

An(J ; θ0, . . . , θn) :=
{

x ∈ J :
(14) holds for some
P ∈ Z[x]r {0}, deg P 6 n

}
. (15)

Then, combining Lemmas 1 and 2 and using pretty standard compactness argument (e.g., [BDV07,
proof of Lemma 6]) give

Lemma 3. There are constants C > 0 and α > 0 depending on n only such that for any interval
J ⊂ [−1

2 , 1
2 ] there is a constant δJ > 0 such that for any positive numbers θ0, . . . , θn satisfying

θ = (θ0 . . . θn)1/(n+1) 6 1 and (9) we have that

λ
(
An(J ; θ0, . . . , θn)

)
6 C

(
1 +

kα(n−1)

δα
J

max
{

θ0

θ0 . . . θn
,

1
θn

}α
)

θα|J |. (16)

3. Tailored polynomials

Let ξ0, . . . , ξn ∈ R+ satisfy the conditions

ξi ¿ 1 when 0 6 i 6 m− 1,

ξi À 1 when m 6 i 6 n,

ξ0 < ε, ξn > ε−1

(17)
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for some 0 < m 6 n and ε > 0, where the implied constants depend on n only. Assume also that
n∏

i=0

ξi = 1. (18)

The following lemma lies at the heart of the proof of Theorem 2. It enable us to tailor irreducible
polynomials which assume certain values of derivatives. Of course, there is a connection with Taylor’s
formula too. Hence, we call them tailored polynomials.

Lemma 4. For every n > 2 there are positive constants δ0 and c0 depending on n only with the
following property. For any interval J ⊂ [−1

2 , 1
2 ] there is a sufficiently small ε = ε(n, J) > 0 such

that for any ξ0, . . . , ξn satisfying (17) and (18) there is a measurable set GJ ⊂ J satisfying

λ(GJ) > 3
4 |J | (19)

such that for every x ∈ GJ there are at least 2 primitive irreducible polynomials P ∈ Z[x] of degree
exactly n such that

δ0ξi 6 |P (i)(x)| 6 c0ξi for all i = 0, . . . , n . (20)

Proof. Let n > 2 and let ξ0, . . . , ξn be given and satisfy (17) and (18) for some m and ε. Let
J ⊂ [−1

2 , 1
2 ] be any interval and x ∈ J . Consider the system of inequalities

|P (x)| 6 ξi when 0 6 i 6 n , (21)

where P (x) = anxn+ · · ·+a1x+a0. Let Bx be the set of (a0, . . . , an) ∈ Rn+1 satisfying (21). Clearly,
Bx is a convex body in Rn+1 symmetric about the origin. In view of (18), the volume of this body
equals 2n+1

∏n
i=1 i!−1. Let λ0 6 λ1 6 · · · 6 λn be the successive minima of Bx. Clearly, λi = λi(x)

is a function of x. By Minkowski’s theorem for successive minima,

2n+1

(n + 1)!
6 λ0 . . . λN VolBx 6 2n+1.

Substituting the value of VolBx gives λ0 . . . λn 6
∏n

i=1 i!. Therefore, since λ0 6 · · · 6 λn, we get
that

λn 6 λ−n
0

n∏

i=1

i!. (22)

Our next goal is to show that λ0 is bounded below by a constant unless x belongs to a small
subset of J . Let E∞(J, δ1) be the set of x ∈ J such that λ0 = λ0(x) 6 δ1. By the definition of λ0,
there is a non-zero polynomial P ∈ Z[x], deg P 6 n satisfying

|P (i)(x)| 6 δ1ξi (0 6 i 6 n). (23)

Let θ0 = δ1ξ0 and θi = ξi (1 6 i 6 n). Then E∞(J, δ1) ⊂ An(J ; θ0, . . . , θn) – see (15) for the
definition of An(·). In view of (17) and (18), Lemma 3 is applicable. For this choice of θ0, . . . , θn we
have θ = δ

1/(n+1)
1 . Then

λ(E∞(J, δ1)) 6 λ
(
An(J ; θ0, . . . , θn)

) ¿
(

1 +
1
δα
J

max
{

δ1ξ0

δ1
,

1
ξn

}α)
δ

α
n+1

1 |J |.

By (17), max{ξ0, ξ
−1
n } < ε. Therefore µ(E∞(J, δ1)) ¿ δ

α/(n+1)
1 |J | provided that ε < δJ . Then there

is a sufficiently small δ1 depending on n only such that

λ(E∞(J, δ1)) 6 1
4n+8 |J |. (24)
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By construction, for any x ∈ J \E∞(J, δ1) we have that

λ0 > δ1. (25)

Combining (22) and (25) gives

λn 6 c1 := δ−n
1

n∏

i=1

i!, (26)

where c1 depends on n only. By the definition of λn, there are (n + 1) linearly independent integer
points aj = (aj,0, . . . , aj,n) (0 6 j 6 n) lying in the body λnBx ⊂ c1Bx. In other words, the
polynomials Pj(x) = aj,nxn + · · ·+ aj,0 (0 6 j 6 n) satisfy the system of inequalities

|P (i)
j (x)| 6 c1ξi (0 6 i 6 n). (27)

Let A = (aj,i)06j,i6n be the integer matrix composed from the integer points aj (0 6 j 6 n).
Since all these points are contained in the body c1Bx, we have that | detA| ¿ Vol(Bx) ¿ 1. That
is |det A| < c2 for some constant c2 depending on n only. By Bertrand’s postulate, choose a prime
number p satisfying

c2 6 p 6 2c2. (28)

Therefore, |det A| < p. Since a0, . . . ,an are linearly independent and integer, | detA| > 1. Therefore,
detA 6≡ 0 (mod p) and the following system





∑n
j=0 ηjaj,n ≡ 1 (mod p)

∑n
j=0 ηjaj,i ≡ 0 (mod p) (1 6 i 6 n− 1)

∑n
j=0 ηjaj,0 ≡ 1 (mod p)

(29)

has a unique non-zero integer solution (η0, . . . , ηn) ∈ [0, p− 1]n+1. Consider the polynomial

P (x) = anxn + · · ·+ a0 :=
n∑

i=0

ηiPi(x) ∈ Z[x].

By the first inequality of (29), an is necessarily non-zero and so deg P = n. Furthermore, an 6≡ 0
(mod p). By the last inequality of (29), we have a0 6≡ 0 (mod p). In turn, by the middle inequalities
of (29), ai ≡ 0 (mod p) for all i = 1, n− 1. Therefore, by Eisenstein’s criterion, P is irreducible.

Using (27), (28) and the fact that |ηi| < p 6 2c2 we obtain that

|P (i)(x)| 6 c0ξi (0 6 i 6 n) (30)

with c0 = 2(n + 1)c1c2. Without loss of generality we may assume that P is primitive (that is the
coefficients of P are coprime) as otherwise the coefficients of P can be divided by their greatest
common multiple. Clearly such division would not affect the validity of (30). Thus, P ∈ Z[x] is a
primitive irreducible polynomial of degree n which satisfies the right hand side of (20). The final
part of the proof aims at establishing the left hand side of (20).

Let δ0 > 0 be a sufficiently small parameter depending on n. For every j = 0, n let Ej(J, δ0) be
the set of x ∈ J such that there is a non-zero polynomial R ∈ Z[x], deg R 6 n satisfying

|R(i)(x)| 6 δ
δi,j

0 c
1−δi,j

0 ξi, (31)

where δi,j equals 1 if i = j and 0 otherwise. Let θi = δ
δi,j

0 c
1−δi,j

0 ξi. Then Ej(J, δ0) ⊂ An(J ; θ0, . . . , θn).
In view of (17) and (18), Lemma 3 is applicable provided that ε < min{c−1

0 , c0δ0}. Then, by
Lemma 3,

λ(Ej(J, δ0)) ¿
(

1 +
1
δα
J

max
{

c0ξ0

cn
0δ0

,
1

δ0c0ξn

}α)
(δ0c

n
0 )1/(n+1)|J | .
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It is readily seen that the above maximum is 6 δJ if ε < δJδ0c0. Then

λ(Ej(J, δ0)) 6 1
4n+8 |J | (32)

provided that ε < min{δJδ0c0, c
−1
0 , c0δ0} and δ0 = δ0(n) is sufficiently small. By construction, for

any x in the set GJ defined by

GJ := J \



n⋃

j=0

Ej(J, δ0) ∪ E∞(J, δ1)




we must necessarily have that |P (i)(x)| > δ0ξi for all i = 0, . . . , n, where P is the same as in (30).
Therefore, the left hand side of (20) holds for all i. In order to construct another polynomial P
satisfying the required properties one can simply replace 1 with −1 in the last equation of (29).
One can straightforwardly verify that this replacement results in a different primitive irreducible
polynomial. Finally, observe that

λ(GJ) > |J | −
n∑

i=0

λ(Ei(J, δ0))− λ(E∞(J, δ1))
(24)& (32)

> |J | − (n + 2) 1
(4n+8) |J | = 3

4 |J |.

The latter verifies (19) and completes the proof.

Remark 2. By further lifting ηj arising from (29) to Z/p2Z it should be possible to show that for
every x ∈ GJ there are n+1 linearly independent primitive irreducible polynomials satisfying (20).

4. Tailored monic polynomials

The following is the analogue of Lemma 4 for the case of monic polynomials.

Lemma 5. For every n > 2 there are positive constants δ0 and c0 depending on n only with the
following property. For any interval J ⊂ [−1

2 , 1
2 ] there is a sufficiently small ε = ε(n, J) > 0 such

that for any positive ξ0, . . . , ξn satisfying (17) and (18) there is a measurable set GJ ⊂ J satisfying

λ(GJ) > 3
4 |J | (33)

such that for every x ∈ GJ there is an irreducible monic polynomials P ∈ Z[x] of degree n + 1
satisfying (20).

Proof. We will essentially follows the proof of Lemma 4 but replace the construction of P with a
different procedure that makes use of the ideas from [Bug02]. Let GJ = J r E∞(J, δ1), where δ1 is
defined the same way as in the proof of Lemma 4. Then, we have (24), which implies (19). Take any
x ∈ GJ . Arguing the same way as in Lemma 4 we obtain n + 1 linearly independent polynomials
Pj(x) = aj,nxn + · · ·+ aj,0 ∈ Z[x] (0 6 j 6 n) satisfying (27). The matrix A = (aj,i)06j,i6n satisfies
|det A| < c2 for some constant c2 depending on n only. Again we choose a prime p satisfying (28)
so that detA 6≡ 0 (mod p). It is readily verified that

det(P (i)
j (x))06i,j6n = det A

n∏

i=0

i! 6= 0.

Therefore, there is a unique solution (t0, . . . , tn) ∈ Rn+1 to the following system of linear equations

(n + 1)!
(n + 1− i)!

xn+1−i + p
n∑

j=0

tjP
(i)
j (x) = 2(n + 1)pc1ξi (0 6 i 6 n) (34)

7
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Since detA 6≡ 0 (mod p) at least one of a0,0, . . . , an,0 is not divisible by p. Without loss of generality
we will assume that a0,0 6≡ 0 (mod p). For j = 1, . . . , n define ηj = [tj ], where [ · ] denotes the integer
part. Further, define η0 to be either [t0] or [t0] + 1 so that

η0a0,0 + · · ·+ ηnan,0 6≡ 0 (mod p). (35)

This is possible because a0,0 6≡ 0 (mod p). Define

P (x) = xn+1 + anxn + · · ·+ a0 := xn+1 + p
n∑

i=0

ηiPi(x) ∈ Z[x].

Obviously deg P = n + 1. The leading coefficient of P is 1 and so is not divisible by p2. By (35),
a0 6≡ 0 (mod p2). However, by the construction of P , we have that ai ≡ 0 (mod p) for all i = 1, n.
Therefore, by Eisenstein’s criterion, P is irreducible over Q.

Finally, it follows from the definition of ηj that |tj−ηj | 6 1 for all j = 0, . . . , n. Therefore, using
the definition of P and (27) we verify that

∣∣∣∣∣∣
(n + 1)!

(n + 1− i)!
xn+1−i + p

n∑

j=0

tjP
(i)
j (x)− P (i)(x)

∣∣∣∣∣∣
6 (n + 1)pc1ξi (0 6 i 6 n).

Combining this with (34) gives

(n + 1)pc1ξi 6 |P (i)(x)| 6 3(n + 1)pc1ξi (0 6 i 6 n).

Thus, taking δ0 = (n + 1)pc1 and c0 = 3(n + 1)pc1 gives (20). The proof is complete.

5. Proof of Theorem 2

We now give a complete proof of the theorem in the case A◦n,ν(Q,µ) = An,ν(Q,µ). At the end of
the section we will say in what way the proof has to be modified in order to establish the theorem
in the case A◦n,ν(Q, µ) = A∗n,ν(Q, µ).

Fix n > 2 and let µ satisfy (3). Let δ0 and c0 be the same as in Lemma 4. Define the following
parameters:

ξ0 = ηQ−n+µ, ξ1 = η−nQ1−µ, ξi = ηQ (2 6 i 6 n), (36)

where 0 < η < 1 is a sufficiently small fixed parameter depending on n only which will be specified
later. Fix any interval J ⊂ [−1

2 , 1
2 ] and let ε = ε(n, J) be the same as in Lemma 4. Then, (17) is

satisfied with m ∈ {1, 2} for sufficiently large Q. Also the validity of (18) easily follows from (36).
Let GJ be the set arising from Lemma 4 and x ∈ GJ . Then, by Lemma 4, there is a primitive
irreducible polynomial P ∈ Z[x] of degree n satisfying (20).

Finding α1. Let y ∈ R be such that |y − x| = Q−n−1+2µ. By (3), we have |y − x| < 1. Further, by
Taylor’s formula,

P (y) =
n∑

i=0

1
i!P

(i)(x)(y − x)i. (37)

Using the inequality |x− y| < 1, (3), (20), and (36) we verify that
∣∣∣P (i)(x)(y − x)i

∣∣∣ < ηc0Q
−n+µ for i > 2 . (38)

8
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Also, by (20) and (36), |P (x)| 6 ηc0Q
−n+µ. Therefore,

∑

i 6=1

∣∣∣ 1
i!P

(i)(x)(y − x)i
∣∣∣ 6 ηc0Q

−n+µ
n∑

i=0

1
i! < 3ηc0Q

−n+µ. (39)

On the other hand,

|P ′(x)(y − x)|
(20)&(36)

> δ0η
−nQ−µ+1Q−n−1+2µ > δ0η

−2Q−n+µ. (40)

It follows from (39) and (40) that P (y) has different signs at the endpoints of the interval |y− x| 6
Q−n−1+2µ provided that η 6 δ0/(3c0). By the continuity of P , there is a root α1 of P in this interval,
that is

|x− α1| < Q−n−1+2µ . (41)

Finding α2. Let yρ = x + ρQ−µ, where 2 6 |ρ| < Qµ/2. In what follows we will again use (37), this
time with y = yρ. Using |x− y| < 1, |ρ| 6 Qµ/2, (20), and (36) we verify that

∣∣∣P (i)(x)(yρ − x)i
∣∣∣ < η|ρ|c0Q

1−2µ for i > 3 . (42)

By (3), (20), (36) and the fact that |ρ| > 2, we have that

|P (x)| 6 ηc0Q
−n+µ 6 |ρ|ηc0Q

1−2µ

and

|P ′(x)(yρ − x)| 6 η−nc0Q
1−µ|ρ|Q−µ = η−nc0|ρ|Q1−2µ.

The latter two estimates together with (42) give

∑

i6=2

∣∣∣ 1
i!P

(i)(x)(yρ − x)i
∣∣∣ 6 η−n|ρ|c0Q

1−2µ
n∑

i=0

1
i! < 3η−n|ρ|c0Q

1−2µ. (43)

On the other hand,

| 12!P
′′(x)(yρ − x)2|

(20)&(36)

> 1
2δ0ηQ|ρ|2Q−2µ = 1

2δ0ηQ1−2µρ2. (44)

It follows from (43) and (44) that P (y) has the same signs at the points y±ρ0 (same as P ′′(x)) with
ρ0 = 8c0η

−n−1δ−1
0 .

On the other hand, using (3) and arguing the same way as during “Finding α1”, one readily
verifies that P (y2) and P (y−2) have different signs. Therefore, P (y) changes sign on one of the
intervals

[−ρ0Q
−µ,−2Q−µ] or [2Q−µ, ρ0Q

−µ].

By the continuity of P , there is a root α2 of P in that interval, that is

2Q−µ 6 |x− α2| < ρ0Q
−µ . (45)

Combining (3), (41) and (45) gives Q−µ 6 |α1 − α2| 6 (ρ0 + 1)Q−µ, thus establishing (2).

Estimates for the height. Using the fact that |x| 6 1
2 , (20), (3) and (36) we verify that

|an| ³ Q,

|an−1| = |P (n−1)(x)− n!
1!(n−1)! anx| ¿ Q,

|an−2| = |P (n−2)(x)− n!
2!(n−2)! anx2 − (n−1)!

1!(n−2)! an−1x| ¿ Q,

...

9
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The upshot is that H(α1) ³ Q. This establishes (1) and completes the proof of Theorem 2 in the
case A◦n,ν(Q,µ) = A∗n,ν(Q,µ).

In the case A◦n,ν(Q,µ) = A∗n,ν(Q,µ) the proof remains essentially the same. The only necessary
modification arises from taking into account the (n+1)-st derivative of P . This derivative identically
equals (n + 1)! and will course no troubles in establishing estimates (39), (40), (43) and (44) which
are the key to finding α1 and α2. As to the height, it will be estimated in exactly the same way.

Remark 3. From the above proof we have that |an| ³ Q. This condition can be readily used to show
that any αi conjugate to α1 is bounded by a constant depending on n only. This follows from the
well known property that |αi| ¿ H(αi)/|an| – see [Spr69].

6. Applications to metric Diophantine approximation

We begin by stating a result due to Bernik, Kleinbock and Margulis. In order to state their theorem
we introduce the set

Pn(µ,w) =
{

x ∈ [−1
2 , 1

2 ] :

{
|P (x)| < H(P )−w−µ

|P ′(x)| < H(P )1−µ
holds for i.m. P ∈ Z[x], deg P 6 n

}
,

where n > 2, µ > 0, H(P ) denotes the (absolute) height of P and ‘i.m.’ means ‘infinitely many’.
Applying Dirichlet’s pigeonhole principle readily implies that Pn(µ,w) = [−1

2 , 1
2 ] if w 6 n − 2µ.

However, when w > n− 2µ, the makeup of the set Pn(µ,w) changes completely. The following is a
consequence of the Theorem from [BKM01, §8.3].

Theorem BKM (Bernik, Kleinbock and Margulis). Let n > 2 and µ > 0. Then for any w > n−2µ
the set Pn(µ,w) is of Lebesgue measure zero.

Theorem BKM is a delicate generalisation of Mahler’s problem [Mah32] which corresponds to
the case µ = 0 of Theorem BKM, though Mahler’s problem was settled by Sprindžuk [Spr65]. It
is counterintuitive that for a fixed µ the set Pn(µ,w) must get smaller as w increases. Hausdorff
dimension is traditionally used within this sort of questions in metric Number theory. Using The-
orem 2 we are able to produce the following lower bound on the size of Pn(µ,w). In what follows
‘dim’ denotes Hausdorff dimension.

Theorem 3. Let n > 2 be an integer and 0 < µ < n+1
3 . Then for any w > n− 2µ

dimPn(µ,w) > n + 1− 2µ

w + 1
. (46)

In the case µ = 0, inequality (46) was first established by Baker and Schmidt [BS70] who also
conjectured that (46)µ=0 is actually an equality. This conjecture was proved in [Ber83]. In view of
Theorem BKM and indeed Theorem 3 it is natural to consider the following generalisation of the
Baker-Schmidt conjecture.

Conjecture 1. Let n, µ and w be as in Theorem 3. Then (46) is an equality.

Another consequence of this work in the spirit of Theorem BKM in the following

10
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Theorem 4. Let v0, . . . , vm−1 > 0, vm, . . . , vn 6 0, v0 > 0, vn < 0 and v0 + · · ·+ vn > 0. Then for
almost every x ∈ R there are only finitely many Q ∈ N such that

|P (i)(x)| < Q−vi (0 6 i 6 n) for some P ∈ Z[x]r {0}, deg P 6 n. (47)

Proof. Let v0, . . . , vn be given. Without loss of generality we can assume that x ∈ [−1
2 , 1

2 ]. Let

St := {x ∈ [−1
2 , 1

2 ] : |P (i)(x)| ¿ 2−vit (0 6 i 6 n) for some P ∈ Z[x]r {0}, deg P 6 n.

It is readily seen that our goal is to prove that lim supt→∞ St has measure zero. By the Borel-Cantelli
Lemma, this will follow on showing that

∑∞
t=1 λ(St) < ∞. The latter is easily verified by applying

Lemma 3.

Mahler’s problem corresponds to Theorem 4 with v1 = · · · = vn = −1. Theorem BKM follows
from Theorem 4 on taking v2 = · · · = vn = −1. Although we are rather flexible in choosing the
exponents vi in Theorem 4, there are some restrictions which we believe can be safely removed.
This is now stated in the form of the following unifying

Conjecture 2. Let ε > 0. Then for almost every x ∈ R the inequality
n∏

i=0

|P (i)(x)| < H(P )−ε (48)

has only finitely many solutions P ∈ Z[x], deg P 6 n.

It is likely that in (48) the height H(P ) can be replaced with Π+(P ) :=
∏n

i=1 max{1, |ai|}, where
P (x) = anxn + · · · + a1x + a0. Also using the inhomogeneous transference principle of [BV08] one
should be able to establish an inhomogeneous version of Conjecture 2 modulo the homogeneous
statement.

6.1 Proof of Theorem 3
We will use the ubiquitous systems technique, which is now briefly recalled in a simplified form
(see [BDV06] for more details and [BBD02] for the related notion of regular systems). Let I be an
interval in R and R := (rα)α∈J be a family of points rα in I indexed by a countable set J . Let
β : J → R+ : α 7→ βα be a function on J , which attaches a ‘weight’ βα to points rα. For t ∈ N, let
J (t) := {α ∈ J : βα 6 2t} and assume J (t) is always finite.

Let ρ : R+ → R+ be a function such that limt→∞ ρ(t) = 0 referred to as ubiquity function. The
system (R;β) is called locally ubiquitous in I relative to ρ if there is an absolute constant k0 > 0
such that for any interval J ⊂ I

lim inf
t→∞ λ

( ⋃

α∈J (t)

B
(
rα, ρ(2t)

) ∩ J
)

> k0 |J | . (49)

Given a function Ψ : R+ → R+, let

ΛR(Ψ) := {x ∈ I : |x− rα| < Ψ(βα) holds for infinitely many α ∈ J } .

The following lemma is Theorem 10 in [BDV07], or alternatively it follows from the more general
Corollary 4 from [BDV06, p.20].

11
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Lemma 6. Let Ψ : R+ → R+ be a monotonic function such that for some φ < 1, Ψ(2t+1) 6 φΨ(2t)
holds for t sufficiently large. Let (R, β) be a locally ubiquitous system in B0 relative to ρ. Then for
any s ∈ (0, 1)

Hs
(
ΛR(Ψ)

)
= ∞ if

∞∑

t=1

Ψ(2t)s

ρ(2t)
= ∞ . (50)

The ubiquitous system. Let n > 2 and µ satisfy 0 < µ < n+1
3 . Choose µ′ = µ + δ < n+1

3 with δ > 0.
Let R be the set of algebraic numbers α1 ∈ R of degree n such that

|α1 − α2| 6 ν−1H(α1)−µ′ for some α2 ∈ R, conjugate to α1 (51)

and

|αi| ¿ ν−1 for any αi ∈ C, conjugate to α1, (52)

where the constant implied by the Vinogradov symbol depends on n only. We will identify J with
R, so that formally rα = α. Further, let βα = νH(α) and ρ(q) := q−n−1+2µ′ . Then, by Theorem 2
together with Remark 3, there is a constant ν such that (R, β) is locally ubiquitous in I := [−1

2 , 1
2 ]

with respect to the above ρ. Given w > 0, let Ψ(q) = q−w−1. Clearly, Ψ(2t+1) 6 1
2Ψ(2t) and

so Lemma 6 is applicable to this Ψ. Let s = n+1−2µ′
w+1 . Since w > n − 2µ′, s < 1. Then Ψ(q)s

ρ(q) is
identically 1 and therefore the sum in (50) diverges. By Lemma 6, we have that Hs

(
ΛR(Ψ)

)
= ∞.

By the definition of Hausdorff dimension, dimΛR(Ψ) > s = n+1−2µ−2δ
w+1 . Since δ > 0 is arbitrary, it

remains to show that

ΛR(Ψ) ⊂ Pn(µ,w). (53)

By definition, for every x ∈ ΛR(Ψ) there are infinitely many real algebraic numbers α1 of degree n
satisfying (51), (52) and

|x− α1| ¿ H(α1)−w−1. (54)

Let P denote the minimal polynomial of α1. Then, P (x) = an(x − α1) . . . (x − αn). By (51), (52),
(54) and the fact that |an| 6 H(P ), we get |P (x)| ¿ H ·H(P )−w−1H(P )−µ′ = H(P )−w−µ′ . Since
µ′ > µ, we have |P (x)| < H(P )−w−µ for sufficiently large H(P ). Further,

P ′(x) = an

n∑

i=1

(x− α1) . . . (x− αn)
(x− αi)

. (55)

Again, by (51), (52), (54) and the fact that |an| 6 H(P ), we get that every summand in (55) is
¿ H(P )−µ′ , further implying that |P ′(x)| ¿ H(P )−µ′ . Since µ′ > µ, we have |P ′(x)| < H(P )−µ

for sufficiently large H(P ). The upshot is that the inequalities |P (x)| < H(P )−w−µ and |P ′(x)| <
H(P )−µ hold simultaneously for infinitely many P ∈ Z[x] of degree n. Thus (53) is established and
the proof is complete.

7. Final remarks

1. The main body of this paper deals with integral polynomials of degree n. However, one can
equally develop a similar theory for linear forms of linearly independent analytic functions. This is
due to the fact that Lemma 1, the underlaying fact for other results, is established for linear forms
of analytic functions.

2. Clearly, using the algebraic integers part of Theorem 2 it is possible to establish an analogue
of Theorem 3 for monic polynomials. Furthermore, using the inhomogeneous transference of [BV08]

12



Close algebraic numbers

it is possible to establish the inhomogeneous version of Theorem 4, in particular, the one for monic
polynomials.

3. Theorem 2 can be used to give quantitative estimates for the number of polynomials with
bounded discriminant – see, for example, [BGK08a]. We are going to address this question in more
details in a forthcoming paper.

4. Alongside the Hausdorff dimension generalisation of Theorem BKM it is interesting to develop
a Khintchine type theory – see [BKM01, §8.3] where the corresponding problem was stated. When
0 < µ < 1

2 , a result of this kind has been obtained by Kukso [Kuk07] in the so-called case of
divergence.

5. The statement of Theorem 2 can be viewed at a different angle: the algebraic points (α1, α2)
satisfying (2) lie at the distance Q−µ from the bisector y = x of the first quadrant. The naturally
arising problem is to investigate the distribution of (α1, α2) near other rational lines, e.g. y = 2x
or y = 1

2x. More general (and challenging) problem is to investigate the distribution of algebraic
points (α1, α2) with conjugate coordinates of degree n near non-degenerate curves in the plane, e.g.
the parabola y = x2.

6. It would be interesting to develop the theory for non-archimedean extensions of Q and for
‘proper’ complex algebraic numbers – see [BGK08b] for a related result.
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