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1 Introduction

Despite major results on the distribution of rational numbers on the real line
there remain a number of deep problems. Some of them can be found in the
monographs of Cassels and Schmidt [1, 2]. The problem of counting integer
points is a classical topic in number theory and there are various related
problems like the Gauss circle problem or the problem number of divisors of
natural numbers bounded by some big number [3, 4]. Some facts on counting
integer points in multidimensional domains can be found in [5]. During the
last 20 years considerable progress has been made concerning the number
of points with rational coordinates near smooth curves by Beresnevich and
Vilani [6, 7] insofar as the lower and upper bounds that have been obtained
are of the same order.

In the present paper we introduce a method, which allows us to obtain
bounds for the number of points with algebraic coordinates lying in a given
domains of a Euclidean space. We consider algebraic points in the plane, but

part of our results can be generalized to higher dimensional spaces.
Let P € Z[x] be of the form

P($) = Pn(z) Zanx"—l—an_1$"_1 + -+ a1z + aop, (1)

H=H(P)= 112]%1|aj|’ deg P =n.

Let A be the Lebesgue measure of a measurable set A C R? and |I|
the length of an interval I C R. In what follows ¢, ¢(n), 1, ca, ... stand for
some positive constants depending on n only. Let Q) > Q(n), where Q) is a
sufficiently large number. We will use the Vinogradov symbols f < g which
means that f < cg. The notation B < D means D < B < D.



For some arbitrary positive constants j, po consider a rectangle
H1 = Il X IQ = [al,bl] X [(lg,bQ] [—5 5] - R2
such that
Iz -y <0.1} =0 (2)
and
L =b—a=Q", |[L]=b —a=Q".

Note that the lengths of I; and I5 are small provided that puy > 0, uy > 0
and @ is sufficiently large.

Suppose that aq,as, ..., ar denote k real roots of P, 1 < k < n.

We introduce the class of polynomials

P.(Q)={P,€Z[x] :degP =n,n>3,a, > H(P),H(P) <Q}. (3)

The condition |a,| > H implies that the roots of P(z) are bounded, see
Sprindzuk [8].
Let K,(I11, Q) be the set of points (a;, ), 1 < i < j < k, such that

(i) (o, ) are real roots of P € P, (Q),
(11) (ai, aj) € Hl-

Remark. Condition (ii) excludes the coincidence of the roots a; and as.
The aim of this paper is to estimate the cardinality of K, (Il;, Q).

Theorem 1 Let 0 < p; < 5, 1=1,2. Then
#K,(T, Q) > Qriimm—he, (4)

Remark. Consider JyxJ, = [3—Q 1%, :4+Q €] x[;—Q 7', 1+Q 7],
where ¢ > 0. Suppose that, on the contrary, that there is a polynomlal
T € P,(Q) such that a pair of its roots (aq, az) belongs to J; x Jy and T is
coprime to P(z) = (3x — 1)(4x — 1) = 122> — 7x + 1. The last assumption
implies that |R(T, P)| > 1, where R(T, P) is the resultant of T'(z) and P(z).

Since the roots of T'(x) are bounded, we have
n - 1
< |R(T.P) =12 2H| el [T - sl =
n 1
=12 2!al——|\042——|1_[| i|H|Z—%‘|<<

i#1 j#2
< QQQ—l—aQ—l—a _ Q—Qe. (5)



The inequality (5) yields a contradiction if @ is sufficiently large.

This remark shows that Theorem 1 cannot be considerably improved. It
won’t hold for max; 1; > 1. Improvements are possible for intervals Iy, I,
only that don’t contain algebraic numbers of small degree and height.

Corollary. Let f(z) be a continuous function on the interval I = [a, D]
and let

LQN={(wy) : relly—f@)]<Q7), 0<A<s  (©

Then there are at least c(n)Q"™~* algebraic points such that (ai,as) €
L(Q, N).

Proof of the corollary. The set £L(Q, \) represents a strip containing the
curve y = f(x). Its width equals 2Q~*, 0 < X < % Let us split an interval
[a,b] into equal parts of length at most Q=" choosing points

Y A A
ro=a, 11 =T+ Q ", ..., ;=11 +Q% ..., Ts=1x0+sQ",

where A < 1. Furthermore, inscribe rectangles of size Q=* x ¢(n)Q~* into
every rectangle

(@)« lo- <307 ly— @)l < 507

By Theorem 1, every such rectangle contains at least c(n)Q"*!1~2* algebraic
points (aq, ae). Collecting the algebraic in all rectangles we obtain

HL(Q,N)NA, > c(n)Q" .

i + Iz—i—l ’

[ |
The proof of Theorem 1 is based on the construction of special polyno-
mials P(t) € P, (Q) such that

1. |P(x)| and |P(y)| are small,

2. |P'(z)| and |P'(y)| are comparable with H(P),

)
where (x,y) € By C Il and uB; > %ul’[l.
Let ¢ = (c¢1,¢9,¢3,¢4) and T = (v1,v2) denote positive vectors. Let
M, (¢, Q) denote the set of points T € II; such that the following system

(|P(2)| < Q"
|P(y)| < Q™
|P'(7)] < e3Q, (7)
|P'(y)| < s,

\Ul + Vo =N — 1

has a solution P(t) € Z[t] \ {0}.




Theorem 2 Assume  that  cicomin(cs, cy) < 273802 and
max(cy, 2, ¢3,¢4) < 1. Then

P, Q) < 111 g

To prove Theorem 2 we impose an extra condition on P. We consider
only irreducible polynomials. This condition is not very restrictive and leads
to an equivalent problem as shown in Sprindzuk and Bernik [8, 9].

2 Auxiliary statements

This section contains several lemmas that will be used in the proof of Theo-
rem 2.

In what follows P, (Q) denotes the class of irreducible polynomials P(t)
with H(P) < Q such that (7) holds. Furthermore, let P, (H) be the subclass
of P,(H) consisting of polynomials P with H(P) = H.

For each polynomial P € P,(H) with roots ay, as, ..., &y, we pick a pair
of roots a; and a;, ¢ # j. Throughout for convenience, we shall write o
instead of a; and f3; instead of «;. Furthermore, we order the other roots of
P with respect to the distance from the roots «a; and [3;

(9)
Obviously, in (9), the set (i, 0,...,0, is a permutation of the roots
Q1,Qo, ..., 0, Denote

S(ay) ={z eR: |z —ay| = 1%1£n|93 — o4},

S(6) = {r € R+ lo =] = min o =5}

We will consider now the system of inequalities (7) for z € S(ay) and y €

S(Br)-
Lemma 1 (see [8]) If |a,| > H then for any i, 1 < i< n,
;| < c.
Lemma 2 Let P € P,(H) and x € S(oy). Then
|P(2)]

|z — | <nim 55

|P' ()]



| — on| < 2P ()| P ()|, (10)

|z — ay| < min (27| P(2)]| P (o \1H\a1_ak|%.

2<j<n

The first inequality in (10) immediately follows from the identity
|P’( WP(z)| ™! = |Z?:1ﬁ| and the inequalities |z — aq| < |z — oy,
j = 2,...,n. The remaining inequalities were proved in Sprindzuk and
Bermk[& 10].

Let € > 0 be sufficiently small, and let N = N(n) > 0 be sufficiently large
fixed numbers. Write &1 = eN~! and T = [g] "

Using (9) define numbers p; ; and p2; (2 < j < n) by setting

a1 —ay| = H P9, p1, <+ < prg, (11)
|61 — B = H "%, po, < -+ < poo.

By Lemma 1 the roots «; are bounded. Then the inequalities (9) and
(11) imply p;; > =5
For every polynomial there are uniquely determined integral vectors

(ko, k3, ..., ky) and (lo,l3,...,1,) such that the inequalities

(k‘j — 1)T_1 < P15 < ij_l , 0< kn < ... £ kz,
(lj — 1)T_1 < P25 < le_l , 0< ln < L. < l2

hold. Furthermore, define
=Tk, =Ty, 1<i<n—1L
m=i+1 m=i+1

Consider Us_, P, (H). Using results of Sprindzuk [8], the number of pos-
sible vectors k = (ka, ks, .. . , k) and I = (ly,ls,...,1,) is finite.
Thus, all polynomials P € P, (H) corresponding to the same pair of vectors
5= (k 1) can be grouped together into a class P, (H,3).

Lemma 3 (see Bernik [10]) Let P € P,(H,3). The we have

Hl—q1 < |P/(a1>| < Hl—ql—i-(n—l)al’
Hl—rl < |Pl(6l>| < Hl—m-‘r(n—l)al,

and for any k, 2 < k < n,

|P(k)<041)| < H1-artk(n—1e
|P(k)(ﬁl)| < Hl*T}c+k(n*1)51.



Lemma 4 Let 6, Ko,m,n2 € Ry. Furthermore, let Py, Py € Z[z] be two

relatively prime polynomials of degree at most n with max(H (Py), H(P;)) <
K and K > Ky(0). Let Jy and Jy denote intervals with |Ji| = K~™, |J3] =
K="= [f there exist numbers 11,7y > 0 such that for all (z,y) € J; X Jo

max(|Py(x)], | Py(2)]) < K77,
max(|Py(y)l, [P (y)]) < K77,

then
7+ 7+ 2+ 2max(m + 1 —71,0) + 2max(mp + 1 — 172,0) < 2n + 4.

For the proof see Bernik [11].
Remark. Actually, a stronger result holds, namely

T4 T+ 24 2max(d 7+ 1—m1,0) +2max(Dd T+ 1—1,0) <20+,
k=1 k=1

When we apply Lemma 4 we will usually choose parameters 11, 7o, 71, 72
satisfying

n=kT'+q -1 rn=0T"+r —1, m = ko T, N = LT

Thus, if the difference between, say, l[oT" and r; is larger, then the result
of Lemma 4 will be stronger. Therefore, without loss of generality, we can
assume that kyT' = qp, T~ =1y, and ¢; = 7; = 0 for j > 2.

3 Proof of Theorem 2

First, we consider a special case of system (7) when |P'(x)|, |P'(y)| are
bounded below. Let us remind that x € S(ay) and y € S(51).

Proposition 1. Let v > % denote a constant and let M, 1(¢, Q) denote
the set of solutions (z,y) € Iy X Iy of the system

|P(z)] < a@Q™™,
’P(y)‘ < CQQ_w?
Q" <|P'(z)| < 3@,
QY < |P'(y)] < c4Q.

(12)

Then )
MMn,l(E7@7Q) < §|]1||]2|

6



Now estimates for |P'(x)| and |P'(y)| provide estimates for |P'(«;)| and

[P'(B51)]-
By the first inequality in (10) for any x € S(ay) and y € S(f;), we have

|z — aq| < n|P(2)||P'(z)]7! < ein@~177,
ly — Bil < nlP@)I|P'(y)|" < can@ 7",

The Mean Value Theorem yields

(13)

P'(x) = P'(a1) + P"(&)(x — aq)  for some & € (g, z),
P'(y) = P'(01) + P"(&)(y — Ba) for some & € (fa,y).

Obviously, we have |P"(&)(z — aq)] < Q"7 [P"(&L)(y — )| <
Q'7v27v, Thus, for sufficiently large () we obtain

1Q" < 3P ()] < [P'(n)| < 31P(2)] < 365Q,

14
te < AP < 1Pl < P < e )
By (14) and Lemma 2, we have
— 4 / -1
o — ] < 2P| P ) )

ly = Bl < 3nl PP ()"

Let 0,(P), o,(P) denote the sets of solutions of (15) for z and y, re-
spectively. Let IIh(P) = 0,(P) x o,(P). Clearly, all solutions (z,y) €
S(ay1) x S(fy) of the system (12) are contained in I15(P).

We introduce the intervals

01:(P) : |z — o] < esQ7| P ()| 7Y,
o (P) © |y — 0] < Q7P (B,

where values of positive constants v and c5 will be specified below. Assign
[3(P) = 01,(P) x 014(P).

Now we shall estimate the values of P and P’ on the intervals oy,(P)
and oy, (P). For the sake of simplicity we shall consider P(y) and P'(y) on
o14(P) only. The Mean Value Theorem yields

P(y)= P'(B)(y— b))+ 3P"(&)(y — B1)?  for some & € (B,y), (17)

(16)

P'(y) = P'(61) + P"(&4)(y — A1) for some & € (B1,y)-
By (14) and (16), the second terms of P(y) and P’'(y) may be estimated as
follows .

APy — B < QU )

[P (&) (y — Bu)| < Q177"

7



From (17) and (18) we get

|P(y)] < 5¢Q77,

1
P(y)l < 0.0, 1)
Similarly, for P(z) and P’(z) on interval oy, (P) we obtain
4 -
‘P(x)| < 3C5Q ) (20)

|P'(2)] < 3eQ.

Fix the vector b = (ay,...,as) of coefficients of P(x). The polynomials
P € P,(H,3) with the same vector b form a subclass P(b).

Without loss of generality, we may assume that a,, > 0. Otherwise mul-
tiply the polynomial by —1 which does not change the system (7). Every
coefficient a;, (3 < j < n — 1) may take at most (2Q+1) values. Thus we
have #P(b) < Q(2Q+1)"3. For convenience, note that #P(b) < 2"1Q"2.

We consider two types of rectangles I13(P). One type of rectangle I15(P;)
with P, € P(b) is called inessential if there is another rectangle II3(P;) with
P, € P(b) such that

p(Hs(Pr) N13(F)) = 0.5 p(Il3( ). (21)

The other type of rectangle I13(P;) and is called essential. It satisfies:  for

any P, € P(b) different from P
p(Hs(Pr) N15(R)) < 0.5 p(Il3 (1))

The case of essential rectangles. Summing the measures of rectan-

gles for all polynomials in P(b) , we obtain

> wlly(P) < 2|4 x |L. (22)
PcP(b)

Combining the definitions of 01, (P), o14(P), 0.(P), 0,(P) (see (15),(16)),

we get
po(P) < %nclcngivlJﬂyﬂglx(
,uay(P) < 431716265_1in2+7:“013/(

Let us estimate the measure of the union of Ily(P) for all polynomials

P)
7 (23)



selected above.

Z plly (P Z poy(P) x poy,(P) <

PeP(b PeP(b

< Z 2n cchCgQQ_”l_”QHV,uaM(P) X poy,(P) =
PeP(b)

= 2n’cicocy 2Q T Y Z pllz(P) <
PeP(b)
<4%20162052Q_U1_U2+27|Il||]2|. (24)

Summing over b, we get
Z Z /LHQ(P) < 2n+1n20102052Qn—2—v1—v2+2w’]1||]2|'
b PeP(b)
Taking into account v; + v, = n — 1, and writing 7 = %, we obtain

> ) pIL(P) < 27 nPeieacs | I || L) (25)
b PeP(b)

Given ¢ = 2" n%c;cy, the estimate in (25) does not exceed 27|11 || I5].

The case of inessential rectangles.

Define R(t) = Po(t) — Pi(t) = bat® + byt + by. Without loss of generality,
assume by > 0. Obviously, R(t) is not identically zero. The Conditions (19),
(20), and Py, P, € P(b) imply

|R(l’)| = ’bQI‘Q + blx + b0| < 305Q_7,

|R/<l’)| = |2b2£€ + b1| < 330, (26)
RW)| = [bay® + by +bo| < 3¢s077,

\R’(y)] = |2b2y + bl‘ < 3c4Q).

Let «a and [ denote roots of the polynomial R(z) with deg R = 2. By
inequalities (26) for |R(z)|, |R(y)|, and Lemma 2, we can estimate

|z — al < 6c;Q 77| R (o)1, (27)
ly — 6] < 6c;Q 7| R'(B)] . (28)

By (2), if |a — 3] < 0.08, we arrive at a contradiction for sufficiently large

Q



Thus |a — ] > 0.08 and
| R ()| = [R'(B)] = bafov — B > 0.08bs. (29)

Suppose ¢4 = min(cs, ¢y). Applying the Mean Value Theorem on the
interval oy,, we obtain

R(y) = R(B) + R"(&)(y — B) for some &5 € [B,y).
Since |R"(&)(y — B)| < 24csQ|R/(B)| 7, if |R'(B)|* > 48¢5Q' 7, then
|R'(8)] < 2|R'(y)| < 6c4Q- (30)

The estimate (30) follows from the inequalities (14). This implies that the
number of possible b, is bounded by

#by < 75¢4Q). (31)
Suppose that ]1 = [dl,dg], _[2 = [fl,fg], and |]2| > |Il|
First let us assume that |I;| = || = @ #. The point —25’712 is the

maximum of the parabola z = byx? + b1z + by. It is easy to verify that this

point lies inside the interval [2492 [11/2] The conditions z € I; C [, 1],
y €I, C [—1, 1] imply
Hby < 20,Q M + 2 = 2by| 1| + 2 (32)
and |b1| S |b2|
Now assume || > |I|. Divide I into m = [I21] 4+ 1 intervals J; such that

1]
J; < |I1] where 1 < j < m. Similarly, for every pair z € I; and y € J; we
obtain an upper bound for #b; similar to (32). Summing (32) over j gives
the following exact estimate of the number of possible b,

Hby < (2bo| | + 2)(|L| || 7! 4+ 1) < 4by| L] (33)

Suppose now that (26) holds for some Ry = by + byw + by. If we take
Ry = by + bix + by + 1 we may shift the argument by Az, i.e.,

1 = Ry(z)—Ry(2) = Ry(xz+Ax)—Ry(z) = R'(§)Ax for some & € [z, z+Ax].

If x + Az € I, then £ € I;. For a fixed pair (bq, b;) the estimate for the
derivative in (26) can be improved, namely

1
|R'(&6)| = |2b2&6 + b1] < 2|b2|§ + |b1] < 2|byl.

10



Summarizing, we conclude that

_ L,
A=|R(&) " = 5[0 g

This means that the number of possible values of b is at most
#bo < |]1||A|_1 < 2|b2||]1| (34)

By Lemma 2 and the estimates |R'(«)| > 27%by, |R'(3)| > 27%by from
(26), we obtain
|z — a| < 2%c;Q by

and
ly — B < 2°e;:Q77b;
Thus, the measure of the intersection Il3(P;) N II3(FP2) is less than
218c2b,2Q%. If v = 1, then the measure of the inessential rectangle is

less than
29¢c202Q 1. (35)

Using the estimates for by, by, by from (31), (33),(34), we may sum (35)
over (bg, by, by), and get

SN ulls(P) < 2% min(es, ea) | 1| Lol (36)

by b bo
For c5 = 2""n%c ¢y the estimate in (36) says

2"+34n20102 I’Ilil’l(Cg7 C4) ‘Il ‘ |IQ ‘ .
Given cico min(cs, ¢p) < 2773172, this bound is smaller than 27%. Thus, we
proved that

1
O

The remaining part of the proof strongly depends on the structures of ¢,
7 (they were introduced in the Auxiliary Statements) and on their relations
with the degrees vy, vy. In all of these statements below the measure tends
to zero as () — oo. The constants ¢y, o, c3, ¢4, and others no longer play
a significant role and will be replaced by the Vinogradov symbol < in the
remaining part of the paper.

Introduce a new subclass of polynomials as follows:

P =Pqr) = |J PHZGT).

2t LH<2t+1

11



In order to proceed we need one more definition.
A polynomial P € P(H,q,7) is called (iy, ;) linear, where i; = 0,1 and
i = 0,1, according to the ordering between q; + kyT~! and vy + 1, ry + 1,71
and vs + 1. For example, (0,0)-linearity means that the following system
holds:
q1 + k2T_1 < v +1,

(38)
r -+ lQT_l < vy + 1.

(0, 1)-linearity means (<,>) inequalities in the system above, (1,1)-
linearity means (=, >), and so on. The most important case are the (1,1)
and (0, 0)— linearities. Denote

di=q+r, dy=(ka+1)T"

We will consider polynomials P € P! such that H < Q. The main differences
between 0— and 1-linearity will be finding proper estimates of the differences
|z — aq| and |y — (1| when applying Lemma 2. We use the first estimate in
(13) for 0 —linearity and the second estimate in (13) for 1-linearity.

Proposition 2. Let M, »(¢,v,Q) denote the set of (x,y) € Iy x Iy such
that the system of inequalities

|P(x)] < Q7 (39)
[Py)| < Q™
holds for (1,1)-linearity. Then
o 1
/LMmQ(C,U,Q) < §|]1||]2| (40)
Proof.
(1, 1)-linearity implies d; + ds > n + 1. By Lemmas 2 and 3,
17— an| < Q"+ =Dz
ly = B < Q5 EHDa, )
Suppose p; = “%’2“. Let us divide the interval I; into equal subintervals

vo—ro+1
2

I;, where |I;| = Q P, Similarly, suppose ps = and divide I into

equal subintervals [;, where |[;| = Q~*>"=.
Then the number of rectangles I; x I; does not exceed

c(n) Qv =2 [ [ = ¢(n)QE )RR L) (42)

12



Choose rectangles I; x I; that contain not more than one solution P of system
(39). From (41) and (42) it follows that the measure of the solution set of
(39) does not exceed

—4E n—1l)e 1
c(n)Q F VR L || 1| < oz 1tlI2l. (43)

Let us show that the case where (39) holds for at least two polynomials
leads to a contradiction. Using a Taylor expansion on I; and I;, we obtain

Pi(z) = P'(ar)(z — on) + %Pﬁ(al)(ﬂ? — 1)’ + Y () PV () (@ — an),

Jj=3

Pily) = P30y — A1)+ 5P (B — 37 + 360 POy - )’

Similarly we obtain an expansion for P,. The above estimates of |z — a;|,
|y — (1], and the estimates for the derivatives that follow from Lemma 3 lead
to the following inequalities:

|P1 (:L’)| < Q—v1+(n—1)z-:1+257
|P1 (y)’ < Q—v2+(n—1)51+2€7
|P2(x)] < Q—v1+(n—1)61+26,
|P2(y)] < Q—v2+(n—1)51+28‘

(44)

Since P, and P, are irreducible they have no common roots. Thus, we can
apply Lemma 4 to obtain

n+l=vy—(n—1)e -2, 2(n+1—m)=vi+1+qp+2(n—1)e — 4,
To+l=ve—(n—1)g; —2¢, 2(n+1—1m) =ve+1+r3+2(n— 1) — 4,
and in the left side of the inequality in Lemma 4 we get

201+ 2vy+4—12¢e —6(n—1)e; =2n+ 2 — 126 — 6(n — 1)e;.

The right-hand side of this inequality then becomes 2n + 6. Given ¢, 1, we
obtain a contradiction to Lemma 4 when 6 < 0.5. [

Now let consider the case of (0,0)— linearity. Suppose that n + 0.1 <
dy + dy < n+ 1, namely

¢+ kT <wvp+1,
T+ lzT_l Vg + 1, (45)
di +ds >n+0.1.

NN

13



Proposition 3. Let M, 3(¢,v,Q) denote the set of (x,y) € I} x I such
that (39) holds together with (45). Then

1
,UMn’g(E,T),Q) < 5’11“]2’ (46)

Proposition 3 can be proved in a similar manner. When (45) holds the
first estimate is sharper then the second one in (13).

Again divide the rectangle I; x Iy into equal rectangles I; x I;, where
|| = Q77 |I;| = Q7 and p3 = kT, py = LT ', Then the number
of rectangles I; x I; does not exceed

c(n)QU=t T L | ). (47)

Again choose rectangles I; x I; such that there are no solutions or there is
at most one solution P of the system (39) with an extra condition (45). By
Lemma 2, we have for fixed a polynomial P(t)

|9§ _ a1| < Q*v1*1+th+(n*1)€1’
= Bil < Qe

Their product gives us an upper estimate for the measure of {(z,y) : x €
S(an), y € S(B1)}. Multiplying it by (47), we get the following upper esti-
mate for the measure of the solution set:

_ 1
C(n>Q7’U170272+(k2+l2)T 1+q1+r172s+2(n71)5|h|qu < Q7€|Il||12| < 3_2‘11||12‘_

Assume that there are at least two solutions in the rectangle I1 x I5. Again
using a Taylor expansion of P and estimating its summands from above we

obtain
’P1 T | < Ql—ql—kgT_1+(n—1)51—e’

(x)

Py(y)] < Q1T +nbeie

|Po(a)] < Q1T e (48)
)

|P2 y | < Ql*’l”l*lQT_l%*(n*l)é'l*E'
By Lemma 4 for

n+l=q+kT - (n—1)e;—e, 2(n+1—m)=2q —2(n— 1) — 2¢,

+l=r +LT ' —(n—1)e —¢, 2(n+1—m) =2r —2(n—1)g; — 2¢,

we get the following left-hand side for the inequality in Lemma 4

3q1 + kT +3r + 1,71 —6(n— 1)e; — 6e. (49)

14



But kT~ < qi, IbT' < rq, and (45) implies that the expression in (49) is
at least

2<d1 + dg) — b6e — 6(n — 1)61 2 2(U1 + UQ) + 3.6 — 6 — 6(n — 1)2’:‘1 =

=2n+0.2 — 6 — 6(n — 1)e;.
Given ¢, €1, we obtain a contradiction to Lemma 4 when § < 0.1.
Now let us consider the case of (0,0)-linearity for

n—03<d +dy<n+0.1 (50)

Proposition 4. Let M, 4(¢,v,Q) denote the set of (x,y) € I X I such
that (38), (39) hold together with (50). Then

1
/’LMnA(EJq_}?Q) < ﬁ’[ﬂ'[ﬂ (51)

Proof.

Let us divide the rectangle I; x I, into equal rectangles I; x I;, where
L] = Q7F=T"=n |I;| = Q=T '~ for some 4, > 0 that will be specified
below. Let us choose those rectangles where the system (39) has at least
c(n)Q% solutions in polynomials P(t) for some ¢; > 0. Estimate the measure

of Ay ={(z,y) : (z,y) € I; x J;}, which satisfies (39).
MAI < Q—vl—1+Q1—U2—1+T1+k2T71+12T71+271+91|Il| % |12| <

< Qel—n—1+d1+d2+2'ﬂ |_]1 | |]2"

When
01<7’L+1—d1—d2—2’71

the statement of Proposition 4 can be easily verified.
Consider now the opposite inequality

012u1:n+1—d1—d2—2%. (52)

By (50), 91 > 0 for T < 0.4.
Similarly to (48), estimate Fj(¢), { = 1,2, in I; x J;. We obtain

|Pl(l”)| < Ql_Q1_k‘2T71_’Yl+(n_1)al’ (53)
|Fi(y)] < Q=T mmn=be, (54)
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Apply Lemma 4 to Py(t) and Py(t) with following parameters

By Lemma 4 and (50), the inequality

leads to a contradiction.
Consider now the next case when

n—0.55<d +dy <n-—20.3. (56)

Proposition 5. Let M, 5(¢,v,Q) denote the set of (x,y) € I} x I such
that (38), (39) hold together with (56). Then

1
:uMn,S(EJT))Q) < 5’11“]2’ (57)

Proof.

The proof of Proposition 5 is similar to the proof of Proposition 4. Let
us divide the rectangle I; x Iy into equal rectangles I; x I;, where |[;| =
QT =% || = Q72T "= for some 7, > 0. Similarly, we introduce a
constant 6y > 0 and a set Ay. When 65 < n+ 1 — d; — dy — 27, holds, then
Proposition 4 can be easily proved. So consider

922u2:n—|—1—d1—d2—272. (58)

By (56), we can choose 7, = 0.6 in (58). Similarly to (53), estimate Py(t),
[ = 1,2 in newly constructed rectangles I; x J;. Applying Lemma 4, we
obtain an inequality similar to (55)

Since (56) and 0 < 0.05, the inequality leads to a contradiction. O
Let
2 <d; +dy <n—0.55. (59)

Proposition 6. Let M, 4(¢,v,Q) denote the set of (x,y) € I X I such
that (38), (39) hold together with (59). Then

1
/"LM'VZ75(E’@7Q) < §|]1||]2| (60)
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Proof.

The start of the proof is similar to the proofs of Propositions 4 and 5. We
divide the rectangle I; x I into equal rectangles I; x I;, where |I;] = Q%"
11| = Q277" Similarly, we introduce the constant 3 > 0 and the set A;.
When 63 < n+ 1 — dy — dy holds the proof of Proposition 6 is obvious.

Consider now

We can rewrite ug as
us = [ug] +{us}, |us] > 1.

Expanding P(t) and P/(t) on intervals /; and J; into a Taylor series and
estimating its terms above, we obtain

|P(z)] < QIrahT,
|P'(x)] < Q17
[P(y)] < QT
[P'(y)] < Q'

(62)

Since there are at most c(n)QM*{us} polynomials P(t) that belong to
I; x J;, then, by Dirichlet’s principle, there are at least K = c(n)Q{"1}
polynomials with equal coefficients of ¢*, t*~1, ... t*~[usl+1,

Now we construct further polynomials with degree at most n — [ug]

ijl(t)zpj(t)—Pl(t) j:2,,K
By (62) for R;(f),i=1,..., K — 1, we have

(| Rifa)] < Qo rnnas,

|R(z)| < Q'™

|Ri(y)| < Q1T =D, (63)
IR (y)| < Q'

(deg R; <n — [ug] = dy + do + {us} — 1.

We apply Lemma 4 to the two polynomials Ry, (t) and R, (t). This results
in a contradiction when {us} < 0.7.

Thus assume that {uz} > 0.7. Again we divide the rectangle I; x I
into equal rectangles I; x I;, where |I;| = Q%7 =% |[;| = Q=T "= for
some 73 > 0 such that 293 < {ug}. If the number of polynomials in these
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rectangles is ¢(n)Q% and 03 < uz = n + 1 — d; — dy — 273 then Proposition
6 can be easily proved. When

O3 >us=n+1—d; —dy — 2v3 = [us] + {uz}n — 23

one can obtain (63) with an approximation of |R;(x)| and |R;(y)| of the type
1—q— kT ' =+ (n—1)ey and 1 —r; — [, T — 3+ (n— 1)e; respectively.
Applying Lemma 4 to the pair of coprime polynomials, we get

2<d1 + dQ) - 6(n - 1)51 + 2’73 < 2(d1 + dg) -2 + 2{U4} + )

that leads to a contradiction for v3 = {“24} and 0 = 0.1. [J

Let us show how the theorem can be proved for the cases of (1,0) and
(0, 1)-linearity. Since both proofs are absolutely similar we will demonstrate
the method for (1, 0)-linearity only.

Proposition 7. Let M, 7(¢,v,Q) denote the set of (x,y) € I X I such

that (39) hold together with

q1 + kQT_l > U1 + 17 (64)
1+ lgT_l < Vg + 1.
Then ]
,U/Mn,'?(éa v, Q) < _’11“[2’
32
Proof.
Again divide the rectangle I; x I into rectangles I; x I;, where |[;| =

_vi—aga+l

Q"2 T, |I;| = Q7T+, We replace the second inequality in (64) by
vy +0.5 <1+ LT <wy 4 1. (65)

Consider the rectangles I; x I; which contain no more than one polynomial
P(t). Fix such a polynomial P(¢). Then the solution of (39) belongs to the
rectangle

o —al < Q7T (66)
ly — Bl < Q7=
Multiplying the estimates (66), we sum them over all rectangles I; x I;. Thus
we get the estimate of the kind ¢(n)Q~¢|I;|| 2| that proves Proposition 7. If
there are at least two polynomials such that belong to /; x I;, then we expand

them into Taylor series. We get

Po)] < @ rr s
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|Pi(y)| < QT
Apply Lemma 4 with

7'1:?]1+1—2€—(TL—1>€1,

2(7’1+1—T]1):U1+1+QQ—2€—2<H—1)61,
T+ 1l=r + LT " —¢,
2(72+1—772):2T1.

Then,
201 + 2+ LT 4+ 3r 4+ gy — 3(n—1)e; — 4e < 2n + 4. (67)

However, by (65), we have I;T~ + 3r; > 2vy + 1, and the left side in (67) is
larger than 2n 4+ 1 — 5e. Thus, for § < 0.5 we arrive at a contradiction.

The final part of the proof is similar to the proof of the (0,0)-linearity.
We omit the above estimate in (65) until we can use Dirichlet’s principle,
which results in polynomials of lower degree. [

The case r; < % and r; < % is considered in Proposition 1. It remains to
consider polynomials such that

1<dy+dy <2 (68)

holds. Here as in Proposition 1 we can pass to first degree polynomials which
lead to a contradiction with (3) or to the second degree polynomials. For
this case Theorem 1 was proved in Proposition 1.

Combining the results of all Propositions, we finally get

7
1
Mn—7_7 < Mn'_a_a <_I ]7
pMy (e, v, Q) ]Zlﬂ 4(60,Q) < [N 1|
concluding the proof of Theorem 2. W
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