On algebraic points in the plane near smooth curves

Vasili Bernik, Friedrich Götze, Olga Kukso October 4, 2009

1 Introduction

Despite major results on the distribution of rational numbers on the real line there remain a number of deep problems. Some of them can be found in the monographs of Cassels and Schmidt [1, 2]. The problem of counting integer points is a classical topic in number theory and there are various related problems like the Gauss circle problem or the problem number of divisors of natural numbers bounded by some big number [3, 4]. Some facts on counting integer points in multidimensional domains can be found in [5]. During the last 20 years considerable progress has been made concerning the number of points with rational coordinates near smooth curves by Beresnevich and Vilani [6, 7] insofar as the lower and upper bounds that have been obtained are of the same order.

In the present paper we introduce a method, which allows us to obtain bounds for the number of points with algebraic coordinates lying in a given domains of a Euclidean space. We consider algebraic points in the plane, but part of our results can be generalized to higher dimensional spaces.

Let $P \in \mathbb{Z}[x]$ be of the form

$$P(x) = P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

$$H = H(P) = \max_{1 \le j \le n} |a_j|, \ \deg P = n.$$
(1)

Let μA be the Lebesgue measure of a measurable set $A \subset \mathbb{R}^2$, and |I| the length of an interval $I \subset \mathbb{R}$. In what follows $c, c(n), c_1, c_2, \ldots$ stand for some positive constants depending on n only. Let $Q > Q_0(n)$, where Q_0 is a sufficiently large number. We will use the Vinogradov symbols $f \ll g$ which means that $f \leqslant cg$. The notation $B \approx D$ means $D \ll B \ll D$.

For some arbitrary positive constants μ_1 , μ_2 consider a rectangle

$$\Pi_1 = I_1 \times I_2 = [a_1, b_1] \times [a_2, b_2] \subset [-\frac{1}{2}, \frac{1}{2}] \subset \mathbb{R}^2$$

such that

$$\Pi_1 \cap \{|x - y| \leqslant 0.1\} = \emptyset \tag{2}$$

and

$$|I_1| = b_1 - a_1 = Q^{-\mu_1}, |I_2| = b_2 - a_2 = Q^{-\mu_2}.$$

Note that the lengths of I_1 and I_2 are small provided that $\mu_1 > 0$, $\mu_2 > 0$ and Q is sufficiently large.

Suppose that $\alpha_1, \alpha_2, \dots, \alpha_k$ denote k real roots of $P, 1 \leq k \leq n$.

We introduce the class of polynomials

$$\mathbf{P}_n(Q) = \{ P_n \in \mathbb{Z}[x] : \deg P = n, n \geqslant 3, a_n \gg H(P), H(P) \leqslant Q \}. \tag{3}$$

The condition $|a_n| \gg H$ implies that the roots of P(x) are bounded, see Sprindzuk [8].

Let $K_n(\Pi_1, Q)$ be the set of points (α_i, α_i) , $1 \le i < j \le k$, such that

- (i) (α_i, α_j) are real roots of $P \in \mathbf{P}_n(Q)$,
- (ii) $(\alpha_i, \alpha_j) \in \Pi_1$.

Remark. Condition (ii) excludes the coincidence of the roots α_1 and α_2 . The aim of this paper is to estimate the cardinality of $K_n(\Pi_1, Q)$.

Theorem 1 Let $0 < \mu_i < \frac{1}{2}$, i = 1, 2. Then

$$\#K_n(\Pi_1, Q) \gg Q^{n+1-\mu_1-\mu_2}.$$
 (4)

Remark. Consider $J_1 \times J_2 = [\frac{1}{3} - Q^{-1-\varepsilon}, \frac{1}{3} + Q^{-1-\varepsilon}] \times [\frac{1}{4} - Q^{-1-\varepsilon}, \frac{1}{4} + Q^{-1-\varepsilon}]$, where $\varepsilon > 0$. Suppose that, on the contrary, that there is a polynomial $T \in \mathbf{P}_n(Q)$ such that a pair of its roots (α_1, α_2) belongs to $J_1 \times J_2$ and T is coprime to $P(x) = (3x - 1)(4x - 1) = 12x^2 - 7x + 1$. The last assumption implies that $|R(T, P)| \ge 1$, where R(T, P) is the resultant of T(x) and P(x). Since the roots of T(x) are bounded, we have

$$1 \leqslant |R(T,P)| = 12^n a_n^2 \prod_{i=1}^n \left| \frac{1}{3} - \alpha_i \right| \prod_{j=1}^n \left| \frac{1}{4} - \alpha_j \right| =$$

$$= 12^n a_n^2 |\alpha_1 - \frac{1}{3}| |\alpha_2 - \frac{1}{4}| \prod_{i \neq 1} \left| \frac{1}{3} - \alpha_i \right| \prod_{j \neq 2} \left| \frac{1}{4} - \alpha_j \right| \ll$$

$$\ll Q^2 Q^{-1-\varepsilon} Q^{-1-\varepsilon} = Q^{-2\varepsilon}. \quad (5)$$

The inequality (5) yields a contradiction if Q is sufficiently large.

This remark shows that Theorem 1 cannot be considerably improved. It won't hold for $\max_j \mu_j > 1$. Improvements are possible for intervals I_1 , I_2 only that don't contain algebraic numbers of small degree and height.

Corollary. Let f(x) be a continuous function on the interval I = [a, b] and let

$$\mathcal{L}(Q,\lambda) = \{(x,y) : x \in I, |y - f(x)| < Q^{-\lambda}\}, \quad 0 < \lambda < \frac{1}{2}.$$
 (6)

Then there are at least $c(n)Q^{n+1-\lambda}$ algebraic points such that $(\alpha_1, \alpha_2) \in \mathcal{L}(Q, \lambda)$.

Proof of the corollary. The set $\mathcal{L}(Q,\lambda)$ represents a strip containing the curve y=f(x). Its width equals $2Q^{-\lambda}$, $0<\lambda<\frac{1}{2}$. Let us split an interval [a,b] into equal parts of length at most $Q^{-\lambda}$ choosing points

$$x_0 = a, \ x_1 = x_0 + Q^{-\lambda}, \ \dots, \ x_j = x_{j-1} + Q^{\lambda}, \ \dots, \ x_s = x_0 + sQ^{\lambda},$$

where $\lambda \leq 1$. Furthermore, inscribe rectangles of size $Q^{-\lambda} \times c(n)Q^{-\lambda}$ into every rectangle

$$\{(x,y) : |x - \frac{x_i + x_{i+1}}{2}| \le \frac{1}{2}Q^{-\lambda}, |y - f(x)| < \frac{1}{2}Q^{-\lambda}\}.$$

By Theorem 1, every such rectangle contains at least $c(n)Q^{n+1-2\lambda}$ algebraic points (α_1, α_2) . Collecting the algebraic in all rectangles we obtain

$$\#\mathcal{L}(Q,\lambda)\cap \mathbb{A}_n\gg c(n)Q^{n+1-\lambda}.$$

The proof of Theorem 1 is based on the construction of special polynomials $P(t) \in \mathbf{P}_n(Q)$ such that

1. |P(x)| and |P(y)| are small,

2. |P'(x)| and |P'(y)| are comparable with H(P),

where $(x,y) \in B_1 \subset \Pi_1$ and $\mu B_1 > \frac{1}{2}\mu\Pi_1$.

Let $\overline{c} = (c_1, c_2, c_3, c_4)$ and $\overline{v} = (v_1, v_2)$ denote positive vectors. Let $M_n(\overline{c}, Q)$ denote the set of points $\overline{x} \in \Pi_1$ such that the following system

$$\begin{cases}
|P(x)| < c_1 Q^{-v_1}, \\
|P(y)| < c_2 Q^{-v_2}, \\
|P'(x)| < c_3 Q, \\
|P'(y)| < c_4 Q, \\
v_1 + v_2 = n - 1
\end{cases}$$
(7)

has a solution $P(t) \in \mathbb{Z}[t] \setminus \{0\}$.

Theorem 2 Assume that $c_1c_2\min(c_3, c_4) < 2^{-n-38}n^{-2}$ and $\max(c_1, c_2, c_3, c_4) \le 1$. Then

$$\mu M_n(\overline{c}, Q) < \frac{1}{4}|I_1||I_2|. \tag{8}$$

To prove Theorem 2 we impose an extra condition on P. We consider only irreducible polynomials. This condition is not very restrictive and leads to an equivalent problem as shown in Sprindzuk and Bernik [8, 9].

2 Auxiliary statements

This section contains several lemmas that will be used in the proof of Theorem 2.

In what follows $\mathcal{P}_n(Q)$ denotes the class of irreducible polynomials P(t) with $H(P) \leq Q$ such that (7) holds. Furthermore, let $\tilde{\mathcal{P}}_n(H)$ be the subclass of $\mathcal{P}_n(H)$ consisting of polynomials P with H(P) = H.

For each polynomial $P \in \tilde{\mathcal{P}}_n(H)$ with roots $\alpha_1, \alpha_2, \ldots, \alpha_n$, we pick a pair of roots α_i and α_j , $i \neq j$. Throughout for convenience, we shall write α_1 instead of α_i and β_1 instead of α_j . Furthermore, we order the other roots of P with respect to the distance from the roots α_1 and β_1

$$|\alpha_1 - \alpha_2| \leqslant |\alpha_1 - \alpha_3| \leqslant \dots \leqslant |\alpha_1 - \alpha_n|,$$

$$|\beta_1 - \beta_2| \leqslant |\beta_1 - \beta_3| \leqslant \dots \leqslant |\beta_1 - \beta_n|.$$
(9)

Obviously, in (9), the set $\beta_1, \beta_2, \ldots, \beta_n$ is a permutation of the roots $\alpha_1, \alpha_2, \ldots, \alpha_n$. Denote

$$S(\alpha_1) = \{ x \in \mathbb{R} : |x - \alpha_1| = \min_{1 \le j \le n} |x - \alpha_j| \},$$

$$S(\beta_1) = \{ x \in \mathbb{R} : |x - \beta_1| = \min_{1 \le j \le n} |x - \beta_j| \}.$$

We will consider now the system of inequalities (7) for $x \in S(\alpha_1)$ and $y \in S(\beta_1)$.

Lemma 1 (see [8]) If $|a_n| \gg H$ then for any $i, 1 \leqslant i \leqslant n$,

$$|\alpha_i| < c$$
.

Lemma 2 Let $P \in \tilde{\mathcal{P}}_n(H)$ and $x \in S(\alpha_1)$. Then

$$|x - \alpha_1| \leqslant n \frac{|P(x)|}{|P'(x)|},$$

$$|x - \alpha_1| \leq 2^{n-1} |P(x)| |P'(\alpha_1)|^{-1}, \tag{10}$$

$$|x - \alpha_1| \leq \min_{2 \leq j \leq n} (2^{n-j} |P(x)| |P'(\alpha_1)|^{-1} \prod_{k=2}^{j} |\alpha_1 - \alpha_k|)^{\frac{1}{j}}.$$

The first inequality in (10) immediately follows from the identity $|P'(x)||P(x)|^{-1} = |\sum_{i=1}^n \frac{1}{(x-\alpha_i)}|$ and the inequalities $|x-\alpha_1| \leq |x-\alpha_j|$, $j=2,\ldots,n$. The remaining inequalities were proved in Sprindzuk and Bernik[8, 10].

Let $\varepsilon > 0$ be sufficiently small, and let N = N(n) > 0 be sufficiently large fixed numbers. Write $\varepsilon_1 = \varepsilon N^{-1}$, and $T = [\varepsilon_1]^{-1}$.

Using (9) define numbers $\rho_{1,j}$ and $\rho_{2,j}$ $(2 \leq j \leq n)$ by setting

$$|\alpha_{1} - \alpha_{j}| = H^{-\rho_{1j}}, \ \rho_{1,n} \leqslant \dots \leqslant \rho_{12}, |\beta_{1} - \beta_{j}| = H^{-\rho_{2j}}, \ \rho_{2,n} \leqslant \dots \leqslant \rho_{22}.$$
(11)

By Lemma 1 the roots α_j are bounded. Then the inequalities (9) and (11) imply $\rho_{i,j} > -\frac{\varepsilon_1}{2}$.

For every polynomial there are uniquely determined integral vectors (k_2, k_3, \ldots, k_n) and (l_2, l_3, \ldots, l_n) such that the inequalities

$$(k_j - 1)T^{-1} \leqslant \rho_{1j} < k_j T^{-1} , \quad 0 \leqslant k_n \leqslant \ldots \leqslant k_2,$$

 $(l_j - 1)T^{-1} \leqslant \rho_{2j} < l_j T^{-1} , \quad 0 \leqslant l_n \leqslant \ldots \leqslant l_2$

hold. Furthermore, define

$$q_i = T^{-1} \sum_{m=i+1}^{n} k_m, \quad r_i = T^{-1} \sum_{m=i+1}^{n} l_m, \ 1 \le i \le n-1.$$

Consider $\bigcup_{H=1}^{\infty} \tilde{\mathcal{P}}_n(H)$. Using results of Sprindzuk [8], the number of possible vectors $\bar{k} = (k_2, k_3, \dots, k_n)$ and $\bar{l} = (l_2, l_3, \dots, l_n)$ is finite. Thus, all polynomials $P \in \tilde{\mathcal{P}}_n(H)$ corresponding to the same pair of vectors

Thus, all polynomials $P \in \tilde{\mathcal{P}}_n(H)$ corresponding to the same pair of vectors $\overline{s} = (\overline{k}, \overline{l})$ can be grouped together into a class $\tilde{\mathcal{P}}_n(H, \overline{s})$.

Lemma 3 (see Bernik [10]) Let $P \in \tilde{\mathcal{P}}_n(H, \overline{s})$. The we have

$$H^{1-q_1} \leq |P'(\alpha_1)| < H^{1-q_1+(n-1)\varepsilon_1},$$

 $H^{1-r_1} \leq |P'(\beta_1)| < H^{1-r_1+(n-1)\varepsilon_1},$

and for any $k, 2 \leq k \leq n$,

$$|P^{(k)}(\alpha_1)| \ll H^{1-q_k+k(n-1)\varepsilon_1}$$

$$|P^{(k)}(\beta_1)| \ll H^{1-r_k+k(n-1)\varepsilon_1}$$

Lemma 4 Let $\delta, K_0, \eta_1, \eta_2 \in \mathbb{R}_+$. Furthermore, let $P_1, P_2 \in \mathbb{Z}[x]$ be two relatively prime polynomials of degree at most n with $\max(H(P_1), H(P_2)) \leq K$ and $K > K_0(\delta)$. Let J_1 and J_2 denote intervals with $|J_1| = K^{-\eta_1}$, $|J_2| = K^{-\eta_2}$. If there exist numbers $\tau_1, \tau_2 > 0$ such that for all $(x, y) \in J_1 \times J_2$

$$\max(|P_1(x)|, |P_2(x)|) < K^{-\tau_1}, \\ \max(|P_1(y)|, |P_2(y)|) < K^{-\tau_2},$$

then

$$\tau_1 + \tau_2 + 2 + 2 \max(\tau_1 + 1 - \eta_1, 0) + 2 \max(\tau_2 + 1 - \eta_2, 0) < 2n + \delta.$$

For the proof see Bernik [11].

Remark. Actually, a stronger result holds, namely

$$\tau_1 + \tau_2 + 2 + 2 \max(\sum_{k=1}^{\infty} \tau_1 + 1 - \eta_1, 0) + 2 \max(\sum_{k=1}^{\infty} \tau_2 + 1 - \eta_2, 0) < 2n + \delta.$$

When we apply Lemma 4 we will usually choose parameters τ_1 , τ_2 , η_1 , η_2 satisfying

$$\tau_1 = k_2 T^{-1} + q_1 - 1, \ \tau_2 = l_2 T^{-1} + r_1 - 1, \ \eta_1 = k_2 T^{-1}, \ \eta_2 = l_2 T^{-1}.$$

Thus, if the difference between, say, l_2T^1 and r_1 is larger, then the result of Lemma 4 will be stronger. Therefore, without loss of generality, we can assume that $k_2T^{-1}=q_1$, $l_2T^{-1}=r_1$, and $q_j=r_j=0$ for $j\geq 2$.

3 Proof of Theorem 2

First, we consider a special case of system (7) when |P'(x)|, |P'(y)| are bounded below. Let us remind that $x \in S(\alpha_1)$ and $y \in S(\beta_1)$.

Proposition 1. Let $v > \frac{1}{2}$ denote a constant and let $M_{n,1}(\bar{c}, Q)$ denote the set of solutions $(x, y) \in I_1 \times I_2$ of the system

$$\begin{cases}
|P(x)| \le c_1 Q^{-v_1}, \\
|P(y)| \le c_2 Q^{-v_2}, \\
Q^v < |P'(x)| < c_3 Q, \\
Q^v < |P'(y)| < c_4 Q.
\end{cases} \tag{12}$$

Then

$$\mu M_{n,1}(\bar{c},\bar{v},Q) < \frac{1}{8}|I_1||I_2|.$$

Now estimates for |P'(x)| and |P'(y)| provide estimates for $|P'(\alpha_1)|$ and $|P'(\beta_1)|$.

By the first inequality in (10) for any $x \in S(\alpha_1)$ and $y \in S(\beta_1)$, we have

$$|x - \alpha_1| < n|P(x)||P'(x)|^{-1} < c_1 n Q^{-v_1 - v}, |y - \beta_1| < n|P(y)||P'(y)|^{-1} < c_2 n Q^{-v_2 - v}.$$
(13)

The Mean Value Theorem yields

$$P'(x) = P'(\alpha_1) + P''(\xi_1)(x - \alpha_1)$$
 for some $\xi_1 \in (\alpha_1, x)$, $P'(y) = P'(\beta_1) + P''(\xi_2)(y - \beta_2)$ for some $\xi_2 \in (\beta_2, y)$.

Obviously, we have $|P''(\xi_1)(x-\alpha_1)| \ll Q^{1-v_1-v}$, $|P''(\xi_2)(y-\beta_1)| \ll Q^{1-v_2-v}$. Thus, for sufficiently large Q we obtain

$$\frac{3}{4}Q^{v} \le \frac{3}{4}|P'(x)| < |P'(\alpha_{1})| < \frac{4}{3}|P'(x)| \le \frac{4}{3}c_{3}Q,
\frac{3}{4}Q^{v} \le \frac{3}{4}|P'(y)| < |P'(\beta_{1})| < \frac{4}{3}|P'(y)| \le \frac{4}{3}c_{4}Q.$$
(14)

By (14) and Lemma 2, we have

$$|x - \alpha_1| < \frac{4}{3}n|P(x)||P'(\alpha_1)|^{-1}, |y - \beta_1| < \frac{4}{3}n|P(y)||P'(\beta_1)|^{-1}.$$
(15)

Let $\sigma_x(P)$, $\sigma_y(P)$ denote the sets of solutions of (15) for x and y, respectively. Let $\Pi_2(P) = \sigma_x(P) \times \sigma_y(P)$. Clearly, all solutions $(x, y) \in S(\alpha_1) \times S(\beta_1)$ of the system (12) are contained in $\Pi_2(P)$.

We introduce the intervals

$$\sigma_{1x}(P) : |x - \alpha_1| < c_5 Q^{-\gamma} |P'(\alpha_1)|^{-1},
\sigma_{1y}(P) : |y - \beta_1| < c_5 Q^{-\gamma} |P'(\beta_1)|^{-1},$$
(16)

where values of positive constants γ and c_5 will be specified below. Assign $\Pi_3(P) = \sigma_{1x}(P) \times \sigma_{1y}(P)$.

Now we shall estimate the values of P and P' on the intervals $\sigma_{1x}(P)$ and $\sigma_{1y}(P)$. For the sake of simplicity we shall consider P(y) and P'(y) on $\sigma_{1y}(P)$ only. The Mean Value Theorem yields

$$P(y) = P'(\beta_1)(y - \beta_1) + \frac{1}{2}P''(\xi_3)(y - \beta_1)^2 \quad \text{for some} \quad \xi_3 \in (\beta_1, y), P'(y) = P'(\beta_1) + P''(\xi_4)(y - \beta_1) \quad \text{for some} \quad \xi_4 \in (\beta_1, y).$$
 (17)

By (14) and (16), the second terms of P(y) and P'(y) may be estimated as follows

$$\left|\frac{1}{2}P''(\xi_3)(y-\beta_1)^2\right| \ll Q^{1-2\gamma-2v}, |P''(\xi_4)(y-\beta_1)| \ll Q^{1-\gamma-v}.$$
 (18)

From (17) and (18) we get

$$|P(y)| < \frac{4}{3}c_5Q^{-\gamma}, |P'(y)| < \frac{5}{3}c_4Q.$$
 (19)

Similarly, for P(x) and P'(x) on interval $\sigma_{1x}(P)$ we obtain

$$|P(x)| < \frac{4}{3}c_5Q^{-\gamma},$$

 $|P'(x)| < \frac{5}{3}c_3Q.$ (20)

Fix the vector $\bar{b} = (a_n, \dots, a_3)$ of coefficients of P(x). The polynomials $P \in \tilde{\mathcal{P}}_n(H, \bar{s})$ with the same vector \bar{b} form a subclass $\mathcal{P}(\bar{b})$.

Without loss of generality, we may assume that $a_n > 0$. Otherwise multiply the polynomial by -1 which does not change the system (7). Every coefficient a_j , $(3 \le j \le n-1)$ may take at most (2Q+1) values. Thus we have $\#\mathcal{P}(\bar{b}) \le Q(2Q+1)^{n-3}$. For convenience, note that $\#\mathcal{P}(\bar{b}) \le 2^{n-1}Q^{n-2}$.

We consider two types of rectangles $\Pi_3(P)$. One type of rectangle $\Pi_3(P_1)$ with $P_1 \in \mathcal{P}(\bar{b})$ is called *inessential* if there is another rectangle $\Pi_3(P_2)$ with $P_2 \in \mathcal{P}(\bar{b})$ such that

$$\mu(\Pi_3(P_1) \cap \Pi_3(P_2)) \geqslant 0.5 \,\mu(\Pi_3(P_1)).$$
 (21)

The other type of rectangle $\Pi_3(P_1)$ and is called *essential*. It satisfies: for any $P_2 \in \mathcal{P}(\bar{b})$ different from P_1

$$\mu(\Pi_3(P_1) \cap \Pi_3(P_2)) < 0.5 \,\mu(\Pi_3(P_1)).$$

The case of essential rectangles. Summing the measures of rectangles for all polynomials in $\mathcal{P}(\bar{b})$, we obtain

$$\sum_{P \in \mathcal{P}(\bar{b})} \mu \Pi_3(P) \leqslant 2|I_1| \times |I_2|. \tag{22}$$

Combining the definitions of $\sigma_{1x}(P)$, $\sigma_{1y}(P)$, $\sigma_{x}(P)$, $\sigma_{y}(P)$ (see (15),(16)), we get

$$\mu\sigma_x(P) < \frac{4}{3}nc_1c_5^{-1}Q^{-v_1+\gamma}\mu\sigma_{1x}(P), \mu\sigma_y(P) < \frac{4}{3}nc_2c_5^{-1}Q^{-v_2+\gamma}\mu\sigma_{1y}(P).$$
(23)

Let us estimate the measure of the union of $\Pi_2(P)$ for all polynomials

selected above.

$$\begin{split} \sum_{P \in \mathcal{P}(\bar{b})} \mu \Pi_{2}(P) &= \sum_{P \in \mathcal{P}(\bar{b})} \mu \sigma_{x}(P) \times \mu \sigma_{y}(P) < \\ &< \sum_{P \in \mathcal{P}(\bar{b})} 2n^{2} c_{1} c_{2} c_{5}^{-2} Q^{-v_{1}-v_{2}+2\gamma} \mu \sigma_{1x}(P) \times \mu \sigma_{1y}(P) = \\ &= 2n^{2} c_{1} c_{2} c_{5}^{-2} Q^{-v_{1}-v_{2}+2\gamma} \sum_{P \in \mathcal{P}(\bar{b})} \mu \Pi_{3}(P) < \\ &< 4n^{2} c_{1} c_{2} c_{5}^{-2} Q^{-v_{1}-v_{2}+2\gamma} |I_{1}| |I_{2}|. \quad (24) \end{split}$$

Summing over \bar{b} , we get

$$\sum_{\bar{b}} \sum_{P \in \mathcal{P}(\bar{b})} \mu \Pi_2(P) < 2^{n+1} n^2 c_1 c_2 c_5^{-2} Q^{n-2-v_1-v_2+2\gamma} |I_1| |I_2|.$$

Taking into account $v_1 + v_2 = n - 1$, and writing $\gamma = \frac{1}{2}$, we obtain

$$\sum_{\bar{b}} \sum_{P \in \mathcal{P}(\bar{b})} \mu \Pi_2(P) < 2^{n+1} n^2 c_1 c_2 c_5^{-2} |I_1| |I_2|.$$
 (25)

Given $c_5^2 = 2^{n+5}n^2c_1c_2$, the estimate in (25) does not exceed $2^{-4}|I_1||I_2|$. The case of inessential rectangles.

Define $R(t) = P_2(t) - P_1(t) = b_2t^2 + b_1t + b_0$. Without loss of generality, assume $b_2 \ge 0$. Obviously, R(t) is not identically zero. The Conditions (19), (20), and $P_1, P_2 \in \mathcal{P}(\bar{b})$ imply

$$|R(x)| = |b_2x^2 + b_1x + b_0| < 3c_5Q^{-\gamma},
|R'(x)| = |2b_2x + b_1| < 3c_3Q,
|R(y)| = |b_2y^2 + b_1y + b_0| < 3c_5Q^{-\gamma},
|R'(y)| = |2b_2y + b_1| < 3c_4Q.$$
(26)

Let α and β denote roots of the polynomial R(x) with deg R=2. By inequalities (26) for |R(x)|, |R(y)|, and Lemma 2, we can estimate

$$|x - \alpha| < 6c_5 Q^{-\gamma} |R'(\alpha)|^{-1},$$
 (27)

$$|y - \beta| < 6c_5 Q^{-\gamma} |R'(\beta)|^{-1}.$$
 (28)

By (2), if $|\alpha - \beta| < 0.08$, we arrive at a contradiction for sufficiently large Q

$$0, 1 < |x - y| \le |x - \alpha| + |y - \beta| + |\alpha - \beta| < 0, 09.$$

Thus $|\alpha - \beta| \ge 0.08$ and

$$|R'(\alpha)| = |R'(\beta)| = b_2|\alpha - \beta| > 0.08b_2. \tag{29}$$

Suppose $c_4 = \min(c_3, c_4)$. Applying the Mean Value Theorem on the interval σ_{1y} , we obtain

$$R'(y) = R'(\beta) + R''(\xi_5)(y - \beta)$$
 for some $\xi_5 \in [\beta, y]$.

Since $|R''(\xi_5)(y-\beta)| < 24c_5Q^{1-\gamma}|R'(\beta)|^{-1}$, if $|R'(\beta)|^2 > 48c_5Q^{1-\gamma}$, then

$$|R'(\beta)| < 2|R'(y)| < 6c_4Q. \tag{30}$$

The estimate (30) follows from the inequalities (14). This implies that the **number of possible** b_2 is bounded by

$$\#b_2 < 75c_4Q.$$
 (31)

Suppose that $I_1 = [d_1, d_2]$, $I_2 = [f_1, f_2]$, and $|I_2| \ge |I_1|$. First let us assume that $|I_1| = |I_2| = Q^{-\mu_1}$. The point $-\frac{b_1}{2b_2}$ is the maximum of the parabola $z = b_2 x^2 + b_1 x + b_0$. It is easy to verify that this point lies inside the interval $\left[\frac{d_1+d_2}{2}, \frac{f_1+f_2}{2}\right]$. The conditions $x \in I_1 \subset \left[-\frac{1}{2}, \frac{1}{2}\right]$, $y \in I_2 \subset \left[-\frac{1}{2}, \frac{1}{2}\right]$ imply

$$#b_1 \le 2b_2 Q^{-\mu_1} + 2 = 2b_2 |I_1| + 2 \tag{32}$$

Now assume $|I_1| > |I_2|$. Divide I_2 into $m = \lfloor \frac{|I_2|}{|I_1|} \rfloor + 1$ intervals I_i such that $J_i \leq |I_1|$ where $1 \leqslant j \leqslant m$. Similarly, for every pair $x \in I_1$ and $y \in J_i$ we obtain an upper bound for $\#b_1$ similar to (32). Summing (32) over j gives the following exact estimate of the number of possible b_1

$$#b_1 \le (2b_2|I_1| + 2)(|I_2||I_1|^{-1} + 1) \le 4b_2|I_2|.$$
(33)

Suppose now that (26) holds for some $R_1 = b_2 x^2 + b_1 x + b_0$. If we take $R_2 = b_2 x^2 + b_1 x + b_0 + 1$ we may shift the argument by Δx , i.e.,

$$1 = R_2(x) - R_1(x) = R_1(x + \Delta x) - R_1(x) = R'(\xi_6) \Delta x$$
 for some $\xi_6 \in [x, x + \Delta x]$.

If $x + \Delta x \in I_1$, then $\xi \in I_1$. For a fixed pair (b_2, b_1) the estimate for the derivative in (26) can be improved, namely

$$|R'(\xi_6)| = |2b_2\xi_6 + b_1| \le 2|b_2|\frac{1}{2} + |b_1| \le 2|b_2|.$$

Summarizing, we conclude that

$$\Delta = |R'(\xi_6)|^{-1} \ge \frac{1}{2}|b_2|^{-1}.$$

This means that the number of possible values of b_0 is at most

$$#b_0 \leqslant |I_1||\Delta|^{-1} < 2|b_2||I_1|. \tag{34}$$

By Lemma 2 and the estimates $|R'(\alpha)| > 2^{-4}b_2$, $|R'(\beta)| > 2^{-4}b_2$ from (26), we obtain

$$|x - \alpha| < 2^8 c_5 Q^{-\gamma} b_2^{-1}$$

and

$$|y - \beta| < 2^8 c_5 Q^{-\gamma} b_2^{-1}$$
.

Thus, the measure of the intersection $\Pi_3(P_1) \cap \Pi_3(P_2)$ is less than $2^{18}c_5^2b_2^{-2}Q^{-2\gamma}$. If $\gamma = \frac{1}{2}$, then the measure of the inessential rectangle is less than

$$2^{19}c_5^2b_2^{-2}Q^{-1}. (35)$$

Using the estimates for b_0, b_1, b_2 from (31), (33),(34), we may sum (35) over (b_0, b_1, b_2) , and get

$$\sum_{b_2} \sum_{b_1} \sum_{b_0} \mu \Pi_3(P) < 2^{29} \min(c_3, c_4) c_5^2 |I_1| |I_2|.$$
 (36)

For $c_5 = 2^{n+5}n^2c_1c_2$ the estimate in (36) says

$$2^{n+34}n^2c_1c_2\min(c_3,c_4)|I_1||I_2|.$$

Given $c_1c_2\min(c_3,c_4)<2^{-n-38}n^{-2}$, this bound is smaller than 2^{-4} . Thus, we proved that

$$\mu M_{n1}(\bar{c}, Q) < \frac{1}{8}|I_1||I_2|.$$
 (37)

The remaining part of the proof strongly depends on the structures of \bar{q} , \bar{r} (they were introduced in the Auxiliary Statements) and on their relations with the degrees v_1 , v_2 . In all of these statements below the measure tends to zero as $Q \to \infty$. The constants c_1, c_2, c_3, c_4 , and others no longer play a significant role and will be replaced by the Vinogradov symbol \ll in the remaining part of the paper.

Introduce a new subclass of polynomials as follows:

$$\mathcal{P}^t = \mathcal{P}^t(\bar{q}, \bar{r}) = \bigcup_{2^t \leqslant H < 2^{t+1}} \tilde{\mathcal{P}}(H, \bar{q}, \bar{r}).$$

In order to proceed we need one more definition.

A polynomial $P \in \tilde{\mathcal{P}}(H, \bar{q}, \bar{r})$ is called (i_1, i_2) -linear, where $i_1 = 0, 1$ and $i_2 = 0, 1$, according to the ordering between $q_1 + k_2 T^{-1}$ and $v_1 + 1$, $r_1 + l_2 T^{-1}$ and $v_2 + 1$. For example, (0, 0)-linearity means that the following system holds:

$$q_1 + k_2 T^{-1} < v_1 + 1,$$

 $r_1 + l_2 T^{-1} < v_2 + 1.$ (38)

(0,1)-linearity means $(<,\geqslant)$ inequalities in the system above, (1,1)-linearity means (\geqslant,\geqslant) , and so on. The most important case are the (1,1) and (0,0)-linearities. Denote

$$d_1 = q_1 + r_1, \quad d_2 = (k_2 + l_2)T^{-1}.$$

We will consider polynomials $P \in \mathcal{P}^t$ such that $H \simeq Q$. The main differences between 0– and 1–linearity will be finding proper estimates of the differences $|x - \alpha_1|$ and $|y - \beta_1|$ when applying Lemma 2. We use the first estimate in (13) for 0–linearity and the second estimate in (13) for 1–linearity.

Proposition 2. Let $M_{n,2}(\bar{c}, \bar{v}, Q)$ denote the set of $(x, y) \in I_1 \times I_2$ such that the system of inequalities

$$\begin{cases} |P(x)| \ll Q^{-v_1}, \\ |P(y)| \ll Q^{-v_2} \end{cases}$$
 (39)

holds for (1,1)-linearity. Then

$$\mu M_{n,2}(\bar{c}, \bar{v}, Q) < \frac{1}{32} |I_1| |I_2|.$$
 (40)

Proof.

(1,1)-linearity implies $d_1 + d_2 \ge n + 1$. By Lemmas 2 and 3,

$$\begin{cases} |x - \alpha_1| \ll Q^{-\frac{v_1+1}{2} + \frac{q_1}{2} + (n-1)\varepsilon_1}, \\ |y - \beta_1| \ll Q^{-\frac{v_2+1}{2} + \frac{r_1}{2} + (n-1)\varepsilon_1}. \end{cases}$$
(41)

Suppose $\rho_1 = \frac{v_1 - q_2 + 1}{2}$. Let us divide the interval I_1 into equal subintervals I_i , where $|I_i| = Q^{-\rho_1 + \varepsilon}$. Similarly, suppose $\rho_2 = \frac{v_2 - r_2 + 1}{2}$ and divide I_2 into equal subintervals I_j , where $|I_j| = Q^{-\rho_2 + \varepsilon}$.

Then the number of rectangles $I_i \times I_j$ does not exceed

$$c(n)Q^{\frac{1}{2}(v_1+v_2+2)-q_2-r_2-2\varepsilon}|I_1||I_2| = c(n)Q^{\frac{1}{2}(n+1)-q_2-r_2-2\varepsilon}|I_1||I_2|.$$
(42)

Choose rectangles $I_i \times I_j$ that contain not more than one solution P of system (39). From (41) and (42) it follows that the measure of the solution set of (39) does not exceed

$$c(n)Q^{-2\varepsilon+2(n-1)\varepsilon_1}|I_1||I_2| < \frac{1}{64}|I_1||I_2|.$$
 (43)

Let us show that the case where (39) holds for at least two polynomials leads to a contradiction. Using a Taylor expansion on I_i and I_j , we obtain

$$P_1(x) = P'(\alpha_1)(x - \alpha_1) + \frac{1}{2}P''(\alpha_1)(x - \alpha_1)^2 + \sum_{j=3}^n (j!)^{-1}P^{(j)}(\alpha_1)(x - \alpha_1)^j,$$

$$P_1(y) = P'(\beta_1)(y - \beta_1) + \frac{1}{2}P''(\beta_1)(y - \beta_1)^2 + \sum_{j=3}^n (j!)^{-1}P^{(j)}(\beta_1)(y - \beta_1)^j.$$

Similarly we obtain an expansion for P_2 . The above estimates of $|x - \alpha_1|$, $|y - \beta_1|$, and the estimates for the derivatives that follow from Lemma 3 lead to the following inequalities:

$$\begin{cases}
|P_1(x)| \ll Q^{-v_1 + (n-1)\varepsilon_1 + 2\varepsilon}, \\
|P_1(y)| \ll Q^{-v_2 + (n-1)\varepsilon_1 + 2\varepsilon}, \\
|P_2(x)| \ll Q^{-v_1 + (n-1)\varepsilon_1 + 2\varepsilon}, \\
|P_2(y)| \ll Q^{-v_2 + (n-1)\varepsilon_1 + 2\varepsilon}.
\end{cases} (44)$$

Since P_1 and P_2 are irreducible they have no common roots. Thus, we can apply Lemma 4 to obtain

$$\tau_1 + 1 = v_1 - (n-1)\varepsilon_1 - 2\varepsilon$$
, $2(\tau_1 + 1 - \eta_1) = v_1 + 1 + q_2 + 2(n-1)\varepsilon_1 - 4\varepsilon$, $\tau_2 + 1 = v_2 - (n-1)\varepsilon_1 - 2\varepsilon$, $2(\tau_2 + 1 - \eta_2) = v_2 + 1 + r_2 + 2(n-1)\varepsilon_1 - 4\varepsilon$, and in the left side of the inequality in Lemma 4 we get

$$2v_1 + 2v_2 + 4 - 12\varepsilon - 6(n-1)\varepsilon_1 = 2n + 2 - 12\varepsilon - 6(n-1)\varepsilon_1$$
.

The right-hand side of this inequality then becomes $2n + \delta$. Given ε , ε_1 , we obtain a contradiction to Lemma 4 when $\delta < 0.5$. \square

Now let consider the case of (0,0)- linearity. Suppose that $n + 0.1 < d_1 + d_2 < n + 1$, namely

$$\begin{cases}
q_1 + k_2 T^{-1} \leq v_1 + 1, \\
r_1 + l_2 T^{-1} \leq v_2 + 1, \\
d_1 + d_2 > n + 0.1.
\end{cases}$$
(45)

Proposition 3. Let $M_{n,3}(\bar{c}, \bar{v}, Q)$ denote the set of $(x, y) \in I_1 \times I_2$ such that (39) holds together with (45). Then

$$\mu M_{n,3}(\bar{c}, \bar{v}, Q) < \frac{1}{32} |I_1| |I_2|.$$
 (46)

Proposition 3 can be proved in a similar manner. When (45) holds the first estimate is sharper than the second one in (13).

Again divide the rectangle $I_1 \times I_2$ into equal rectangles $I_i \times I_j$, where $|I_i| = Q^{-\rho_3+\varepsilon}$, $|I_j| = Q^{-\rho_4+\varepsilon}$ and $\rho_3 = k_2 T^{-1}$, $\rho_4 = l_2 T^{-1}$. Then the number of rectangles $I_i \times I_j$ does not exceed

$$c(n)Q^{(k_2+l_2)T^{-1}-2\varepsilon}|I_1||I_2|.$$
 (47)

Again choose rectangles $I_i \times I_j$ such that there are no solutions or there is at most one solution P of the system (39) with an extra condition (45). By Lemma 2, we have for fixed a polynomial P(t)

$$\begin{cases} |x - \alpha_1| \ll Q^{-v_1 - 1 + q_1 + (n-1)\varepsilon_1}, \\ |y - \beta_1| \ll Q^{-v_2 - 1 + r_1 + (n-1)\varepsilon_1}. \end{cases}$$

Their product gives us an upper estimate for the measure of $\{(x,y): x \in S(\alpha_1), y \in S(\beta_1)\}$. Multiplying it by (47), we get the following upper estimate for the measure of the solution set:

$$c(n)Q^{-v_1-v_2-2+(k_2+l_2)T^{-1}+q_1+r_1-2\varepsilon+2(n-1)\varepsilon}|I_1||I_2| \ll Q^{-\varepsilon}|I_1||I_2| < \frac{1}{32}|I_1||I_2|.$$

Assume that there are at least two solutions in the rectangle $I_1 \times I_2$. Again using a Taylor expansion of P and estimating its summands from above we obtain

$$\begin{cases}
|P_1(x)| \ll Q^{1-q_1-k_2T^{-1}+(n-1)\varepsilon_1-\varepsilon}, \\
|P_1(y)| \ll Q^{1-r_1-l_2T^{-1}+(n-1)\varepsilon_1-\varepsilon}, \\
|P_2(x)| \ll Q^{1-q_1-k_2T^{-1}+(n-1)\varepsilon_1-\varepsilon}, \\
|P_2(y)| \ll Q^{1-r_1-l_2T^{-1}+(n-1)\varepsilon_1-\varepsilon}.
\end{cases} (48)$$

By Lemma 4 for

$$\tau_1 + 1 = q_1 + k_2 T^{-1} - (n-1)\varepsilon_1 - \varepsilon, \quad 2(\tau_1 + 1 - \eta_1) = 2q_1 - 2(n-1)\varepsilon_1 - 2\varepsilon,$$

$$\tau_2 + 1 = r_1 + l_2 T^{-1} - (n-1)\varepsilon_1 - \varepsilon, \quad 2(\tau_2 + 1 - \eta_2) = 2r_1 - 2(n-1)\varepsilon_1 - 2\varepsilon,$$

we get the following left-hand side for the inequality in Lemma 4

$$3q_1 + k_2T^{-1} + 3r_1 + l_2T^{-1} - 6(n-1)\varepsilon_1 - 6\varepsilon.$$
 (49)

But $k_2T^{-1} \leqslant q_1$, $l_2T^{-1} \leqslant r_1$, and (45) implies that the expression in (49) is at least

$$2(d_1 + d_2) - 6\varepsilon - 6(n - 1)\varepsilon_1 \ge 2(v_1 + v_2) + 3.6 - 6\varepsilon - 6(n - 1)\varepsilon_1 =$$

$$= 2n + 0.2 - 6\varepsilon - 6(n - 1)\varepsilon_1.$$

Given ε , ε_1 , we obtain a contradiction to Lemma 4 when $\delta < 0.1$. Now let us consider the case of (0,0)-linearity for

$$n - 0.3 < d_1 + d_2 \le n + 0.1 \tag{50}$$

Proposition 4. Let $M_{n,4}(\bar{c}, \bar{v}, Q)$ denote the set of $(x, y) \in I_1 \times I_2$ such that (38), (39) hold together with (50). Then

$$\mu M_{n,4}(\bar{c}, \bar{v}, Q) < \frac{1}{32} |I_1| |I_2|.$$
 (51)

Proof.

Let us divide the rectangle $I_1 \times I_2$ into equal rectangles $I_i \times I_j$, where $|I_i| = Q^{-k_2T^{-1}-\gamma_1}$, $|I_j| = Q^{-l_2T^{-1}-\gamma_1}$ for some $\gamma_1 > 0$ that will be specified below. Let us choose those rectangles where the system (39) has at least $c(n)Q^{\theta_1}$ solutions in polynomials P(t) for some $\theta_1 \geq 0$. Estimate the measure of $A_1 = \{(x,y) : (x,y) \in I_i \times J_j\}$, which satisfies (39).

$$\mu A_1 \ll Q^{-v_1 - 1 + q_1 - v_2 - 1 + r_1 + k_2 T^{-1} + l_2 T^{-1} + 2\gamma_1 + \theta_1} |I_1| \times |I_2| \ll$$
$$\ll Q^{\theta_1 - n - 1 + d_1 + d_2 + 2\gamma_1} |I_1| |I_2|.$$

When

$$\theta_1 < n + 1 - d_1 - d_2 - 2\gamma_1$$

the statement of Proposition 4 can be easily verified.

Consider now the opposite inequality

$$\theta_1 \ge u_1 = n + 1 - d_1 - d_2 - 2\gamma_1. \tag{52}$$

By (50), $\theta_1 > 0$ for $\gamma_1 \le 0.4$.

Similarly to (48), estimate $P_l(t)$, l = 1, 2, in $I_i \times J_j$. We obtain

$$|P_l(x)| \ll Q^{1-q_1-k_2T^{-1}-\gamma_1+(n-1)\varepsilon_1},$$
 (53)

$$|P_l(y)| \ll Q^{1-r_1-l_2T^{-1}-\gamma_1+(n-1)\varepsilon_1}.$$
 (54)

Apply Lemma 4 to $P_1(t)$ and $P_2(t)$ with following parameters

$$\tau_1 + 1 = q_1 + k_2 T^{-1} + \gamma_1 - (n-1)\varepsilon_1,$$

$$2(\tau_1 + 1 - \eta_1) = 2q_1 - 2(n-1)\varepsilon_1,$$

$$\tau_2 + 1 = r_1 + l_2 T^{-1} + \gamma_1 - (n-1)\varepsilon_1,$$

$$2(\tau_2 + 1 - \eta_2) = 2r_1 - 2(n-1)\varepsilon_1.$$

By Lemma 4 and (50), the inequality

$$2(d_1 + d_2) + 0.8 - 6(n - 1)\varepsilon_1 < 2n + \delta \tag{55}$$

leads to a contradiction. \square

Consider now the next case when

$$n - 0.55 < d_1 + d_2 \le n - 0.3. \tag{56}$$

Proposition 5. Let $M_{n,5}(\bar{c}, \bar{v}, Q)$ denote the set of $(x, y) \in I_1 \times I_2$ such that (38), (39) hold together with (56). Then

$$\mu M_{n,5}(\bar{c}, \bar{v}, Q) < \frac{1}{32} |I_1| |I_2|.$$
 (57)

Proof.

The proof of Proposition 5 is similar to the proof of Proposition 4. Let us divide the rectangle $I_1 \times I_2$ into equal rectangles $I_i \times I_j$, where $|I_i| = Q^{-k_2T^{-1}-\gamma_2}$, $|I_j| = Q^{-l_2T^{-1}-\gamma_2}$ for some $\gamma_2 > 0$. Similarly, we introduce a constant $\theta_2 \geq 0$ and a set A_2 . When $\theta_2 < n+1-d_1-d_2-2\gamma_2$ holds, then Proposition 4 can be easily proved. So consider

$$\theta_2 \ge u_2 = n + 1 - d_1 - d_2 - 2\gamma_2. \tag{58}$$

By (56), we can choose $\gamma_2 = 0.6$ in (58). Similarly to (53), estimate $P_l(t)$, l = 1, 2 in newly constructed rectangles $I_i \times J_j$. Applying Lemma 4, we obtain an inequality similar to (55)

$$2(d_1 + d_2) + 1.2 - 6(n-1)\varepsilon_1 < 2n + \delta.$$

Since (56) and $\delta < 0.05$, the inequality leads to a contradiction. \square Let

$$2 < d_1 + d_2 \le n - 0.55. (59)$$

Proposition 6. Let $M_{n,6}(\bar{c}, \bar{v}, Q)$ denote the set of $(x, y) \in I_1 \times I_2$ such that (38), (39) hold together with (59). Then

$$\mu M_{n,5}(\bar{c}, \bar{v}, Q) < \frac{1}{32} |I_1| |I_2|.$$
 (60)

Proof.

The start of the proof is similar to the proofs of Propositions 4 and 5. We divide the rectangle $I_1 \times I_2$ into equal rectangles $I_i \times I_j$, where $|I_i| = Q^{-k_2T^{-1}}$, $|I_j| = Q^{-l_2T^{-1}}$. Similarly, we introduce the constant $\theta_3 \geq 0$ and the set A_3 . When $\theta_3 < n + 1 - d_1 - d_2$ holds the proof of Proposition 6 is obvious. Consider now

$$\theta_3 \ge u_3 = n + 1 - d_1 - d_2 \ge 1.45.$$
 (61)

We can rewrite u_3 as

$$u_3 = [u_3] + \{u_3\}, \quad [u_3] \ge 1.$$

Expanding $P_l(t)$ and $P'_l(t)$ on intervals I_j and J_i into a Taylor series and estimating its terms above, we obtain

$$\begin{cases}
|P(x)| \ll Q^{1-q_1-k_2T^{-1}}, \\
|P'(x)| \ll Q^{1-q_1}, \\
|P(y)| \ll Q^{1-r_1-l_2T^{-1}}, \\
|P'(y)| \ll Q^{1-r_1}.
\end{cases}$$
(62)

Since there are at most $c(n)Q^{[u_3]+\{u_3\}}$ polynomials P(t) that belong to $I_j \times J_i$, then, by Dirichlet's principle, there are at least $K = c(n)Q^{\{u_1\}}$ polynomials with equal coefficients of t^n , t^{n-1} , ..., $t^{n-[u_3]+1}$.

Now we construct further polynomials with degree at most $n - [u_3]$

$$R_{i-1}(t) = P_i(t) - P_1(t)$$
 $j = 2, ..., K$.

By (62) for $R_i(f)$, i = 1, ..., K - 1, we have

$$\begin{cases}
|R_{i}(x)| \ll Q^{1-q_{1}-k_{2}T^{-1}+(n-1)\varepsilon_{1}}, \\
|R'(x)| \ll Q^{1-q_{1}}, \\
|R_{i}(y)| \ll Q^{1-r_{1}-l_{2}T^{-1}+(n-1)\varepsilon_{1}}, \\
|R'(y)| \ll Q^{1-r_{1}}, \\
\deg R_{i} \leq n - [u_{3}] = d_{1} + d_{2} + \{u_{3}\} - 1.
\end{cases}$$
(63)

We apply Lemma 4 to the two polynomials $R_{s_1}(t)$ and $R_{s_2}(t)$. This results in a contradiction when $\{u_3\} \leq 0.7$.

Thus assume that $\{u_3\} > 0.7$. Again we divide the rectangle $I_1 \times I_2$ into equal rectangles $I_i \times I_j$, where $|I_i| = Q^{-k_2T^{-1}-\gamma_3}$, $|I_j| = Q^{-l_2T^{-1}-\gamma_3}$ for some $\gamma_3 > 0$ such that $2\gamma_3 \leq \{u_3\}$. If the number of polynomials in these

rectangles is $c(n)Q^{\theta_3}$ and $\theta_3 < u_3 = n + 1 - d_1 - d_2 - 2\gamma_3$ then Proposition 6 can be easily proved. When

$$\theta_3 \ge u_3 = n + 1 - d_1 - d_2 - 2\gamma_3 = [u_3] + \{u_3\}n - 2\gamma_3$$

one can obtain (63) with an approximation of $|R_i(x)|$ and $|R_i(y)|$ of the type $1 - q_1 - k_2 T^{-1} - \gamma_3 + (n-1)\varepsilon_1$ and $1 - r_1 - l_2 T^{-1} - \gamma_3 + (n-1)\varepsilon_1$ respectively. Applying Lemma 4 to the pair of coprime polynomials, we get

$$2(d_1+d_2)-6(n-1)\varepsilon_1+2\gamma_3<2(d_1+d_2)-2+2\{u_4\}+\delta$$

that leads to a contradiction for $\gamma_3 = \frac{\{u_4\}}{2}$ and $\delta = 0.1$. \square Let us show how the theorem can be proved for the cases of (1,0) and (0, 1)-linearity. Since both proofs are absolutely similar we will demonstrate the method for (1,0)-linearity only.

Proposition 7. Let $M_{n,7}(\bar{c}, \bar{v}, Q)$ denote the set of $(x, y) \in I_1 \times I_2$ such that (39) hold together with

$$\begin{cases} q_1 + k_2 T^{-1} > v_1 + 1, \\ r_1 + l_2 T^{-1} \le v_2 + 1. \end{cases}$$
 (64)

Then

$$\mu M_{n,7}(\bar{c},\bar{v},Q) < \frac{1}{32}|I_1||I_2|.$$

Proof.

Again divide the rectangle $I_1 \times I_2$ into rectangles $I_i \times I_j$, where $|I_i| =$ $Q^{-\frac{v_1-q_2+1}{2}+\varepsilon}$, $|I_j|=Q^{-l_2T^{-1}+\varepsilon}$. We replace the second inequality in (64) by

$$v_2 + 0.5 < r_1 + l_2 T^{-1} \le v_2 + 1. (65)$$

Consider the rectangles $I_i \times I_j$ which contain no more than one polynomial P(t). Fix such a polynomial P(t). Then the solution of (39) belongs to the rectangle

$$\begin{cases} |x - \alpha| \ll Q^{-\frac{v_1 + 1 - q_2}{2}}, \\ |y - \beta| \ll Q^{-v_2 - 1 + r_1}. \end{cases}$$
 (66)

Multiplying the estimates (66), we sum them over all rectangles $I_i \times I_j$. Thus we get the estimate of the kind $c(n)Q^{-\varepsilon}|I_1||I_2|$ that proves Proposition 7. If there are at least two polynomials such that belong to $I_i \times I_j$, then we expand them into Taylor series. We get

$$|P_i(x)| \ll Q^{-v_1 + (n-1)\varepsilon_1 + 2\varepsilon},$$

$$|P_i(y)| \ll Q^{1-r_1-l_2T^{-1}}$$

Apply Lemma 4 with

$$\tau_1 = v_1 + 1 - 2\varepsilon - (n-1)\varepsilon_1,$$

$$2(\tau_1 + 1 - \eta_1) = v_1 + 1 + q_2 - 2\varepsilon - 2(n-1)\varepsilon_1,$$

$$\tau_2 + 1 = r_1 + l_2 T^{-1} - \varepsilon,$$

$$2(\tau_2 + 1 - \eta_2) = 2r_1.$$

Then,

$$2v_1 + 2 + l_2T^{-1} + 3r_1 + q_2 - 3(n-1)\varepsilon_1 - 4\varepsilon < 2n + \delta.$$
 (67)

However, by (65), we have $l_2T^{-1} + 3r_1 > 2v_2 + 1$, and the left side in (67) is larger than $2n + 1 - 5\varepsilon$. Thus, for $\delta < 0.5$ we arrive at a contradiction.

The final part of the proof is similar to the proof of the (0,0)-linearity. We omit the above estimate in (65) until we can use Dirichlet's principle, which results in polynomials of lower degree. \square

The case $r_1 < \frac{1}{2}$ and $r_1 < \frac{1}{2}$ is considered in Proposition 1. It remains to consider polynomials such that

$$1 < d_1 + d_2 < 2 \tag{68}$$

holds. Here as in Proposition 1 we can pass to first degree polynomials which lead to a contradiction with (3) or to the second degree polynomials. For this case Theorem 1 was proved in Proposition 1.

Combining the results of all Propositions, we finally get

$$\mu M_n(\bar{c}, \bar{v}, Q) \leqslant \sum_{j=1}^7 \mu M_{n,j}(\bar{c}, \bar{v}, Q) \leqslant \frac{1}{4} |I_1| |I_2|,$$

concluding the proof of Theorem 2.

References

- [1] J. Cassels, An introduction to Diophantine approximation. Cambridge Tracts in Mathematics and Mathematical Physics, No. 45. Cambridge University Press, New York, 1957.
- [2] W. Schmidt, Diophantine approximation. Lecture Notes in Mathematics, 785. Springer, Berlin, 1980.
- [3] A. Karatsuba, Basic analytic number theory. Springer-Verlag, Berlin, 1993.

- [4] M. Huxley, Area, lattice points, and exponential sums. London Mathematical Society Monographs. New Series, 13. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1996.
- [5] F. Götze, Lattice point problems and values of quadratic forms. Invent. Math. 157 (2004), no. 1, 195–226.
- [6] R. Vaughan, S. Velani, Diophantine approximation on planar curves: the convergence theory. Invent. Math. 166 (2006), no. 1, 103–124.
- [7] V. Beresnevich, D. Dickinson, S. Velani, Diophantine approximation on planar curves and the distribution of rational points. With an Appendix II by R. C. Vaughan. Ann. of Math. (2) 166 (2007), no. 2, 367–426.
- [8] V.G. Sprindzuk, Mahler's problem in metric Number Theory // Nauka i Tehnika, Minsk 1967 [Transl. Math. Monogr. 25, Amer. Math. Soc., Providenca, R.I., 1969].
- [9] V.I. Bernik, M.M. Dodson, Metric Diophantine approximation on manifolds // Cambridge Tracts in Math. Vol. 137. Cambridge Univ. Press, 1999.
- [10] V. Bernik, The metric theorem on the simultaneous approximation of zero by values of integral polynomials // Izv. Akad. Nauk SSSR, Ser. Mat. 44, 1980, P. 24 – 45.
- [11] V. Bernik, On the exact order of approximation of zero by values of integral polynomials // Acta Arith. 53, 1989, P. 17 28.

Institute of Mathematics Surganova str. 11 220072, Minsk,

Belarus

E-mail: bernik@im.bas-net.by olga_kukso@tut.by

Universität Bielefeld Fakultät für Mathematik Postfach 10 01 31 33501 Bielefeld Germany

E-mail: goetze@math.uni-bielefeld.de