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Abstract: In this paper, we consider a single server queueing system in which the arrivals occur
according to a Markovian arrival process (MAP). The served customers may be recruited (or opted
from those customers’ point of view) to act as secondary servers to provide services to the waiting
customers. Such customers who are recruited to be servers are referred to as secondary servers. The
service times of the main as well as that of the secondary servers are assumed to be exponentially
distributed possibly with different parameters. Assuming that at most there can only be one secondary
server at any given time and that the secondary server will leave after serving its assigned group
of customers, the model is studied as a QBD-type queue. However, one can also study this model
as a GI/M/1-type queue. The model is analyzed in steady state, and a few illustrative numerical
examples are presented.
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1. Introduction

Queueing theory has been playing a significant role in many areas of science, engineer-
ing, and business, among others. One can see the impact of queueing theory in day-to-day
activities. Starting from conventional applications in areas such as the telephone industry,
grocery stores, post offices, and banks, queueing theory has permeated deep into emerging
areas, including crowdsourcing and blockchains. In these emerging areas, businesses as
well as other service sectors always look for ways to increase their efficiency by recruiting
(temporary) servers who can help the system when needed.

In this paper, we introduce a new queueing model where the system will try to recruit
secondary servers from among the customers who received services and are willing to
serve. The motivation for studying such a queueing system arose out of one of the author’s
personal experiences visiting a bank. In countries like India, government pensioners are
required to send a living proof document once a year to the government via banks. During
one such visit with an aging parent, the author had to wait for a long period of time
before a bank agent helped his parent obtain a simple one-page document to be filled
out and signed by the parent; then, the completed document was stamped by the agent.
The meeting with the agent took fewer than a couple of minutes, but the aging parent
could have saved time and could have been spared the agony of waiting if only they had a
secondary server available to help the agent with such services. Similar examples can be
seen in areas where customers who are required to use computers for filling out necessary
forms are not comfortable with computers; they may benefit from having such a secondary
server facility. In order to recruit such secondary servers, the customers need to know the
requirements to go through such a process. In education applications, students or teaching
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assistants (who keep rotating based on the quarter/system) or any other form of helpers
can, after getting serviced by the teacher, be recruited temporarily to help the system. In
sports, the training manager can, after training athletes, be recruited to help the team. In
computer applications, especially dealing with multi-core CPUs, a few can be programmed
(similar to recruitment) to help the system. Secondly, there should be a willingness on the
part of the customers to help other customers.

Thus, the novelty of this paper is to introduce the concept of recruitment of secondary
servers from the (served) customers so as to help the system. Further, these secondary
servers will offer services in groups of varying sizes and are available only on a temporary
basis (will leave the system after serving exactly one group). In this way, the customers
will not be held back so as to attend to their business after helping the system. The
numerical results indicate the proposed model performs better than the corresponding
classical queueing model. This will help the decision maker of the system recruit secondary
servers as and when needed in order to improve the performance of the system.

Queueing models where the main servers are supported by backup servers (or ad-
ditional servers) are interesting from a practical point of view. For example, one can
find the usefulness of such backup server queueing models in energy saving applications
in cloud computing systems and server farms (see, e.g., the survey paper [1] and the pa-
per [2]). Queueing models with reserve servers studied in the literature are divided into two
groups. One group, seemingly a larger one, assumes a switching-on and a switching-off
mechanism for the backup servers based on the current queue length using threshold-
type and hysteresis-type strategies. It is worth mentioning a few works from this group,
namely, papers [3–22].

In the other group of papers, the focus is on using backup servers to help the main
server whenever there is too long a service duration for the customer in service. In [23], a
multi-server queueing model with phase-type services is considered. If the service time of
a customer exceeds a certain (random) bound, the server will start receiving help from a
backup server from a finite pool of backup servers. Also, a few practical examples dealing
with managerial decision are presented. In [24], a multi-server infinite buffer queueing
system with additional servers (assistants) provides help to the main servers whenever the
server encounters problems that are commonly noticed in real-world situations.

In this paper, we consider a model in which the arrivals occur according to the
Markovian arrival process (MAP). Recall that MAP, a class of versatile point processes,
was introduced by Neuts in the 1970s. For details on MAP and its usefulness in stochastic
modeling, we refer the reader to [25–40]. Among the papers considering systems with
MAP and backup servers, we point out a few relevant ones here.

In [41], a multi-server queueing model of the type MAP/M/c—in which a permanent
server is supported by a group backup servers that are added or removed based on a set
of thresholds dynamically—is considered, and some interesting results useful in practical
applications are reported. In [42], under the scenario of a finite capacity queueing system
with phase-type services, the main server is supported by a backup server based on a
hysteretic-type threshold. That is, a backup server is requested (the request time is assumed
to be exponential) when the buffer size hits the upper threshold, and this server is released
whenever the buffer size drops to or below the lower threshold at the service completion of
the backup server. Through numerical examples, they study the impact of the standard
deviation as well as the correlation of the inter-arrival times and the standard deviation
of the service time distributions on the server backup decisions. A MAP/PH/1 queueing
model is studied in [43] using a simulation approach wherein, using a set of thresholds, the
backup servers are added through requests taking a random amount of time and released.
A queueing model with phase-type services wherein the server is subject to breakdowns
and repairs is considered in [44] by taking into consideration a backup server only during
periods of downtime.

In [45], the authors study a model in which two types of customers arrive according
to a marked Markovian arrival process (MMAP) such that the type that receives anon-
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preemptive priority has a finite buffer, and the other type has an infinite buffer to wait,
and in which the services are of the phase type depending on the type. Multiple servers
are always active, while some are switched on and off depending a hysteretic policy. The
main contribution of the paper is the development of a computational procedure for the
stationary distribution of the system states and optimal cost criterion for any fixed threshold.
The authors show through numerical results the effectiveness of the hysteresis control and
the importance of the role played by the correlation in the arrival process as well as the
variance of the service times.

In this paper, using MAP as an arrival process, we consider a scenario of providing
help to the main server in a single-server queueing system. This scenario was considered
earlier in the context of crowdsourcing [46]. Crowdsourcing is getting popular after a
number of industries such as food, consumer products, hotels, electronics, and other large
retailers bought into this idea of serving customers; see, e.g., [47–50]. In [46], a multi-server
queue was considered in which there are two types of customers. One type of customers,
after obtaining a service, may opt to help the system by acting as a secondary server and
hence decrease the number waiting in the system by one. In this paper, we consider the
system that is also suitable for modeling the crowdsourcing system. In contrast to [46], here
we assume that there is only one main server and that the use of only one secondary server
is allowed at any give time. However, we consider the two following features that are
inherent to some real world systems and have not been studied in the past: (i) a secondary
server will be assigned a batch (not exceeding a pre-determined finite threshold); this
server will offer services one at a time; and once all the assigned customers are served,
the secondary server also leaves the system; and (ii) with a certain probability, a customer
served by a secondary server becomes dissatisfied and hence returns to the main system to
get a new service.

The paper is organized as follows. In Section 2, the description of the mathematical
model is presented. The steady state analysis using the QBD-type process of the model is
given in Section 3, and the GI/M/1-type approach is presented in Section 4. Illustrative
numerical examples are given in Section 5, and a few concluding remarks are summarized
in Section 6.

2. Mathematical Model

We consider a single-server queueing system in which the arrivals occur according
to a Markovian arrival process (MAP) with parameter matrices (D0, D1) of order m. The
MAP, introduced first by Neuts [36] as part of a larger class of point processes referred to
as versatile Markovian point process with heavy notation, was reintroduced in paper [34]
with simpler notation. The simplicity of the notation has attracted many researchers, and
hence this representation is now the standard in the literature when using MAP or batch
MAP (BMAP). The MAP generalizes some of the well-known point processes like Poisson,
interrupted Poisson, and phase-type renewals, among others. Further, MAP is ideally
suited in situations where correlation maybe present in the inter-arrival times. Suppose that
the arrivals occur from different sources to a common area for processing. Even if all the
individual sources generate arrivals according to renewal processes, the pooled one may
not necessarily be a renewal process (unless all individual sources are Poisson processes).
Another attractive part of using MAP is that the analysis requires matrix formalism and
the associated intuitive reasonings that go with the analysis. A quick description of the
MAP follows; for more details, we refer the reader to the above references. The irreducible
generator of the MAP is given by D0 + D1; let δ denote its invariant vector so that

δ(D0 + D1) = 0, δe = 1, (1)

where here and in the following, e denotes a column vector of ones with appropriate
dimension and 0 denotes a row vector of zeros with appropriate dimension.
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While the matrix D0 governs the transitions corresponding to the underlying generator
producing no arrivals, the matrix D1 governs those corresponding to arrivals occurring to
the system.

The average rate of the arrivals (λ), the variance of the inter-arrival times (σ2), and the
correlation (ρc) between two successive inter-arrival times are given by (see, e.g., ref. [29])

λ = δD1e, σ2 = 2
λ δ(−D0)

−1e− 1
λ2 ,

ρc =
λδ(−D0)

−1D1(−D0)
−1e− 1

2λδ(−D0)−1e− 1
.

(2)

The system has a single server that offers services on a FCFS basis. This server will be
referred to as the main server. The service times are exponential with the parameter µ1.

With probability p, 0 ≤ p ≤ 1, a served customer may be recruited (or opted from the
served customer point of view) to serve other customers waiting in the system (assuming
the queue size is positive) provided there is no other such server already serving. Such a
server is referred to as a secondary server. That is, a recruitment occurs only when there is
at least one customer waiting in the queue and when there is no other secondary server
present in the system. Thus, the system may have at most two servers at any given time.
Note that with probability q = 1− p, the served customer, who can become the secondary
server, does not agree to do this and leaves the system.

When a secondary server is recruited, the server will be assigned a group of, say, i
customers, where i = min{number in the queue, L}, where L is a pre-determined finite
positive integer. That is, 1 ≤ L < ∞. The secondary server will offer services to the group of
customers one at a time, and the service times are exponentially distributed with parameter
µ2. A customer receiving a service from a secondary server may be dissatisfied with the
service received and requests to be served again with probability ν, 0 ≤ ν ≤ 1, and with
probability ν̃ = 1− ν will leave the system. The dissatisfied customers are fed back to the
system. Once the secondary server finishes serving all the customers assigned, the system
will release this server.

Note that by taking p = 0 (in this case ν plays no role and can be ignored), we get
the classic single-server queueing model. This case is used only as an accuracy check in
the numerical computations and is not of interest otherwise. The case when ν = 1 is of no
interest since here every customer served by a secondary server is fed back to the system
and hiring secondary servers only makes the system slow down in offering services.

A pictorial description of the queueing system under study is displayed in Figure 1.

12... 3

Main server

q

Second server

m

m2

1

1-q
If the queue is not empty

service to a batch up to L
customers

v

1-v

Figure 1. Structure of the system under study.

3. QBDQBDQBD Approach to the Steady State Analysis

We will analyze the queueing model under study in steady state. The analysis can be
carried out either via the QBD process or via GI/M/1-type. In this section, we will take
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the QBD approach, and in the next section, we briefly highlight the other approach. As
it is known, the QBD process is a special case of continuous-time Markov chain (CTMC).
QBD processes in the context of stochastic modeling have been extensively studied in the
literature (see, e.g., refs. [26,29–33,37]).

3.1. Description of the QBD Process Governing the System and Its Generator

Suppose that we denote, at time t, t ≥ 0, that

• it is the number of customers in the system, it ≥ 0;
• nt is the number of customers in service at the secondary server, nt ∈ {0, . . . , min{it, L}};

(note that when nt = 0, the system does not have a secondary server);
• ξt is the state of the underlying process of the MAP describing the arrivals of the

customers, ξt = 1, . . . , m.

Then, the stochastic process, {ζt = {it, nt, ξt}, t ≥ 0}, describing the behavior of the
model under study is a regular irreducible CTMC. Enumerating the states of the CTMC,
{ζt, t ≥ 0}, in lexicographic order and denoting the level i, for i ≥ 0, to be the set of states
{(i, n, k) : 0 ≤ n ≤ min{i, L}}, 1 ≤ k ≤ m}, the (infinitesimal) generator, Q, of this CTMC
is given in the following theorem.

Theorem 1. The infinitesimal generator Q of the CTMC {ζt, t ≥ 0}, has a block tri-diagonal
structure:

Q =



Q0,0 Q0,1 O O . . . O O O O O . . .
Q1,0 Q1,1 Q1,2 O . . . O O O O O . . .
O Q2,1 Q2,2 Q2,3 . . . O O O O O . . .
...

...
...

...
. . .

...
...

...
...

...
. . .

O O O O . . . QL,L−1 QL,L Q+ O O . . .
O O O O . . . O Q− Q0 Q+ O . . .
O O O O . . . O O Q− Q0 Q+ . . .
...

...
...

...
. . .

...
...

...
...

...
. . .


, (3)

where the non-zero blocks Qi,j, are defined as follows:

Q0,0 = D0,

Qi,i = Ii+1 ⊗ D0 + νµ2E−i ⊗ Im − (µ1 Îi + µ2(Ii+1 − Īi))⊗ Im, 1 ≤ i ≤ L,

Qi,i = Q0 = IL+1 ⊗ D0 + νµ2E−L ⊗ Im − (µ1 IL+1 + µ2(IL+1 − ĪL))⊗ Im, i > L,

Qi,i+1 = E+
i ⊗ D1, 0 ≤ i ≤ L− 1,

Qi,i+1 = Q+ = IL+1 ⊗ D1, i ≥ L,

Q1,0 = (1− ν)µ2Ẽ−1 ⊗ Im + µ1 I−1 ⊗ Im, 1 ≤ i ≤ L,

Qi,i−1 = (1− ν)µ2Ẽ−i ⊗ Im + qµ1 I−i ⊗ Im + (1− q)µ1 I+i ⊗ Im, 1 ≤ i ≤ L,

Qi,i−1 = Q− = (1− v)µ2E−L ⊗ Im + qµ1 I(L+1)m + (1− q)µ1 I+ ⊗ Im, i > L.

(4)

In Equation (4), the notation used is as follows:

• O and I are, respectively, zero and identity matrices of appropriate dimensions as
indicated in the suffix;

• ⊗ indicates the Kronecker product of matrices (see, e.g., [51–54]);
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• E+
l is a matrix of dimension (l + 1)× (l + 2) with (E+

l )k,k = 1, 0 ≤ k ≤ l, and all other
entries are zero;

• E−l is a square matrix of dimension l + 1 with (E−l )k,k−1 = 1, 1 ≤ k ≤ l, and all other
entries are zero;

• Îl is a square matrix of dimension l + 1 with ( Îl)k,k = 1, 0 ≤ k ≤ l − 1, and all other
entries are zero;

• Īl is a square matrix of dimension l + 1 with ( Īl)0,0 = 1, and all other entries are zero;
• Ẽ−l is a matrix of dimension (l + 1)× l with (Ẽ−l )k,k−1 = 1, 1 ≤ k ≤ l, and all other

entries are zero;
• I−l is the matrix of dimension (l + 1)× l with (I−l )k,k = 1, 0 ≤ k ≤ l − 1, and all other

entries are zero;
• I+l is the matrix of dimension (l + 1)× l with (I+l )0,l−1 = 1, (I+l )k,k = 1, 1 ≤ k ≤ l− 1,

and all other entries are zero;
• I+ is the matrix of dimension (L + 1)× (L + 1) with (I+)k,k = 1, 1 ≤ k ≤ L, (I+)0,L =

1, and all other entries are zero.

Proof. Follows immediately by considering various possibilities with respect to the transi-
tions in the underlying CTMC.

3.2. Ergodicity Condition of the QBD Process

The following result establishes the stability condition of the queueing model under
study.

Theorem 2. The CTMC {ζt, t ≥ 0} is ergodic if and only if the following inequality holds good:

λ < µ1 + µ2(1− ν)
L(1− q)µ1

L(1− q)µ1 + µ2
. (5)

Proof. It is well known from Neuts’ matrix-geometric approach (see, e.g., ref. [37]) that
the criterion for the ergodicity of the QBD with the generator of form given in (3) is the
satisfaction of the inequality

yQ−e > yQ+e, (6)

where the vector y is the unique solution of the system

y(Q− + Q0 + Q+) = 0, ye = 1. (7)

It can easily be verified that

Q− + Q0 + Q+ = IL+1 ⊗ (D0 + D1) + S⊗ Im,

where

S =


−µ1(1− q) 0 0 . . . 0 µ1(1− q)

µ2 −µ2 0 . . . 0 0
0 µ2 −µ2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . µ2 −µ2

. (8)

Using the mixed product rule for the Kronecker product of matrices (see, e.g., refs. [51,52]),
and using Equation (1), it is easy to verify that

y = x⊗ δ, (9)

where δ is as given in Equation (1) and x is the solution to the system

xS = 0, xe = 1. (10)
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By direct substitution, it is easy to verify that the components of the vector
x = (x0, x1, . . . , xL), which is the unique solution to the system given in (10), are given by

x0 =
µ2

L(1− q)µ1 + µ2
, xi =

µ1(1− q)
L(1− q)µ1 + µ2

, i = 1, . . . , L. (11)

The stated result follows from Equations (6), (9), and (11) along with the expression
for λ given in Equation (2).

Remark 1. The stability condition given in Equation (5) can intuitively be explained as follows.
Generally, the ergodicity condition requires that the arrival rate of customers per unit of time should
be less than the rate of services the customers receive per unit of time when the system is overloaded
(in the sense that the number of customers presenting in the system is very large). Here, the arrival
rate of the customers is λ per unit of time. The service rate of the customers when the system is
overloaded is the sum of µ1 (the rate of service per unit of time by the main server) and the rate of
service (per unit of time) provided by the secondary server. The latter service rate is 0 when the
secondary server is not present at the system, which occurs with probability x0. When the secondary
server is present in the system, which occurs with probability (1− x0), the customers receive service
and leave the system at a rate µ2(1− ν) per unit of time. Thus, the total average service rate is
µ1 + µ2(1− ν) L(1−q)µ1

L(1−q)µ1+µ2
and hence the inequality seen in Equation (5).

Remark 2. The probability, x0, that when the system is overloaded the second server is not present
in the system at an arbitrary time can easily be computed from the following consideration. Consider
the periods of the secondary server not present in the system (clearly the average duration of this
period is 1

pµ1
) alternating with the periods of the secondary server present in the system. When the

system recruits a secondary server (when the system is overloaded, the secondary server is assigned
to take L for services), the average duration of the secondary server continuously present in the
system is given by L

µ2
. Hence, we have

x0 =

1
µ1(1−q)
1

µ1(1−q) +
L

µ2

=
µ2

L(1− q)µ1 + µ2
,

which is the expression obtained in Equation (11).

3.3. Computation of the Stationary Distribution of the QBD Process

Under the assumption that the ergodicity condition given in relation (5) holds good,
the following steady state probabilities of the states of the CTMC ζt, t ≥ 0, exist:

π(i, n, ξ) = lim
t→∞

P{it = i, nt = n, ξt = ξ}, i ≥ 0, n ∈ {0, 1, . . . , min{i, L}}, ξ ∈ {1, . . . , m}.

Let us form the row vectors of the steady state probabilities πi as follows: the row
vector π(i, n) is given by π(i, n) = (π(i, n, 1), . . . , π(i, n, m)) and

πi = (π(i, 0), π(i, 1), . . . , π(i, min{i, L})), i ≥ 0.

It is well known that the stationary probability vectors πi, i ≥ 0, satisfy the system of
linear algebraic equations (equilibrium equations):

(π0, π1, π2, . . . )Q = 0, (π0, π1, π2, . . . )e = 1, (12)

where Q is the generator of the Markov chain ζt, t ≥ 0 and is given in Equation (3).
The solution of the problem of computing the steady state distribution of level in-

dependent QBD is well known; see [37]. For the levels where transitions of QBD do not
depend on the level, vectors of stationary probability are found in the matrix-geometric
form. The vectors of stationary probabilities of the boundary levels, at which transitions of
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QBD depend on the level, are then directly found as the solution of the system of linear
algebraic equations. However, if the number of boundary levels is large (what occurs in
our model if L is large), this system has a large size. Here we present an algorithm that
essentially exploits the block tri-diagonal but level-dependent structure of the generator for
the levels smaller than L + 1.

The algorithm used for solving the infinite system of equilibrium equations is pre-
sented as the following statement.

Theorem 3. The vectors πi, i ≥ 0, are calculated as

πi = αi

( ∞

∑
l=0

αle
)−1

, i ≥ 0, (13)

where the vector α0 is computed as the unique solution to the system of equations

α0(Q0,0 + Q0,1G0) = 0, α0e = 1, (14)

and the vectors αi, i ≥ 1, are defined as

αi = α0

i

∏
l=1
Rl , i ≥ 1, (15)

or by the recursive formula
αi = αi−1Ri, i ≥ 1, (16)

where

Ri =



−Qi−1,i(Qi,i + Qi,i+1Gi)
−1, 1 ≤ i ≤ L− 1,

−QL−1,L(QL,L + Q+G)
−1, i = L,

−Q+(Q0 + Q+G)
−1

= R, i > L.

(17)

Here, the stochastic matrices Gi are calculated using the following backward recursion

GL = G,

GL−1 = −(QL,L + Q+GL)
−1QL,L−1,

Gi = −(Qi+1,i+1 + Qi+1,i+2Gi+1)
−1Qi+1,i, i = L− 2, L− 3, . . . , 0,

(18)

where the matrix G is the minimal nonnegative solution to the matrix-quadratic equation

Q+G2 + Q0G + Q− = O. (19)

This algorithm is an effective modification of the algorithm for the computation of
the stationary distribution of the asymptotically quasi-Toeplitz CTMC (see, e.g., ref. [31],
pp. 145–146). In [31], the vectors πi are computed as πi = π0Fi, i ≥ 0, where the matrices
Fi are obtained from the matrix recursion similar to Equation (16). Using the vector
recursion as spelled out in Equation (16) instead of the corresponding matrix recursion
allows a significant reduction in the required computer memory and the execution time.

The existence of the inverses of the matrices (all of which are irreducible sub-generators)
appearing in the above algorithm follows immediately, for example, from the O. Tausska
theorem [55]. Further, these matrices are semi-stable (and hence the inverses of the negative
of these matrices are nonnegative), resulting in producing stable recursive procedures in
the numerical implementation of the algorithm.
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Corollary. For i ≥ L, the following formula is valid:

αi = αLRi−L,

where

αL = α0

L

∏
l=1
Rl .

3.4. Computation of the Performance Measures of the System

In order to study the queueing model under study qualitatively as well as to compare
it with the corresponding classic MAP/M/1 queue so as to look at the impact of the
recruitment process, we need to develop some key performance measures. A few of these
along with their formulas are listed below.

1. The probability that the system is idle at an arbitrary time Pidle−system is computed as

Pidle−system = π0e.

2. The probability that the system is idle at an arrival epoch Pidle−arrival is computed as

Pidle−arrival =
1
λ

π0D1e.

3. The probability that the main server is idle at an arbitrary time Pidle−main is computed as

Pidle−main =
L

∑
i=0

π(i, i)e.

4. The probability that the main server is idle at an arrival epoch Pidle−main−arrival is
computed as

Pidle−main−arrival =
1
λ

L

∑
i=0

π(i, i)D1e.

5. The probability that the secondary server is not presenting in the system at an arbitrary
time Pidle−sec is computed as

Pidle−sec =
∞

∑
i=0

π(i, 0)e.

6. The probability that the main server is busy while the secondary is idle at an arbitrary
time Pbusy−idle is computed as

Pbusy−idle =
∞

∑
i=1

π(i, 0)e.

7. The probability that the secondary server is present in the system while the main
server is idle at an arbitrary time Pidle−busy is computed as

Pidle−busy =
L

∑
n=1

π(n, n)e.

8. The mean number of customers in the system at an arbitrary time Lsystem is computed as

Lsystem =
∞

∑
i=1

iπie.
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9. The mean number of customers in the buffer and with the main server at an arbitrary
time Lbu f f er is computed as

Lbu f f er =
∞

∑
i=1

min{i−1,L}

∑
n=0

(i− n)π(i, n)e.

10. The mean number of customers with the secondary server at an arbitrary time Lsec is
computed as

Lsec =
∞

∑
i=1

min{i,L}

∑
n=1

nπ(i, n)e.

11. The rate of customers departing from the system via the main server λmain is computed as

λmain = µ1

∞

∑
i=1

min{i−1,L}

∑
n=0

π(i, n)e.

12. The rate of customers departing from the system via the secondary server λsec is
computed as

λsec = µ2(1− ν)
∞

∑
i=1

min{i,L}

∑
n=1

π(i, n)e.

13. The fraction of customers served by the main server, Fmain, is computed as Fmain =
λmain

λ .
14. The fraction of customers served by the secondary server, Fsec, is computed as Fsec =

λsec
λ .

15. The rate of dissatisfied customers (returning to the main server from the secondary
server) λreturn is computed as

λreturn = µ2ν
∞

∑
i=1

min{i,L}

∑
n=1

π(i, n)e.

It is important in any numerical implementation that one uses as many accuracy
checks as possible. Below, we list a few that are intuitively clear and whose proofs are
easily verifiable.

• The vector y defined in Equation (9) should satisfy

y(e⊗ Im) = δ.

• For the steady state vector π = (π0, π1, π2, . . . ) given in Equation (12), it should be
clear that

∞

∑
i=0

πi(e⊗ Im) = δ.

• The following relationship between various rates should hold good

λmain + λsec = λ.

4. GI/M/1GI/M/1GI/M/1 Approach

In this section, we briefly present how one can analyze the queueing system under
study using GI/M/1-type queues in continuous time. Keeping track of the number of
customers waiting in the queue along with the status of the main server (busy or idle)
and the status of the secondary server (not present or present with a specified number of
customers assigned), we can study the model as a GI/M/1-type CTMC as follows.
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Define first the state space Ω of the CTMC, which is given by

Ω = {(i, j, k) : i ≥ 0, 0 ≤ j ≤ L, 1 ≤ k ≤ m}.

In the sequel, we take er to be a column vector with 1 in the rth position and 0 elsewhere.
Note that where clarification is needed we will denote the dimension within parentheses.
For example, e(L + 1) will denote a column vector of ones with dimension L + 1. The “T”
appearing as superscript in a vector or a matrix will stand for the transpose notation. Thus,
eT will denote a row vector of ones.

Define the level i = {(i, j, k) : 0 ≤ j ≤ L, 1 ≤ k ≤ m} = { (i, 0), · · · , (i, L)}, i ≥ 0.
Note that level (i, j) indicates that the main server is busy (provided i > 0); (i − 1)
customers are waiting in the (main) queue; the secondary server (provided j > 0) is also
busy; and the arrival process is in various phases. The level (0, 0) corresponds to the
system being idle with the MAP process in one of m phases.

The generator Q̃ of the CTMC governing the system under study is given by

Q̃ =



B0 A0
B1 A1 A0
B2 A2 A1 A0
...

. . . . . . . . .
BL A2 A1 A0

BL+1 A2 A1 A0
AL+2 A2 A1 A0

AL+2 A2 A1 A0
. . . . . . . . . . . .


, (20)

where

B0 =


D0

ν̃µ2 I D0 − µ2 I
ν̃µ2 I D0 − µ2 I

. . . . . .
ν̃µ2 I D0 − µ2 I

, (21)

A0 =


D1

νµ2 I D1
νµ2 I D1

. . . . . .
νµ2 I D1

, A1 = B0 − µ1 I, (22)

A2 = µ1∆(q, 1, · · · , 1), B1 = µ1 I,

Br = pµ1(eT
r ⊗ e(L + 1)), 2 ≤ r ≤ L + 1, AL+2 = BL+1,

(23)

∆(q, 1, · · · , 1) means the diagonal matrix with the diagonal entries listed in the brackets.
Using the results of the GI/M/1-type queues in continuous time (see, e.g., refs. [29,30]),

for our model, it is easy to verify the following.

1. Suppose that ỹ = (ỹ0, · · · , ỹL) is the invariant vector of A =
L+2
∑

i=0
Ai. Then, the vector

ỹ is explicitly obtained as

ỹ0 = δ(µ2 I − D0 − D1)[µ2 I + Lpµ1 I − D0 − D1]
−1,

ỹr = pµ1π0(µ2 I − D0 − D1)
−1, 1 ≤ r ≤ L.

(24)
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2. The stability condition, ỹA0e < ỹ
L+2
∑

i=1
(i− 1)Aie, reduces to the inequality given in

Equation (5).
3. Suppose R denotes the rate matrix. Then R satisfies the nonlinear matrix equation

given by
RL+2 AL+2 + R2 A2 + RA1 + A0 = 0.

Using the probabilistic interpretation of the rate matrix (or using the structure of the
coefficient matrices), it is easy to verify that R is lower triangular. This fact, along with
the structure of the coefficient matrices, can be exploited in computing R.

4. Denoting π̃ to be the steady state probability vector of the generator Q̃ as given in
Equation (20), we get the classic matrix-geometric solution here. That is, we have

π̃i = π̃0Ri, i ≥ 1,

where π̃0 is obtained by solving the following system of linear equations:

π̃0

[
L+1

∑
i=0

RiBi

]
= 0, π̃0e = 1.

One can develop the system performance measures for this approach similar to the
one done for the QBD approach. The details are omitted. It should be pointed out
that we used this approach to validate the numerical results obtained using the QBD
approach as another accuracy check.

5. Numerical Examples

In this section, we provide a few illustrative examples using five different arrival pro-
cesses. Of these five, three are renewal processes and two are correlated ones. Specifically,
we take the five MAPs as:
ERL: This is an Erlang of order 5 with parameter 2.5 in each of the 5 states. Note that here
we have λ = 0.5, σ = 0.899427, and ρc = 0.
EXP: This is exponential with a rate of 0.5. Note that here we have λ = 0.5, σ = 2, and
ρc = 0.
HEX: This is a hyperexponential distribution with mixing probability given by
(0.5, 0.3, 0.15, 0.04, 0.01) with the corresponding rates of the exponential distribution to
be (1.09, 0.545, 0.2725, 0.13625, 0.068125). Here we have λ = 0.5, σ = 3.3942, and ρc = 0.
The two correlated, negative and positive, processes are as follows:
NCR: This is a negatively correlated MAP, with representation matrices given by

D0 =


−1.125 1.125 0. 0. 0.

0. −1.125 1.125 0. 0.
0. 0. −1.125 1.125 0.
0. 0. 0. −1.125 0.
0. 0. 0. 0. −2.25

,

D1 =


0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.

0.01125 0. 0. 0. 1.11375
2.2275 0. 0. 0. 0.0225

.

Note that here we have λ = 0.5, σ = 2.02454, and ρc = −0.57855.
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PCR: This is a positively correlated MAP, with representation matrices given by

D0 =


−1.125 1.125 0. 0. 0.

0. −1.125 1.125 0. 0.
0. 0. −1.125 1.125 0.
0. 0. 0. −1.125 0.
0. 0. 0. 0. −2.25

,

D1 =


0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.

1.11375 0. 0. 0. 0.01125
0.0225 0. 0. 0. 2.2275

.

Note that here we have λ = 0.5, σ = 2.02454 and ρc = 0.57855.
It is clear by looking at the above five MAPs that they are all qualitatively different.

It is worth pointing out that the arrival process labeled PCR is ideal for situations where
the arrivals of the customers are highly irregular with periods alternating between system
congestion and system starvation. Such arrivals are common in practice, especially in
telecommunications and service industries. Note, further, that the arrival process labeled
HEX is known to exhibit a similar irregular behavior in the sense that arrivals with shorter
inter-arrival times are separated by long ones. However, the difference between these two
processes is the (positive) correlation that is present in the PCR process. The impact of the
(positive) correlation as well as the high variability in the inter-arrival times such as the
above two processes has been well documented in the literature (see, e.g., refs. [29,30]).

We discuss three illustrative and representative numerical examples to bring out the
qualitative nature of the model under study.

Illustrative Example 1: Here, we discuss the impact of the parameter L on some selected
system performance measures for all five MAPs. We first fix µ1 = 1, µ2 = 0.5, q = 0.5,
and ν = 0.4, and vary L from 1 to 30.

Figure 2 clearly illustrates the effect of the irregularity in the arrival process, namely,
PCR. The average number of customers in the system in the case of PCR is many times
larger as compared to the other MAPs. It is worth pointing out that for the first four MAPs,
the measure Lsystem is a non-decreasing function of L, whereas for PCR, a non-increasing
trend is seen. This explains the role of the correlation, especially positive, and should not
be ignored. Further, a large value of L indicates that when a secondary server is recruited,
more customers will be assigned and, due to the nature of the slowness of the secondary
server (as compared to the main server), there is a high probability, especially for the
cases of the first four MAPs, for the system to have more customers in the system on the
average. Similar to what is known in the classic queue—namely, the mean number in the
system increases with increasing variability in the inter-arrival times among the renewal
arrivals—we see that behavior here among the first three MAPs, which correspond to
renewal arrivals.

However, with respect to the PCR arrivals, we see an interesting but opposite trend,
namely, a decreasing one. This can intuitively be explained as follows. First, note that
Lsystem has a maximal value of 15.3983 when L = 1, which can be explained by using the
fact that, when L = 1, the secondary servers leave after serving one customer; with a
probability of only 0.5 for recruitment, the queue tends to build up fast. As L is increased,
secondary servers are more involved in clearing the queue, especially when the arrivals
occur in spurts, and so Lsystem decreases. It reaches a minimal value of 11.9757 when L = 16
and then starts to increase due to not getting a chance to be served by the main server. For
L = 30, Lsystem = 12.0605.

Figure 3 shows the behavior of the average number of customers with the secondary
server Lsec. As is to be expected, we see that Lsec increases when L increases. As in the
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previous figure, the value of Lsec is, generally speaking, large in the case of PCR. Only
for small values of L is this value smaller for the ERL-NCR. This can be explained by the
high irregularity of the arrivals seen in the PCR process, which causes the system to starve,
during which only the main server is busy offering services for the most part. Among
ERL-HEX, the known effect that higher variance implies a large number of customers in
the system is confirmed.
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Figure 2. Impact of L on the average number of customers in the system Lsystem for different MAPs.
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Figure 3. Dependence of the average number of customers with the secondary server Lsec on the
parameter L for different MAPs.

Figure 4 illustrates the behavior of the probability, Pidle−system, that the system is idle
at an arbitrary moment. This figure matches Figure 2 in two respects. The first one is that it
also shows a large difference in the measure when being compared to various MAPs. When
one is interested in finding an optimal L, it is clear that it matters which measure is chosen
as the objective function as well as the type of MAPs used when all other parameters are
fixed. For example, if we look the case of the PCR arrival process, the optimal value of L is
16 if we are tying to minimize Lsystem. However, if measure Pidle−system is the focus of the
optimization problem, then L = 6 yields the largest value for this measure.
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Figure 4. Dependence of the probability Pidle−system that the system is idle at an arbitrary moment on
the parameter L for different MAPs.

Figures 5 and 6 illustrate the behavior of the probabilities Pidle−busy and Pbusy−idle,
which respectively correspond to when the main server is idle with the secondary server
being busy, and when the main server is busy with the secondary server being idle, at an
arbitrary moment. While the first probability is increasing when L increases, the second
probability is decreasing. From these figures, one can see the essential differences in these
probabilities under various scenarios.
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Figure 5. Dependence of the probability Pidle−busy that the main server is idle while the secondary
server is busy on the parameter L for different MAPs.
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Figure 6. Dependence of the probability Pbusy−idle that the main server is busy while the secondary
server is idle on the parameter L for different MAPs.

Illustrative Example 2: The purpose of this example is to investigate the impact of the
parameters q (recall this is the probability that a served customer refuses to act as a sec-
ondary server) and ν (this is the probability that a customer served by a secondary server is
dissatisfied and sent back to the system). We fix the value of L as 10 (midpoint between
the two optimal values mentioned in the first example). We also fix the service rates as
µ1 = 1 and µ2 = 0.5 and investigate the dependence of several performance measures on
the probabilities q and ν. We vary the values of these probabilities from 0 to 1 with step 0.05.
Note that the value q = 1 corresponds to the classic MAP/M/1 system with the service
rate µ1.

In this example, we focus on the arrival process labeled PCR, the choice of which
is based on the behavior for this process on the measures as highlighted in the first il-
lustrative example. From Figure 7, which displays the dependence of the average num-
ber of customers in the system Lsystem on the parameters q and ν, we infer a number of
interesting observations.

The value of Lsystem is minimal with a value of 7.9328 when the served customer is
always available to be recruited (when the system needs) and when the customer receiving
service from a secondary server is always satisfied. That is the minimum attained when
q = 0 and ν = 0. This measure increases when either q or ν increases, and the rate of
increase becomes higher when one or both q and ν approach the value 1. When q = 1, the
system transforms to the corresponding classic MAP/M/1 and to a system without the
use of the secondary server, and Lsystem = 22.30425 for all values of ν (as is clear). When
q = 0, which corresponds to the case that a served customer is always recruited (when
needed), even when the probability of dissatisfaction is high (ν = 0.5), the value of Lsystem
is equal to 12.91247. Therefore, the use of a secondary server essentially decreases the mean
number of customers in the system by more than 40%. Also, we looked at the cut-off point,
say ν∗, for a dissatisfaction rate such that the classic queueing model will be better than the
model proposed here. For the parameters of this example, the cut-off point is ν∗ ' 0.985,
in that the dissatisfaction rate has to be more than 98.5% for the classic model to perform
better.

To test further the amount of reduction in the mean number, we increased λ by 50% to
λ = 0.75. Keeping all other parameters (except for the normalization of the parameters of
the arrival process to arrive at this specific λ) the same, we obtained a reduction percentage
of more than 52.8%. Thus, an increased load to the system will highly benefit from having
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a secondary server to help the system even with a high customer dissatisfaction rate of 50%
with this secondary server.

Figure 8 shows the dependence of the average number of customers with the secondary
server Lsec on the parameters q and ν. This probability significantly decreases when q
approaches 1 and when the customers are rarely recruited to serve as secondary servers.
Lsec has the maximal value when q is equal to zero, i.e., all customers are recruited (when
needed) to become secondary servers, and when ν is close to 1. Obviously, in the latter
case, almost all customers served by a secondary server have to be sent back to the system
due dissatisfaction. This explains the creation of additional work to the system and should
be discouraged by resorting to the classic queue as opposed to recruiting (bad) secondary
servers. It is worth pointing out that such a (bad) system may reflect badly on the system
itself for providing services that cannot be replicated by other (served) customers.
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Figure 7. Dependence of the average number of customers in the system Lsystem on the parameters q
and ν.
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Figure 8. Dependence of the average number of customers with the secondary server Lsec on the
parameters q and ν.

In Figure 9, the behavior of the probability Pidle−system that the system is idle at an
arbitrary moment as a function of q and ν is displayed. This probability has the minimal
value of 0.4445 when ν = 1 and q = 0, which is intuitively clear, as having to serve
customers again after going through a secondary server puts a load on the system.
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The probability that Pidle−system increases when q increases and/or ν decreases: the
maximal value 0.5652 of this probability is achieved when q = 0.65 and ν = 0. In the
corresponding classic MAP/M/1 system, this measure is Pidle−system = 0.5.
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Figure 9. Dependence of the probability Pidle−system that the system is idle at an arbitrary moment on
the parameters q and ν.

Figure 10 shows the behavior of the probability Pidle−arrival , as a function of q and
ν, that the system is idle at an arrival epoch. As can be expected, the behavior of the
probability that the system is idle at an arrival epoch is similar to the behavior of the
probability that the system is idle at an arbitrary moment. However, the former probability
is less than the latter one. This is easily explained by the above-stated observation that in
the case of PCR, wherein there are periods alternating between rare and frequent arrivals
to the system, there is high likelihood that an arriving customer may be in the period of
frequent arrivals leading to a high probability of seeing the system idle. It is worth pointing
it out that for the corresponding classic MAP/M/1 system, this measure has a value of
0.358.
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Figure 10. Dependence of the probability Pidle−arrival that the system is idle at an arbitrary arrival
moment on the parameters q and ν.

Figures 11 and 12 show dependencies, respectively, of the probability Pidle−busy that
the main server is idle while the secondary server is busy, and the probability Pbusy−idle
that the main server is busy while the secondary server is idle on q and ν. The probability
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Pidle−busy is significantly small and obviously tends to zero when probability q tends to 1.
On the other hand, the probability Pbusy−idle appears to be much larger than Pidle−busy. The
probability Pbusy−idle tends to increase when q is increased to 1.
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Figure 11. Dependence of the probability Pidle−busy that the main server is idle while the secondary
server is busy on the parameters q and ν.
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Figure 12. Dependence of the probability Pbusy−idle that the main server is busy while the secondary
server is idle on the parameters q and ν.

Illustrative Example 3: In this final example, we investigate the impact of the varying
the service rates µ1 and µ2 when all other parameters are fixed. Towards this end, we fix
L = 10, q = 0.5, ν = 0.4, and λ = 0.5. The rates µ1 and µ2 are varied from 0.25 to 2.0
in increments of 0.05. It is worth mentioning that, to fulfill the ergodicity condition (see
Equation (5)), we additionally restrict the value of µ2 whenever µ1 is small. In particular,
when µ1 = 0.25, the minimal value of the rate µ2 is chosen (with the pre-described above
step as 0.05) to be no less than 0.65. When µ1 = 0.3, the rate µ2 is chosen to be no less than
0.45. When µ1 = 0.35, the rate µ2 is chosen to be no less than 0.3. Only for µ1 ≥ 0.4 can the
value of µ2 be varied from 0.25 as originally pointed out.

With the above restrictions on the choice of µ1 and µ2, we display in Figures 13 and 14
the dependence of the measure Lsystem on µ1 and µ2. In Figure 13, most of the surface
showing the dependence looks flat. This is due to the fact that, for many combinations
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of the parameter values with small rate µ1, the ergodicity condition is violated and the
measure Lsystem becomes very large. Therefore, in Figure 14, the dependence of Lsystem on
µ1 and µ2 is displayed only for non-small values of µ1. Clearly, one can see a decreasing
trend as Lsystem quickly decreases when µ1 increases for fixed µ2 and vice-versa.
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Figure 13. Dependence of the average number of customers in the system Lsystem on the parameters
µ1 and µ2.
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Figure 14. Dependence of the average number of customers in the system Lsystem on the parameters
µ1 and µ2.

Figure 15 shows the behavior of the average number of customers with the secondary
server Lsec. The value of Lsec is maximized with a value of about 5 when µ1 and µ2 are
small. This is intuitively clear since for small values of µ1 and µ2, the ergodicity condition
is close to being violated, causing a high recruitment rate for secondary servers who in all
likelihood before leaving the system will serve a group of size L = 10. Thus, the average
number of customers in service at an arbitrary moment is about 5. With an increase in µ1
and µ2, the value of Lsec decreases as one would expect. For small values of µ1, the decrease
is significant as µ2 is increased; for larger values of µ1, we notice an insignificant rate of
decrease in Lsec with an increase in µ2.

Figures 16 and 17 illustrate the behavior of Pidle−system and Pidle−arrival . As in the
previous example, Pidle−arrival is less than that of Pidle−system.

Figures 18 and 19 illustrate the behavior of Pidle−busy and Pbusy−idle. These performance
characteristics can be quite interesting if the economic arguments are taken into account.
For example, if the work of the secondary server is not gratis, then the analysis of the
secondary server to stay idle or busy while the main server is busy or idle should shed
more light and will be a topic of interest for a future study.
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Figure 15. Dependence of the average number of customers with the secondary server Lsec on the
parameters µ1 and µ2.
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Figure 16. Dependence of the probability Pidle−system that the system is idle at an arbitrary moment
on the parameters µ1 and µ2.
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Figure 17. Dependence of the probability Pidle−arrival that the system is idle at an arbitrary arrival
moment on the parameters q and ν.



Mathematics 2023, 11, 624 22 of 24

m
1

m
2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.4
0.6

0.8
1

1.2
1.4

1.6
1.8

2

0.4
0.6

0.8
1
1.2

1.4
1.6

1.8
2

idle−busyP

Figure 18. Dependence of the probability Pidle−busy that the main server is idle while the secondary
server is busy on the parameters q and ν.
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Figure 19. Dependence of the probability Pbusy−idle that the main server is busy while the secondary
server is idle on the parameters µ1 and µ2.

6. Conclusions

In this paper, we analyzed a queueing system in which there is an opportunity to
recruit a (served) customer as a secondary server to help the main server by assigning a
group of a finite number of waiting customers. The arrival process is modeled using a
versatile Markovian point process, MAP. The possibility of customer dissatisfaction with
the service provided by the secondary server causing those customers to be fed back into
the system is taken into account. The steady state analysis of the multi-dimensional Markov
chain describing behavior of the system is implemented, and illustrative numerical results
potentially useful for making managerial decisions are presented.

The model studied in this paper can be generalized in a number of ways. For example,
(i) the service provided by the secondary server can be done in groups; (ii) relax the
assumption of having only one secondary server to more than one and see the impact of just
increasing it to, say, 2; (iii) use phase-type services possibly with different representations
for the main and secondary server; (iv) incorporate impatience of the customers in both
the main and secondary buffers; (v) implement a recruitment process depending on the
observed queue length based on a threshold-type control policy; (vi) allow group arrivals;
and finally (vii) incorporate the possibility of recruiting many secondary servers with two
types of customers such that only one type will qualify to act as secondary servers.
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