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1. Introduction

Queueing theory is a powerful tool for solving the problems of optimal sharing and
scheduling limited resources in many real-world systems in the fields of telecommuni-
cations, transportation, logistics, emergency services, health-care, computer systems and
networks, manufacturing, etc.; for recent references, see, e.g., [1–9]. While the main amount
of the existing queueing literature is devoted to the systems with homogeneous requests,
the efforts of many researches have been focused also on the queueing systems with het-
erogeneous requests having, in general, different requirements for the service time and
different economic value. An important class of such queueing systems assumes the sup-
port of a certain system of priorities provided to different types of requests aiming to
create more comfortable conditions for requests belonging to the higher-priority classes.
Examples of such classes are the urgent (related to safety for life or the security of objects)
and non-urgent information in communication networks; handover and new calls in mobile
communication networks; primary and cognitive users in cognitive radio systems; injured
patients with a danger to their lives or without this in health emergency services; emergency
and public or private transport on the roads in the city; preferred or ordinary clients of
banks and other systems, etc.

The classical books on priority queues are [10–13]. As recent papers dealing with
priority queues, the papers [14–22] can be mentioned.

In priority queueing systems, usually, requests of different types are stored in different
(physically or virtually) buffers. Customers of low priority can be picked up for service
only when the buffers designed for higher-priority requests are empty. There is a variety of
different priority schemes suitable for modelling and optimising various real-life systems,
including non-preemptive (not allowing the interruption of ongoing service), preemptive
(allowing the interruption of service), and alternating priorities. Due to the finiteness of the
shared resource and the use of work-conserving disciplines, the better are the conditions
guaranteed to the high-priority requests, the worse are the conditions provided to the
low-priority requests. Traditional, statical, priority schemes suggest that the priority is
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assigned in advance and does not depend on the queue lengths in the system. Thus, it
is possible that, sometimes, there is a very long queue of low-priority requests while the
queue of high-priority requests is short. This may not be fair with respect to low-priority
requests. Therefore, different strategies of dynamically providing the priorities have been
offered in the literature since the paper [23]; see the survey [24]. Such strategies suggest
that, at any moment of decision-making about the type of the request to be taken for service,
this type is defined via some control policy depending on the relation of the queue lengths
of different types of requests. A popular class of such policies is monotone policies using
thresholds. Other possibilities to make the statical priority more favourable with respect
to the low-priority requests are the use of randomisation in the choice (providing, with
a certain probability, the chance to a low-priority request to enter the service even in the
presence of high-priority requests), the mandatory service of a low-priority request after
service, in turn a certain number of high-priority requests, provisioning the weighted
service rates, etc.

There are also many works considering the accumulation of priority during a re-
quest stay in the queue. For a short review of the corresponding research, see, e.g., the
papers [25,26]. In [25], the model with a heterogeneous-batch-correlated arrival process
of two types of requests and the phase-type distribution of service time (see, e.g., [27]
for the definition and properties of such a distribution) was analysed. A non-priority
request becomes the priority request after its waiting time exceeds some random time
having the phase-type distribution. In [26], the model with the heterogeneous correlated
arrival process of an arbitrary finite number of types of requests, a finite common buffer
space, the phase-type distribution of the service time, and exponential distributions of
times until priority upgrading was analysed. In both of these papers, the arrival flow was
assumed to be defined by the Marked Markov Arrival Process (MMAP) (see, e.g., [28,29]),
which is the generalisation of the well-known Markov Arrival Process (MAP) to the case
of heterogeneous requests. In turn, the MAP is the significant generalisation of a stationary
Poisson arrival process. In contrast to the stationary Poisson arrival process, the MAP is
suitable for modelling, in particular, the flows in the modern communication networks and
contact centres that exhibit the correlation and high variability of inter-arrival times. It is
already well known that the ignorance of the correlation and high variability of inter-arrival
times can lead to huge errors in evaluating the performance and the design of real-world
systems. For the literature about the queues with the MAP, its properties, partial cases,
and possible applications see, e.g., [6,7,30–38]. The literature on the priority queues and
MMAP arrival process is still not very extensive. Among the recent papers mentioned
above, such an arrival process was assumed in [14,18,20,22].

In the paper [39], a new flexible scheme for non-preemptive priority provision was
offered. The idea of that scheme is not to define the rule for picking up requests of different
priorities from the buffer, but to regulate the rate of admission of these requests to the
buffer. This is achieved via managing the auxiliary intermediate buffers for preliminarily
storing the arriving requests. The capacities of two intermediate buffers are different, as
well as the rates of the transition of requests from these buffers into the main buffer, from
which all requests are picked up for service according to First In–First Out (FIFO) principle.
Via the proper choice of these rates and capacities, it is possible to provide any degree of
priority for requests of both types. Usually considered in the literature, non-preemptive
priorities are obtained as a very particular case of this priority scheme.

In this paper, we extended the results of [39] in two directions. The first direction is
the consideration of a multi-server system instead of a single-server system, as analysed
in [39]. Multi-server queueing systems more adequately describe many real-world systems
where the shared restricted resource is split into independent units providing service to
the requests (operators in call centres, cashiers in stores, logical information transmission
channels obtained from a single physical channel via the use of various multiplexing
methods, etc.) and are a more difficult subject for investigation. The second direction is
avoiding the loss of requests in the case when the intermediate buffers are overloaded.
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Newly arriving requests to any intermediate buffer seeing that the buffer is full are not lost,
as was assumed in [39], but push the first request from this buffer into the main buffer and
occupy the vacant place in the intermediate buffer. This feature allows not only modelling
the systems where the loss of requests due to the buffer overflow is not possible, but it
allows dynamically giving additional priority to the requests from the currently long queue.
As in [39], we took into account the possible impatience of requests in the intermediate and
main buffers because it is well known (see, e.g., [40]) that requests in many systems exhibit
impatience due to various reasons.

The structure of the rest of the paper is as follows. The mathematical model is described
in Section 2. The multidimensional stochastic process describing the behaviour of the
considered model is introduced and analysed in Section 3. In Section 4, the formulas for
the computation of the key performance measures of the system are presented. In Section 5,
the results of the numerical experiment are given. Section 6 concludes the paper.

2. Mathematical Model

We analysed a queueing system having N independent identical servers and a buffer
of infinite capacity. Each server of the system can provide service to two types of requests
at rate µ, µ > 0, independent of the type of request.

The arrivals of requests occur according to an MMAP. The MMAP is determined by
the irreducible continuous-time Markov chain (CTMC) νt, t ≥ 0, with the finite state space
{1, 2, . . . , W}. The transition rates of this CTMC are defined by the generator, denoted as
D(1). The matrix D(1) is represented in the additive form as

D(1) = D0 + D1 + D2

where the sub-generator D0 defines the transition rates of the CTMC νt, which do not cause
requests’ arrival. The non-negative matrix Dk defines the transition rates of the CTMC νt,
which are accompanied with the Type-k request arrival, k = 1, 2.

Let θ be the invariant probability row vector of the CTMC νt. This vector is computed
as the unique solution to the system of linear algebraic equations θD(1) = 0, θe = 1. Here
and further, e denotes a column vector of 1s and 0 denotes a row vector of 0s with the
appropriate dimension. The average arrival rate λk of Type-k requests is computed by the
formula λk = θDke, k = 1, 2. The total arrival rate of requests to the system is defined as
λ = λ1 + λ2. Generally speaking, the lengths of the intervals between requests’ arrivals are
correlated. The formulas for the computation of the coefficients of variation and correlation
can be found, e.g., in [36]. The methods for the estimation of the parameters of the MMAP
describing the flow of requests in some real-world system based on the finite set of the
observed request arrival moments (timestamps) were presented, e.g., in [41].

We assumed that Type-1 requests have a priority over Type-2 requests provided via
the application of a request admission procedure, described as follows. If the request of
any type arrives at the system when at least one server is idle, this request immediately
starts service on an arbitrary idle server and, then, after being exponentially distributed
with rate µ time, departs from the system. If an arbitrary Type-k request sees that all servers
are busy, it is stored in the kth intermediate buffer, k = 1, 2. The capacities of the first and
second intermediate buffers are equal to K and R, respectively. If the corresponding buffer
is full, this request is placed in the buffer while the first request staying in this buffer is
immediately pushed out of the buffer and transits to the main buffer of an infinite capacity.
Each request placed in the kth buffer should reside there during exponential time with the
rate γk, γk ≥ 0, k = 1, 2. After this time expires, the request immediately transits to the
main buffer. After storing in this buffer, the requests of both types become indistinguishable
and are picked up from this buffer for service according to the FIFO principle. If, at some
service completion moment, the main buffer is empty, the released server picks up for
service the first request from the first buffer, if any. If the first buffer is empty, the offer
to start service receives the first request from the second buffer. If all buffers are empty,
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the server waits until any request arrives at the system, and it will have a chance to start
service for this request.

As was proclaimed above, the described admission procedure is flexible in the sense
of the degree of the privilege provided to Type-1 requests. The privilege is given via: (i) the
order of polling the intermediate buffers when some server becomes idle (the request from
the first buffer is invited for service first); (ii) the choice of the rates γk of the transition of
the requests from the intermediate buffers to the main buffer (rate γ1 can be arbitrarily
larger than γ2); (iii) the proper choice of the capacities of the intermediate buffers. In
contrast to [39], where the small capacity of the buffer might cause the loss of an arriving
request and the capacity of the buffer for low-priority requests could be chosen as small, to
drop part of these requests, in the model considered in this paper, a small buffer for some
type of requests helps to obtain a quicker transition to the main buffer due to the push
out mechanism.

Customers staying in the intermediate buffers are impatient. Customers staying in
the kth buffer depart from the buffer independently of each other (are lost) instead of
transitioning to the main buffer after residing in the buffer while being exponentially
distributed with the rate αk time, αk ≥ 0, k = 1, 2. Therefore, the large capacity of a
buffer and a large impatience rate may stimulate the frequent loss of low-priority requests.
Customers staying in the main buffer also can be impatient. The patience time was assumed
to have an exponential distribution with the rate ϕ, ϕ ≥ 0. After this time expires, the
request departs from the system without service (is lost).

The operation of the system is schematically illustrated in Figure 1.

servers

type-1

non-priority

type-2

priority

Figure 1. Structure of the system.

Our goals were to construct the Markov process describing the behaviour of the
system, implement its steady-state analysis, and numerically highlight some dependencies
of the system performance measures on the parameters of the model.

3. Random Process Defining the Behaviour of the System
3.1. Selection of the Random Process

Let:

• it, it ≥ 0, be the total number of requests in service and in the main buffer;
• kt, kt = 0, K, be the number of requests in the first intermediate buffer;
• rt, rt = 0, R, be the number of requests in the second intermediate buffer;
• νt, νt = 1, W, be the state of the underlying process of the MMAP;

at moment t, t ≥ 0. Here, and further, notation like ν = 1, W means that the parameter ν
admits values from the set {1, 2, . . . , W}.

The four-dimensional CTMC ξt = {it, kt, rt, νt}, t ≥ 0, is regular and irreducible. Its
infinite state space is defined as(

{i, 0, 0, ν}, i = 0, N − 1

)⋃(
{i, k, r, ν}, i ≥ N

)
, k = 0, K, r = 0, R, ν = 1, W.
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3.2. Generator of the Random Process

To write down the generator of the CTMC ξt, we need the following denotations:
diag{a1, . . . , aL} is the diagonal matrix with the diagonal entries given by the numbers

{a1, . . . , aL};
square matrices Cl , Îl , Ĩl , E−l , and E+

l of size l, where l = K + 1 or l = R + 1, are
given by:

Cl = diag{0, 1, . . . , l − 1};
Îl = diag{1, 0, . . . , 0};
Ĩl = diag{0, . . . , 0, 1};
matrices E−l and E+

l have all zero entries, except the values (E−l )k,k−1, k = 1, l − 1,
and (E+

l )k,k+1, k = 0, l − 2, correspondingly, which are equal to 1;
êl is a row vector of size l : êl = (1, 0, . . . , 0), l = K + 1, R + 1;
êT

l is the transposed vector êl , l = K + 1, R + 1;
⊗ is the symbol of the matrix Kronecker product; see, e.g., [42–44];
I is the identity matrix, and O is a square zero matrix of appropriate size. If needed,

the size is indicated as the suffix.
To simplify the analysis of the multi-dimensional CTMC ξt, t ≥ 0, having one

countable component (it) and three finite components, let us enumerate its states in the
direct lexicographic order of the components. We call the set of states of this CTMC, which
have the value i of the countable component it, as level i of the CTMC.

Let Q be the generator of the CTMC ξt, t ≥ 0.

Theorem 1. The generator Q has the following block-tridiagonal structure:

Q =


Q0,0 Q0,1 O O O O . . .
Q1,0 Q1,1 Q1,2 O O O . . .
O Q2,1 Q2,2 Q2,3 O O . . .
O O Q3,2 Q3,3 Q3,4 O . . .
...

...
...

...
...

...
. . .

 (1)

where the non-zero blocks Qi,j, i, j ≥ 0, contain the intensities of the transition of the CTMC from
the states that belong to the level i to the states that belong to the level j.

These blocks are defined as follows:

Q0,0 = D0,

Qi,i = D0 − µiIW , i = 1, N − 1,

QN,N = I(K+1)(R+1) ⊗ (D0 − µNIW) + E+
K+1 ⊗ IR+1 ⊗ D1 + IK+1 ⊗ E+

R+1 ⊗ D2−

−(α1 + γ1)CK+1 ⊗ I(R+1)W − (α2 + γ2)IK+1 ⊗ CR+1 ⊗ IW+

+α1CK+1E−K+1 ⊗ I(R+1)W + α2 IK+1 ⊗ CR+1E−R+1 ⊗ IW+

+(E−K+1 ⊗ IR+1 + ÎK+1 ⊗ E−R+1)⊗ µNIW ,

Qi,i = Q0 − (i− N)ϕI(K+1)(R+1)W , i > N,

Q0 = I(K+1)(R+1) ⊗ (D0 − µNIW) + E+
K+1 ⊗ IR+1 ⊗ D1 + IK+1 ⊗ E+

R+1 ⊗ D2−

−(α1 + γ1)CK+1 ⊗ I(R+1)W − (α2 + γ2)IK+1 ⊗ CR+1 ⊗ IW+

+α1CK+1E−K+1 ⊗ I(R+1)W + α2 IK+1 ⊗ CR+1E−R+1 ⊗ IW ,

Qi,i+1 = D1 + D2, i = 0, N − 2,

QN−1,N = êK+1 ⊗ êR+1 ⊗ (D1 + D2),

Qi,i+1 = Q+ = γ1CK+1E−K+1 ⊗ I(R+1)W + γ2 IK+1 ⊗ CR+1E−R+1 ⊗ IW+
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+ ĨK+1 ⊗ IR+1 ⊗ D1 + IK+1 ⊗ ĨR+1 ⊗ D2, i ≥ N,

Qi,i−1 = µiIW , i = 1, N − 1,

QN,N−1 = êT
K+1 ⊗ êT

R+1 ⊗ µNIW ,

Qi,i−1 = Q− + (i− N)ϕI(K+1)(R+1)W , i > N,

Q− = µNI(K+1)(R+1)W .

Proof. The proof of Theorem 1 was implemented by means of the analysis of the inten-
sities of all possible transitions of the CTMC ξt during the infinitely small time and is
presented below.

The block-tridiagonal structure of the generator Q stems from the fact that requests
arrive at the system and depart from it (due to service completion or impatience) only one
by one.

The form of the non-zero blocks Qi,j, i, j ≥ 0, is explained as follows:

• The block Q0,0:
If the system is empty (i = 0), that is all three buffers are empty and all servers are idle,
the behaviour of the CTMC ξt is determined only by the process νt. The intensities of
its transitions to other states are equal to the non-diagonal elements of the matrix D0,
and the rates of the exit from the corresponding states are determined up to the sign
by the diagonal elements of this matrix. Thus, Q0,0 = D0.

• The diagonal entries of the blocks Qi,i, i ≥ 1:
These entries are negative. Their modules define the exit rate of the CTMC ξt from its
state. The exit can occur due to the following reasons:

(a) The underlying process νt departs from its current state. The rates of departures
are given by the modules of the diagonal elements of the matrix D0, if i =
1, N − 1, or matrix I(K+1)(R+1) ⊗ D0, if i ≥ N.

(b) Service completion in one busy server occurs. The rates are given by the diagonal
elements of the matrix µiIW , if i = 1, N, or matrix µNI(K+1)(R+1)W , if i > N.

(c) A Type-1 request departs from the dedicated intermediate buffer due to im-
patience or transfer to the main buffer. The rates are given by the matrix
(α1 + γ1)CK+1 ⊗ I(R+1)W , i ≥ N.

(d) A Type-2 request departs from the dedicated intermediate buffer due to im-
patience or transfer to the infinite buffer. The rates are given by the matrix
(α2 + γ2)IK+1 ⊗ CR+1 ⊗ IW , i ≥ N.

(e) A request departs from the main buffer due to impatience. The rates are given
by the matrix (i− N)ϕI(K+1)(R+1)W , i > N.

• The non-diagonal entries of the blocks Qi,i, i ≥ 1:
These entries define the rates of transition of the CTMC ξt within the level i. Such
transition rates are given by:

(a) Non-diagonal entries of the matrices D0, for i = 1, N − 1, or I(K+1)(R+1) ⊗ D0,
for i ≥ N, when the process νt makes a transition without the generation of a
request.

(b) Entries of the matrix E+
K+1 ⊗ IR+1 ⊗ D1, i ≥ N, when a Type-1 request arrives

and joins the first intermediate buffer.
(c) Entries of the matrix IK+1 ⊗ E+

R+1 ⊗ D2, i ≥ N, when a Type-2 request arrives
and joins the second intermediate buffer.

(d) Entries of the matrix α1CK+1E−K+1 ⊗ I(R+1)W , i ≥ N, when a Type-1 request
departs from the intermediate buffer due to impatience.

(e) Entries of the matrix α2 IK+1 ⊗ CR+1E−R+1 ⊗ IW , i ≥ N, when a Type-2 request
departs from the intermediate buffer due to impatience.
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(f) Entries of the matrix (E−K+1⊗ IR+1 + ÎK+1⊗ E−R+1)⊗ µNIW when the main buffer
is empty at some service completion moment, while the intermediate buffers are
not both empty.

• The blocks Qi,i+1, i ≥ 0:
These blocks define the rates of transition of the CTMC ξt when the number of requests
in service or in the main buffer increases from i to i + 1.
If i < N− 1, i.e., there is at least one idle server, this occurs when a request of any type
arrives at the system and the request starts service. The transition rates of the process
νt at the moment of a request arrival are determined by the elements of the matrix
D1 + D2. When i = N − 1, the arrived request occupies the last idle server, and from
this moment, the numbers of requests in the intermediate buffers should be counted.
Row vector êK+1⊗ êR+1 fixes that both of these buffers are empty. Therefore, the block
QN−1,N is determined by the matrix êK+1 ⊗ êR+1 ⊗ (D1 + D2).
Let now i ≥ N. The increase of the number of requests in the infinite buffer may occur
due to the transition of a request from some intermediate buffer to the infinite buffer.
Matrix γ1CK+1E−K+1 determines the rate of transition of a request from Buffer 1 to the
infinite buffer under the current number of requests in Buffer 1 and the decrease of the
number of requests in Buffer 1. No transition of the number of requests in the infinite
buffer and underlying process νt can occur simultaneously with the transition of a
request to the infinite buffer. Therefore, the intensities of all transitions of the CTMC
ξt at the moment of the request transition from Intermediate Buffer 1 to the infinite
buffer are given by the matrix γ1CK+1E−K+1 ⊗ I(R+1)W . By analogy, it may be shown
that the intensities of the transitions of the CTMC ξt at the moment of the request
transition from Intermediate Buffer 2 to the infinite buffer are given by the matrix
γ2 IK+1 ⊗ CR+1E−R+1 ⊗ IW .
The increase of the number of requests in service and the infinite buffer from i to
i + 1 when i, i ≥ N, can occur also when Buffer 1 is full and a new Type-1 request
arrives. This request pushes the first request out of this buffer to the infinite buffer.
The rates of transition of the CTMC ξt at this moment are determined by the matrix
ĨK+1 ⊗ IR+1 ⊗D1. By analogy, it may be shown that the intensities of the transitions of
the CTMC ξt at the moment of the request being pushed out of Intermediate Buffer 2
to the infinite buffer are given by the matrix IK+1 ⊗ ĨR+1 ⊗ D2. As a result, we obtain
above-given formula for the block. Qi,i+1, i ≥ N.

• The blocks Qi,i−1, i ≥ 1:
The transitions from the level i to the level i− 1 are possible at the service completion
moments (the corresponding rates are given by the matrix µiIW , if i = 1, N − 1,
or µNI(K+1)(R+1)W , if i > N) and the moments of requests’ departure from the
infinite buffer due to impatience (the corresponding rates are given by the matrix
(i − N)ϕI(K+1)(R+1)W , i > N). If i = N, the service completion leads to emptying
one server. Thus, the block QN,N−1 admits the form êT

K+1 ⊗ êT
R+1 ⊗ µNIW , where

the column vector (êK+1)
T ⊗ (êR+1)

T is used to cancel the components describing
the numbers of requests in Buffer 1 and Buffer 2 (these numbers are equal to zero
by default).

Theorem 1 is proven.

3.3. Ergodicity Condition for the Random Process

Having determined the generator of the CTMC ξt, we can proceed to the derivation
of the ergodicity condition of this CTMC.

Theorem 2. The following statements are true.
If the requests residing in the infinite buffer are impatient, i.e., the rate ϕ is positive, then the

CTMC ξt is ergodic for an arbitrary set of the parameters of the system.
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If the requests in this buffer are patient, i.e., the rate ϕ is equal to zero, then the criterion of the
ergodicity of the CTMC ξt is the fulfilment of the inequality:

yQ+e < Nµ (2)

where the vector y is the unique solution to the system:

y(Q− + Q0 + Q+) = 0, ye = 1. (3)

Proof. Let us first consider the case ϕ 6= 0. In this case, it is easy to verify that there exist
the limits:

Y0 = lim
i→∞

R−1
i Qi,i−1 = I, Y1 = lim

i→∞
R−1

i Qi,i + I = O, Y2 = lim
i→∞

R−1
i Qi,i+1 = O (4)

where the matrix Ri is a diagonal matrix with the diagonal entries defined by the corre-
sponding diagonal entries of the matrix −Qi,i, i ≥ 0. Therefore, the CTMC ξt belongs
to the class of continuous-time asymptotically quasi-Toeplitz–Markov chains (AQTMC);
see [36,45]. It follows from [45] that the sufficient condition for the ergodicity of the Markov
chain ξt is the fulfilment of the inequality:

wY0e > wY2e (5)

where the vector w is the unique solution to the system:

w(Y0 + Y1 + Y2) = w, we = 1.

It is easy to check that, for the considered CTMC ξt with the limiting matrices defined
in (4) and (5), it transforms to the evident inequality 1 > 0. This proves that the CTMC ξt is
ergodic for an arbitrary set of the parameters of the system.

Let us now consider the case ϕ = 0. In this case, the CTMC ξt is the particular case of
the quasi-birth-and-death processes (see [27]), and the criterion of the ergodicity the CTMC
ξt has the form:

yQ−e > yQ+e (6)

where the vector y is the unique stochastic solution to the equation:

y(Q− + Q0 + Q+) = 0. (7)

Taking into account that Q− = µNI(K+1)(R+1)W and, thus, yQ−e = µN, Inequality (6)
reduces to (2).

Theorem 2 is proven.

Remark 1. It is easy to check that the vector y has the following probabilistic sense. When the
main buffer is overloaded, the vector y defines the joint stationary distribution of the number of
requests and the underlying process of MMAP in the queueing system with the MMAP arrival
process, no buffer, two parallel service groups consisting of K and R servers, correspondingly, and
the exponential service time distribution in the servers belonging to the rth group with the rate
αr + γr, r = 1, 2. It can be verified that the departure process of successfully serviced requests from
this queueing system is the MAP defined by the matrices:

H0 = Q0 + Q−, H1 = Q+.

The mean departure rate from this system is yH1e = yQ+e. In the situation when there
are many requests in the main buffer, the discussed process of requests’ departure from the system
with two service groups defines the arrival process at the main buffer for service in the multi-server
system with N servers. Therefore, the process defining the operation of this multi-server system
when it is overloaded coincides with the process defining the operation of the MAP/M/N system
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with the MAP defined by the matrices H0 and H1 and the service rate in each server equal to µ. For
the former system, it is well known that the ergodicity condition is yQ+e < Nµ. This inequality,
only derived based on intuitive reasoning, coincides with the strictly proven Condition (2) above.

Remark 2. It can be verified that the obtained Condition (2) in the case of a single server (i.e.,
N = 1) does not coincide with the condition derived for a single-server queue in [39]. This is
explained by the different assumptions about the fate of a request arriving when the dedicated
intermediate buffer is full. Such a request is assumed to be lost in [39], while in the model under
study in this paper, this request pushes out of the intermediate buffer the first request staying there,
which joins the main buffer.

3.4. Computation of the Stationary Distribution of the Random Process

Let the condition for the ergodicity of the CTMC ξt be fulfilled. This implies that the
following limits (stationary of invariant probabilities) exist:

π(i, 0, 0, ν) = lim
t→∞

P{it = i, kt = 0, rt = 0, νt = ν}, i = 0, N − 1, ν = 1, W,

π(i, k, r, ν) = lim
t→∞

P{it = i, kt = k, rt = r, νt = ν}, i ≥ N, k = 0, K, r = 0, R, ν = 1, W.

We sequentially form the row vectors π(i, k, r), π(i, k), πi of these probabilities as:

π(i, 0, 0) = (π(i, 0, 0, 1), π(i, 0, 0, 2), . . . , π(i, 0, 0, W)), i = 0, N − 1,

π(i, 0) = π(i, 0, 0), i = 0, N − 1, πi = π(i, 0), i = 0, N − 1,

π(i, k, r) = (π(i, k, r, 1), π(i, k, r, 2), . . . , π(i, k, r, W)), i ≥ N, k = 0, K, r = 0, R,

π(i, k) = (π(i, k, 0), π(i, k, 1), . . . , π(i, k, R)), i ≥ N, k = 0, K,

πi = (π(i, 0), π(i, 1), . . . , π(i, K)), i ≥ N.

It is well known that the stationary probability vectors πi, i ≥ 0, satisfy the system of
equilibrium (or Chapman–Kolmogorov) equations:

(π0, π1, . . . )Q = 0, (π0, π1, . . . )e = 1.

In the case of the patient requests in the infinite buffer (ϕ = 0), the way of solving
this infinite system is well known; see [27,36]. In particular, the vectors πi, i ≥ N, are
computed by the formula:

πi = πNS i−N , i ≥ N,

where the matrix S is the minimal non-negative solution of the nonlinear matrix equation:

S2Q− + SQ0 + Q+ = O.

The vectors (π0, π1, . . . , πN) are computed as the unique solution to the finite sub-
system of equilibrium equations.

In the case of the impatient requests in the main buffer (ϕ > 0), the solution of this
infinite system is much more involved. However, it can be solved using the numerically
stable methods developed for the AQTMC; see [45–47].

4. Performance Measures

To give some insight into the quantitative behaviour of the system, we need to have
the possibility to compute some key performance measures of the system. A few of these
are listed below.
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The mean number of requests in the system is calculated by the formula:

L =
N−1

∑
i=1

iπ(i, 0, 0)e +
∞

∑
i=N

K

∑
k=0

R

∑
r=0

(i + k + r)π(i, k, r)e.

The mean number of busy servers is calculated as

Nserv =
N

∑
i=1

iπie + N
∞

∑
i=N+1

πie.

The mean number of requests in the main buffer is computed by

Nbu f =
∞

∑
i=N+1

(i− N)πie.

The mean number of requests in the first buffer is calculated by the formula:

Nbu f−1 =
∞

∑
i=N

K

∑
k=1

kπ(i, k)e.

The mean number of requests in the second buffer is calculated by the formula:

Nbu f−2 =
∞

∑
i=N

K

∑
k=0

R

∑
r=1

rπ(i, k, r)e.

The loss probability of an arbitrary Type-1 request from the first buffer due to impa-
tience is calculated by the formula:

Ploss−1
bu f−1 =

1
λ1

∞

∑
i=N

K

∑
k=1

kα1π(i, k)e =
α1

λ1
Nbu f−1.

The loss probability of an arbitrary request from the first buffer due to impatience is
calculated by the formula:

Ploss
bu f−1 =

1
λ

∞

∑
i=N

K

∑
k=1

kα1π(i, k)e =
α1

λ
Nbu f−1.

The loss probability of an arbitrary Type-2 request from the second buffer due to
impatience is calculated by the formula:

Ploss−2
bu f−2 =

1
λ2

∞

∑
i=N

K

∑
k=0

R

∑
r=1

rα2π(i, k, r)e =
α2

λ2
Nbu f−2.

The loss probability of an arbitrary request from the second buffer due to impatience
is calculated by the formula:

Ploss
bu f−2 =

1
λ

∞

∑
i=N

K

∑
k=0

R

∑
r=1

rα2π(i, k, r)e =
α2

λ
Nbu f−2.

The intensity of the output flow of successfully served requests is computed by

λout =
∞

∑
i=1

min{i, N}µπie.
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The loss probability of an arbitrary request is calculated by the formula:

Ploss = 1− λout

λ
.

The loss probability of an arbitrary request from the main buffer due to impatience is
calculated by the formula:

Ploss
bu f =

1
λ

∞

∑
i=N+1

(i− N)ϕπie.

Remark 3. It should be noted that the following equalities hold well: L = Nserv + Nbu f +
Nbu f−1 + Nbu f−2 and Ploss = Ploss

bu f−1 + Ploss
bu f−2 + Ploss

bu f , which can be used for the control of
the accuracy of the computer realisation of the computation of the stationary probability vectors
πi, i ≥ 0, and the performance characteristics of the model.

The intensity of the arrival flow of requests at the main buffer or directly at the servers
is computed by

λarr = λ− λ1Ploss−1
bu f−1 − λ2Ploss−2

bu f−2 = λ− λ(Ploss
bu f−1 + Ploss

bu f−2).

The probability that an arbitrary Type-1 request will start servicing in the system
immediately upon arrival is calculated by the formula:

Pimm−1 =
1

λ1

N−1

∑
i=0

πiD1e.

The probability that an arbitrary Type-2 request will start service in the system imme-
diately upon arrival is calculated by the formula:

Pimm−2 =
1

λ2

N−1

∑
i=0

πiD2e.

The probability that an arbitrary Type-1 request will be selected for service from the
first buffer without visiting the main buffer is calculated by the formula:

Pchoose−1 =
1

λ1

K

∑
k=1

Nµπ(N, k)e.

The probability that an arbitrary Type-2 request will be selected for service from the
second buffer without visiting the main buffer is calculated by the formula:

Pchoose−2 =
1

λ2

R

∑
r=1

Nµπ(N, 0, r)e.

The probability that an arbitrary Type-1 request upon arrival in the system will find the
first buffer full and the first request from this buffer will go to the main buffer is calculated
by the formula:

Ppush−1 =
1

λ1

∞

∑
i=N

π(i, K)IR+1 ⊗ D1e.
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The probability that an arbitrary Type-2 request upon arrival in the system will find
the second buffer full and the first request from this buffer will go to the main buffer is
calculated by the formula:

Ppush−2 =
1

λ2

∞

∑
i=N

K

∑
k=0

π(i, k, R)D2e.

5. Numerical Examples

The arrival flow of requests was modelled by the MMAP arrival process defined by
the following matrices:

D0 =

 −51.0796 0.7866 0.7224
0.2904 −4.4644 0.4
0.592 0.7748 −3.5052

,

D1 =

 14.5453 0.28014 0.04578
0.02046 1.00008 0.11166
0.0054 0.1533 0.48282

, D2 =

 33.9389 0.65366 0.10682
0.04774 2.33352 0.26054
0.0126 0.3577 1.12658

.

The total rate of requests’ (priority and non-priority) arrival at the system is λ = 10.0009.
The coefficient of correlation of successive inter-arrival times in this arrival process is
0.300005, and the squared coefficient of variation is 4.00035. The average intensity of
priority (Type-1) requests’ arrival is λ1 = 3.00027, and the average intensity of non-priority
(Type-2) requests’ arrival is λ2 = 7.00063.

The intensities of impatience in the first and the second buffers are equal to α1 = 0.03
and α2 = 0.01; the intensities of the transitions from the first and the second buffers to the
main buffer are γ1 = 0.5 and γ2 = 0.2, respectively. The mean service rate is µ = 1.

We present the results of two experiments. In the first experiment, we fixed the
capacities of the intermediate buffers and show the impact of the number of servers N
and the impatience rate ϕ in the main buffer. In the second experiment, we fixed the
values of N and ϕ and demonstrate the effect of changing the capacities K and R of the
intermediate buffers.

Experiment 1. We assumed that the capacities of the intermediate buffers are K = 10
for priority requests and R = 15 for non-priority requests. Let us vary the intensity of the
impatience ϕ over the interval [0.1,1] with a step of 0.1, and the number of servers N was
varied over the interval [1, 40] with a step of 1.

Figures 2–5 illustrate the dependence of the mean number of requests in the system L,
the mean number of busy servers Nserv, and the mean number of requests Nbu f−1 in the
first buffer and Nbu f−2 in the second buffer on the values of the intensity ϕ and the number
of servers N.
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Figure 2. Dependence of the mean number of requests in the system L on ϕ and N.
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Figure 3. Dependence of the mean number of busy servers Nserv on ϕ and N.
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Figure 4. Dependence of the mean number of requests Nbu f−1 in the first buffer on ϕ and N.
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Figure 5. Dependence of the mean number of requests Nbu f−2 in the second buffer on ϕ and N.

It is evidently seen in Figure 2 that the mean number of requests in the system L
is huge (about 70) when the number N of servers is relatively small (N = 5) and the
impatience rate ϕ is also small. An explanation of this fact follows from Figure 3. It is seen
in this figure that, when the number N of servers is 5, the average number Nserv of busy
servers is close to 5. This means that all available servers are practically always busy. It is
well known that, in such a situation, the queue length is very long. Because the average
number of requests in the main buffer Nbu f is the summand in the right-hand side of the
expression L = Nserv + Nbu f + Nbu f−1 + Nbu f−2, it is easy to understand why L is huge
when the number N of servers and the impatience rate are small. As expected, the value of
L and all summands essentially decrease when the number of servers N and impatience
rate ϕ increase. For large values of N (N ≥ 35), the mean number of busy servers reduces to
about 10, while the values of other summands become practically negligible. The influence
of the impatience rate ϕ is essential only when the number N of servers is small. When it is
sufficiently large, service is provided quickly, the main buffer is practically always empty,
and requests very rarely depart from this buffer due to impatience.

It should be noted, based on Figures 4 and 5, that the average number Nbu f−2 of
requests residing in the second buffer is essentially larger than the mean number Nbu f−1 of
requests in the first buffer. This takes place because the arrival rate at the second buffer is
2.33-times higher than the arrival rate at the first buffer and due to the priority provided to
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Type-1 requests via the higher transition rate to the main buffer and the smaller capacity of
the intermediate buffer. For a small number N of servers, on average, only about 45 percent
of the first buffer is occupied. The average percentage of occupation of the second buffer is
about 1.9-times higher.

Figures 6–9 illustrate the dependence of the loss probability Ploss
bu f−1 of an arbitrary

request from the first buffer, the loss probability Ploss
bu f−2 of an arbitrary request from the

second buffer, the loss probability Ploss
bu f of an arbitrary request from the main buffer, and the

loss probability of an arbitrary request Ploss (all these losses occur due to impatience) on the
values of the rate of impatience ϕ and the number of servers N. The shapes of the surfaces
presented in these figures are similar to the shapes of surfaces presented in Figures 2–5.
This was as anticipated because all the mentioned losses occurred due to impatience, and
thus, the probabilities Ploss

bu f−1, Ploss
bu f−2 and Ploss

bu f of the losses from the two intermediate
buffers and the main buffer were proportional (with the weights defined by the respective
impatience rates) to the mean number of requests in each buffer. The probability Ploss

of an arbitrary request loss is the sum of the loss probabilities Ploss
bu f−1, Ploss

bu f−2 and Ploss
bu f ,

which is confirmed by Figures 6–9. It may be concluded from these figures that all loss
probabilities essentially depend on N. The dependence on ϕ is weaker, especially for the
loss probabilities from the intermediate buffers.
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Figure 6. Dependence of the loss probability Ploss
bu f−1 of an arbitrary request from the first buffer on ϕ

and N.
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Figure 7. Dependence of the loss probability Ploss
bu f−2 of an arbitrary request from the second buffer on

ϕ and N.
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Figure 8. Dependence of the loss probability Ploss
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Figure 9. Dependence of the loss probability Ploss of an arbitrary request on ϕ and N.

Let us briefly illustrate the possibility of the use of the obtained results for the manage-
rial goals. We considered the problem of the optimal choice of the number N of servers to
maximise the profit of the system. It was assumed that the profit earned by the system dur-
ing a unit of time under the fixed number N of servers is evaluated by the profit function:

E(N) = aλout − b1λ1Ploss−1
bu f−1 − b2λ2Ploss−2

bu f−2 − cλarrPloss
bu f − dN

where a is the profit gained via service provision to one request, bk is the penalty of the
system paid for the loss of one request from the kth intermediate buffer, k = 1, 2, c is the
penalty of the system paid for the loss of a request from the main buffer, and d is the cost of
the maintenance of one server per unit of time.

Let the cost coefficients a, b1, b2, c, d be fixed as follows:

a = 1, b1 = 2, b2 = 1, c = 1.5, d = 0.05.

The surface showing the dependence of the cost function E(N) on the number of
servers N and the impatience rate ϕ is presented in Figure 10.
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Figure 10. Dependence of the profit function E(N) on the number of servers N and the impatience
rate ϕ.

The optimal values of N were separately computed for each fixed value of the impa-
tience rate ϕ. Table 1 contains the optimal value N∗ of N and the corresponding optimal
value E(N∗) for ten fixed values of ϕ.

Table 1. Optimal values of the number of servers and the profit function for various values of ϕ.

Rate ϕ Optimal Value of the Profit Function E∗ Optimal Value N∗ of N

0.1 8.72093 21

0.2 8.6376 23

0.3 8.58863 24

0.4 8.55435 24

0.5 8.52905 25

0.6 8.50816 25

0.7 8.49059 26

0.8 8.47683 26

0.9 8.46432 26

1 8.45287 26

It is clear that the increase of the impatience rate ϕ implies a larger value of the
probability Ploss

bu f . To decrease this probability, it is necessary to decrease the mean number
of requests in the buffer, which can be achieved via the increase of the number of servers N.
This explains the growth of N∗ when ϕ increases observed in Table 1. When the number of
servers is sufficiently large, the servers succeed in providing service at such a speed that
the queue length in the main buffer is very small and the increase of the impatience rate ϕ
practically does not have an impact on the value of the profit function.

Example 1. Let us now fix the number of servers N = 15 and the impatience rate in the main
buffer φ = 0.05. To show the impact of the capacities of the intermediate buffers R and K, we
computed the values of various performance measures for the values of R and K varying in the range
from 1 to 20 with a step of one.

Figures 11–13 illustrate the dynamics of the mean number of requests Nbu f−1 and
Nbu f−2 in the first and second buffers and the mean number of requests Nbu f in the
infinite buffer.
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Figure 11. Dependence of the mean number of requests Nbu f−1 in the first buffer on K and R.
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Figure 12. Dependence of the mean number of requests Nbu f−2 in the second buffer on K and R.
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Figure 13. Dependence of the mean number of requests Nbu f in the main buffer on K and R.

It is natural that the value of the mean number Nbu f−1 of requests in the first buffer
increases when the capacity K of this buffer increases. The essential growth of Nbu f−1 when
the capacity R of the second buffer decreases is explained as follows. When R decreases,
more Type-2 requests are pushed out from the second buffer due to the arrival of new
Type-2 requests. Therefore, the probability that the main buffer is empty decreases and the
chances of Type-1 requests to realise their priority via the privilege to be taken for service
when the main buffer becomes empty decrease. This leads to the increase of Nbu f−1. The
maximum of the mean number Nbu f−2 of requests in the second buffer is essentially larger
than the maximum of Nbu f−1. This occurs due to the higher arrival rate of Type-2 requests
and the lower rate of transition from the intermediate buffer to the main one. However,
the influence of the relation of the capacities of the intermediate buffers is also high. If R
is small, clearly, this reduces the part of the priority of Type-1 requests achieved via their
higher rate of transition from the intermediate buffer to the main buffer.

The maximum of the mean number Nbu f of requests in the main buffer is achieved for
a small capacity R of the second buffer. The arrival rate at this buffer is essentially higher
than at the first buffer, and a small R leads to the short stay of Type-2 requests in the second
buffer before being pushed out to the main buffer. When both K and R are larger, requests
stay in the intermediate buffer during a more or less long time. This long delay reduces the
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burstiness of the flow to the main buffer (we remind that the coefficient of correlation in
the arrival process is about 0.3, which is rather large), while it is known in the literature
that lower burstiness (or higher regularity) in the arrival process leads to a shorter queue in
the system.

Figures 14 and 15 depict the dependence of the probability Pchoose−k that an arbitrary
Type-k request will be selected for service from the k buffer, k = 1, 2, without visiting the
main buffer on K and R. Recall that, for Type-1 requests, this can happen if all N servers
are busy, the main buffer is empty, the service in one of the servers is completed, and the
first intermediate buffer is not empty. For Type-2 requests, this can happen if all N servers
are busy, the main buffer is empty, the service in one of the servers is completed, the first
intermediate buffer is empty, and the second intermediate buffer is not empty. Figure 14
correlates with Figure 13. When K and R are large, the mean number Nbu f is the minimal.
Thus, the probability that the infinite buffer is empty at the moment of a server releasing is
high and the probability Pchoose−1 is large. Analogously, when K and R are small (the main
role is played by the capacity R of the intermediate buffer, which stores a more intensive
flow of Type-2 requests), the mean number Nbu f is the max. Thus, the probability that the
infinite buffer is empty at the moment of a server releasing is small, and correspondingly,
the probability Pchoose−1 is small. The growth of Pchoose−1 with the increase of K (which
is sharper when K is still relatively small) stems from the increase of the probability that
the first buffer will not be empty at the moment of a server releasing. The reason for the
growth of Pchoose−2 with the increase of R is similar. The impact of the variation of K on the
value of Pchoose−2 is weak.
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Figure 14. Dependence of the probability Pchoose−1 that an arbitrary Type-1 request will be selected
for service from the first buffer without visiting the main buffer on K and R.
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Figure 15. Dependence of the probability Pchoose−2 that an arbitrary Type-2 request will be selected
for service from the second buffer without visiting the main buffer on K and R.

Figures 16–19 show the dependence on K and R of the following loss probabilities: the
probabilities Ploss

bu f−k of an arbitrary request loss from the kth buffer, k = 1, 2, the probability

Ploss
bu f of an arbitrary request loss from the main buffer, and the probability Ploss of an

arbitrary request loss.
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Figure 16. Dependence of loss probability Ploss
bu f−1 of an arbitrary request from the first buffer on K

and R.
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Figure 17. Dependence of the loss probability Ploss
bu f−2 of an arbitrary request from the second buffer

on K and R.
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Figure 18. Dependence of the loss probability Ploss
bu f of an arbitrary request from the main buffer on K

and R.
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Because an arbitrary request loss in the intermediate buffer is due to impatience, it
is clear that the loss probability Ploss

bu f−k increases with the increase of the capacity of the
kth intermediate buffer, k = 1, 2. Because the capacities of these buffers are relatively small
and the impatience rate in the infinite main buffer is larger compared to the rates in the
intermediate buffers, the probability Ploss

bu f of an arbitrary request from the main buffer also is
larger. As is seen from Figures 16–19, this probability is a dominating summand at the right-
hand side of the relation Ploss = Ploss

bu f + Ploss
bu f−1 + Ploss

bu f−2. The decrease of the probability

Ploss
bu f when the capacity R grows is explained by the the increase of the probability Ploss

bu f−2,
leading to the decrease of the arrival rate at the main buffer, the decrease of the queue
length in this buffer, and eventually, the decrease of the rate of requests’ departure from the
main buffer due to impatience.

The dependence of the probabilities Ppush−k that an arbitrary Type-k request upon
arrival in the system will find the kth buffer full, k = 1, 2, and the first request from this
buffer will go to the main buffer on K and R is shown in Figures 20 and 21.
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Figure 20. Dependence of the probability Ppush−1 that an arbitrary Type-1 request upon arrival will
push the first request from the intermediate buffer to the main buffer on K and R.
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Figure 21. Dependence of the probability Ppush−2 that an arbitrary Type-2 request upon arrival will
push the first request from the intermediate buffer to the main buffer on K and R.

As expected, the probabilities Ppush−k are maximal when the capacity of the kth
buffer is small and essentially decrease when this capacity increases. Furthermore, these
probabilities are weakly sensitive with respect to the capacity of another buffer.

6. Conclusions

In this paper, a new flexible mechanism for providing preference to one type of request,
which was offered in [39] for a single-server priority queueing system, was applied to a
multi-server queueing system. The priority is granted via the introduction of intermediate
buffers having finite capacities. Requests of different priorities are distinguished by the
rate of transfer from these buffers to the main buffer and the rates of departing from the
buffers without service. The arriving process of requests can be correlated and have a
large inter-arrival time variance. Requests staying in the main buffer receive service in
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the order of their transition to this buffer. A suitable choice of the rates of transition from
the intermediate buffers to the main buffer, as well as the capacities of the intermediate
buffers allows optimising the operation of the system. The impact of the capacities of the
intermediate buffers, the number of servers, and the impatience rate in the main buffer was
illustrated via the presented results of the numerical experiment.

The results obtained in the paper can be used for the optimisation of various real-world
systems with heterogeneous requests having different importance for the system. They
can be extended to the cases of the batch arrival of requests, the phase-type distribution
of the service time and the patience time in the intermediate buffers, the possibility of
server breakdowns or errors occurring during the service, an arbitrary number of priority
classes, etc.
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