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Abstract: The duck mussel Anodonta anatina is widely distributed throughout the freshwater basins
of Northern, Central, and Western Eurasia, and it has a comprehensive genetic structure. This study
was devoted to the analysis of lineages, which are defined based on COI gene sequences. Our new
dataset was expanded by samples from freshwater basins of Northern and Central Eurasia. It allowed
us to reveal a high level of genetic diversity for the widely distributed trans-Eurasian lineage of
A. anatina for the first time. As for results, representative samples from the Russian Plain, Southern
Siberia, and the Ural region showed the presence of multiple interactions between duck mussel
populations, indicating the existence of connections between freshwater basins in this region during
the Late Quaternary. The genetic group from the freshwater basins of Northern Eurasia may be
divided into two sub-lineages, which have differences in genetic structure and distribution patterns.
It was revealed that there was a postglacial expansion of duck mussels in the freshwater basins of
Northern Eurasia after deglaciations of these territories and that the wide distribution of this species
in this region was shaped via ancient connections between periglacial waterbodies. The lineage of
A. anatina from the Ponto-Caspian region is a genetically rich and diverged group, which is present
in the riverine basins of West-Central Asia related to the Caspian Sea.

Keywords: Anodonta anatina; freshwater ecosystems; widely distributed species; phylogeography;
population genetics; reconstruction; quaternary

1. Introduction

Anodonta anatina was studied intensively for decades as a widely distributed species
in several climatic zones of Eurasia [1–11]. These studies were focused on the assessment of
the species diversity of duck mussels due to the variability of shell shape for this species in
the various waterbodies it inhabits. Applying molecular methods for the identification of
duck mussel specimens allowed to reveal a broad phenotypical plasticity within one species.
It established the existence of deeply separated genetic lineages, which are distributed in
certain freshwater basins in Eurasia [4,10,11].

Froufe et al. [4] suggested dividing duck mussel populations in Europe into three
genetic groups based on the analysis of COI gene sequences. The three groups assumed
isolated populations in the following regions: (1) Western Iberia; (2) the Apennines and
the Ebro River basin; and (3) the European non-Iberian and non-Italian haplotypes from
the Central and North European populations. The authors estimated pairwise distances
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between genetic groups listed above to be from 1.9 ± 0.6 % between Iberian and European
samples to 3.1 ± 0.9 % between Italian and Iberian samples. These results showed the
presence of significant differences in molecular variance among the studied regions and
within the studied populations with the highest variability of the parameter among regions.
Additionally, the diversification of the groups was assessed using such parameters as FST
between samples (populations). It allowed us to determine the highest values of genetic
differences between the Ebro River basin and riverine basins belonging to the Atlantic
Ocean basin, which supported the conclusion on the existence of a separate population of
the duck mussel there that is genetically close to Italian samples.

Gomes-dos-Santos et al. [12] provided data on the indices of genetic diversity estimated
from the COI sequencing data for A. anatina populations from several regions of the Iberian
Peninsula, belonging to the Iberian genetic group. They revealed significant negative
values of both Fu’s Fs and Tajima’s D neutrality tests for the duck mussel populations
from Southwestern and Northwestern Iberia, which belong to this group. This suggested
an ability to expand their distribution area and supported previously received results on
genetic patterns for the Iberian population of duck mussels [4].

Tomilova et al. [10] added one more COI genetic group of A. anatina to this list. They
associated an occurrence of the separate genetic lineage of the freshwater mussels with
comprehensive geological, paleotectonic, and palaeohydrological environments during the
Late Quaternary, which has coincidence with the separation and following diversification
of several groups of freshwater animals, including mussels, fish, and some arthropods.
Additionally, they provided demographic and population genetic studies for existing
genetic groups, along with newly added ones. This led the authors to determine the
divergence time for the Azov refugia for freshwater animals in the Pliocene–Pleistocene
period. The determined indices of genetic diversity supported conclusions on the presence
of ancient refugia for freshwater mussels; additionally, it allowed us to make conclusions
on the current state of the populations and on their possible future changes.

Bolotov et al. [9] revised the fauna of freshwater mussels in Russia. The duck mussel
A. anatina is distributed there among three biogeographical provinces, from the Russian
Plain to the Lena River basin in Eastern Siberia, where it had been divided previously into
several ecophenotypes based on shells contours, but in fact, this species has shell shapes
influenced by habitat parameters and climatic factors in a certain region [13].

There are populations of duck mussels in Eurasia separated by geographical barriers.
Some of them are locally isolated in certain freshwater basins [11,14]. Additionally, Lopes-
Lima et al. [11] made some remarks on the distribution of duck mussels in Western Asia,
and the authors expanded the genetic groups of duck mussels in the haplotype network.

However, applying molecular methods for the assessment of the state of different
freshwater species populations may reveal important patterns and develop actions for their
future conservation, with special attention to certain regions, considered as distribution
areas of endangered mussel populations [15,16]. Currently, duck mussel populations were
studied only in local parts of their whole range in this way. Based on these considerations,
the main goal of this paper was to investigate trans-Eurasian genetic diversity and the
distribution patterns of A. anatina based on COI sequence data.

2. Materials and Methods
2.1. Data Sampling

New samples of A anatina were collected from the following riverine basins of North-
ern and Western Eurasia: Dnieper, Danube, Dniester, Volga, Garonne, Neva, Don, Neman,
Ob, Dagomys, and, also, small separate rivers (Mamonovka River and Pregolya River)
belonging to the Baltic Sea basin. In total, 79 specimens of duck mussels were sampled
(Table S1). A tissue snip from each specimen was conserved in 96% ethanol directly after
sampling. The samples of muscle tissue snips and shells were deposited in the Russian
Museum of Biodiversity Hotspots [RMBH], Federal Center for Integrated Arctic Research,
the Ural Branch of Russian Academy of Sciences, Arkhangelsk, Russia.
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2.2. DNA Extraction, PCR, and Sequencing

Total genomic DNA was extracted from specimens using the NucleoSpin Tissue Kit
(Macherey-Nagel GmbH and Co. KG, Düren, Germany), following the manufacturer’s
protocol. The COI sequences were amplified and sequenced using the combination of
primers LCO1490 and HCO2198 [17], and LoboF1 and LoboR1 [18]. The PCR mix contained
approximately 200 ng of total cellular DNA, 10 pmol of each primer, 200 µmol of each
dNTP, 2.5 µL of PCR buffer (with 10 × 2 mmol MgCl2), 0.8 units of Taq DNA polymerase
(SibEnzyme Ltd., Novosibirsk, Russia), and H2O, which was added up to a final volume of
25 µL. Thermocycling included one cycle at 95 ◦C (4 min), followed by 30–33 cycles at 95 ◦C
(50 s), 48–50 ◦C (50 s), and 72 ◦C (50 s), and a final extension at 72 ◦C (5 min). Forward
and reverse sequencing was performed using an automatic sequencer (ABI PRISM3730,
Applied Biosystems) with the ABI PRISM BigDye Terminator v.3.1 Reagent Kit [19]. The
resulting COI gene sequences were checked manually using BioEdit v. 7.2.5 [20].

2.3. Phylogeographic Analysis

The phylogeographic analysis was carried out using a median-joining network approach
with Network v. 5.0.0.1 software with default settings [21]. We used the COI dataset that
included 500 sequences for the analysis. These sequences were previously published in several
works, and they were downloaded from the NCBI Genbank database [3–5,8–12,14,22–28].
Furthermore, we added 79 new sequences to the dataset (Table S1). Missing terminal
sites were removed from this dataset, and all sequences were cut following the minimum
sequence length (587 bp).

2.4. Population Genetic Analysis

We used the same COI dataset for the population genetic analysis as for the phylo-
geographic analysis. All specimens for the analysis were divided to five genetic groups
(including four genetic lineages and two sub-lineages for one of them) before running
the analysis, based on previous results of phylogenetic studies, as suggested by Tomilova
et al. [10] and Lopes-Lima et al. [11]. Newly collected specimens were assigned to genetic
groups based on the results of the phylogeographic analysis. The five groups of A. anatina
sequences were considered the samples for population genetic analysis. Genetic diversity
was estimated through haplotype diversity (Hd) and nucleotide diversity (π) calculations.
Genetic differentiation between samples was estimated through the calculation of FST
values by the method of Tajima and Nei, and inter- and intra-population genetic variabil-
ity was estimated by AMOVA. We calculated Fu’s Fs and Tajima’s D neutrality tests to
detect deviation from mutation–drift equilibrium in the studied samples. In the case of
significance, in at least one neutrality test, we examined the frequency distributions of
pairwise mismatch between sequences (MMD). The observed mismatch distribution was
compared with that obtained under models of spatial expansion and population expan-
sion for the evidence of model fit, by calculating the sum of squared deviations (SSD) of
the observed data relative to the model and Harpending’s raggedness statistic. Genetic
diversity indices, FST distances, AMOVA, neutrality tests, and MMD were calculated using
Arlequin v. 3.5.1.2 [29], all with 10,000 permutations. In the case where the observed
MMD did not deviate significantly from the simulated one, the coalescent simulation of
several demographic scenarios was carried out using DNASP v. 6.12.03 [30]. We checked
four demographic scenarios, including growth and decline of population, bottleneck, and
split/admixture scenarios. The most appropriate scenario was chosen based on the lowest
value of probability for each of the three neutrality tests.

2.5. Molecular Dating Analysis

We used the equation t = τ/2µ, where τ is a moment estimator that represents a unit
of mutational time, inferred from the mode of mismatch distribution, and µ is a mutation
rate assessed in numbers of nucleotide substitutions per site per generation [31,32].
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2.6. Statistical Analyses

Comparisons of p-distances between samples were carried out using Mann–Whitney
U and Kruskal–Wallis H tests. Principal coordinate analysis and sample comparison were
computed using PAST v 4.05 software [33].

3. Results
3.1. Phylogeography, Distributional Patterns, and Population Structure

We used the dataset of A. anatina COI sequences, which included 500 individuals, and
they were collapsed to 119 unique haplotypes (Table S1). These sequences were divided to
four genetic groups, which present samples from river basins of (1) the Iberian Peninsula
(excluding the Ebro River basin) and freshwater basins in Morocco (IBER); (2) the North
European Plain, Balkan Peninsula, Russian Plain, Asia Minor Peninsula, Western, Central,
and Southern Siberia to the Lena River basin on the east and to southern parts of the Ob and
Yenisey River basins (EUR); (3) the Italian Peninsula and the Ebro River Basin (ITAL); (4) the
Azov-Prikubanskaya Lowland, the southern coast of the Caspian Sea, and the Kura River
(located in Transcaucasia) (AZOV). Sample locations from three divergent genetic groups
of A. anatina (EUR, ITAL, and AZOV) and samples from the Iberian lineage (excluding
samples from Morocco) are shown in Figure 1.
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The EUR genetic lineage was divided to two sub-lineages (EUR1 and EUR2) based
on patterns observed in the haplotype network and were further checked by pairwise
distances between the sub-lineages and by principal coordinate analysis of these sequence
datasets. Sub-lineage EUR1 contains sequences from the western part of the duck mussel’s
distribution area in Europe, that is, the Danube, Southern Bug, Elbe, Rhine, Po, Vidourle,
and Garonne River basins, as well as separate river basins of the Balkan Peninsula. Sub-
lineage EUR2 contains sequences from river basins of the Asia Minor Peninsula, Black
Sea basin, Arctic Ocean basin, and eastern part of the Baltic Sea basin, as well as from the
Volga and the Elbe River basins. Statistically significant differences were observed between
the two sub-lineages by principal coordinate 1 (p < 0.001). Additionally, the presence of
statistically significant differences between samples of pairwise differences between the
AZOV lineage, which is the closest to the EUR lineage, and the sub-lineages inside the EUR
genetic group (EUR1 and EUR2), was revealed.

3.2. Genetic Diversity, Population Genetic Indices, and Tests

Four highly diverged genetic groups were identified in the haplotype network of
A. anatina (Figure 2). The number of nucleotide substitutions between groups varies from
seven (EUR vs. AZOV) to seventeen (IBER vs. ITAL). The Italian lineage presents eight
unique haplotypes, and the two biggest of them are haplotypes from the Po and Ebro
River basins. The Iberian lineage has several distributed haplotypes, which correspond
to the Douro, Guadiana, Tejo, and Vouga River basins. Additionally, the lineage included
samples from Moroccan riverine basins. The AZOV lineage included sequences from the
Azov Sea river basins, and the most distributed haplotype is present in the Kuban, Don,
Beisug, Chelbas, and Yeya River basins. Furthermore, this genetic group contains two
haplotypes (Figure 2, haplotype A-B), which are distributed in the Kura River basin in
Turkey and in separate rivers in the southern part of the Caspian Sea basin in Iran (the
Sefid and Qarasu River basins). Samples from the Baranovskoe Lake (Figure 2, haplotype
C) belonged to the AZOV genetic group, despite the sampling site being located in the
Dagomys River basin (Black Sea basin). The largest numbers of sequences (N = 305) and
unique haplotypes (N = 62) belonged to the EUR lineage, which covers a vast territory in
Western, Northern, and Central Eurasia, in comparison to other A. anatina lineages, such as
ITAL, IBER, and AZOV (Figure 1). The most distributed haplotypes in the EUR lineage
form star-like structures, and they belong to duck mussel populations from the North
European Plain, the Russian Plain, and the West Siberian Lowland.

Pairwise distances between A. anatina genetic groups varied from 1.39 to 3.68 %
(Table 1). FST values were assessed to be from 0.561 to 0.924.

Table 1. Pairwise distances and FST values between genetic groups of A. anatina (p < 0.00001 for all
FST values).

p-Distance, %

Population
pairwise FST

IBER EUR1 EUR2 ITAL AZOV

IBER X 2.25 ± 0.45 2.73 ± 0.55 3.34 ± 0.63 2.56 ± 0.51
EUR1 0.633 X 1.39 ± 0.35 3.14 ± 0.65 2.29 ± 0.50
EUR2 0.833 0.735 X 3.68 ± 0.74 2.44 ± 0.53
ITAL 0.765 0.833 0.924 X 3.21 ± 0.64

AZOV 0.561 0.592 0.766 0.725 X

Haplotype diversity varied from 0.706 ± 0.027 to 0.912 ± 0.017 among the studied
populations. Nucleotide diversity was assessed to be from 0.002 ± 0.0015 to 0.011 ± 0.006.
Significant values of neutrality tests were estimated only for the EUR group, and within
this sample, significant negative values from both neutrality tests were revealed only for
the EUR2 sub-lineage. The Tau parameter was estimated to be from 0.934 to 6.337 (Table 2).
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Table 2. Summary of genetic diversity indices estimated from the COI sequencing data for genetic
lineages of A.anatina: sample size (N), number of haplotypes (h), haplotype diversity (Hd), nucleotide
diversity (π). The results of Fu’s Fs and Tajima’s D neutrality tests. Statistically significant values are
followed by an asterisk (p < 0.05 for Tajima’s D and p < 0.02 for Fu’s Fs).

Lineage N h Hd π Fu’s Fs Tajima’s
D

Mismatch Analysis
(Spatial Expansion

Model):
Estimated τ

IBER 68 24 0.912 ± 0.017 0.010 ± 0.005 −5.389 −0.533 6.337
ITAL 47 8 0.658 ± 0.066 0.004 ± 0.003 0.307 0.041 4.110

AZOV 80 25 0.907 ± 0.021 0.011 ± 0.006 −4.064 0.017 5.939
EUR 305 62 0.810 ± 0.019 0.006 ± 0.003 −25.872 * −1.939 * 5.452
incl.:
EUR1 64 16 0.850 ± 0.024 0.005 ± 0.003 −3.660 −0.490 2.485
EUR2 241 46 0.706 ± 0.027 0.002 ± 0.0015 −28.793 * −2.454 * 0.934

3.2.1. Mismatch Distribution Analysis

Mismatch distribution analysis showed values p > 0.05 for both the sum of squared
deviation and for the Harpending’s raggedness index for both sub-lineages from West-
ern Europe (EUR1) and from Central Europe, Eastern Europe, and Asia (EUR2). Both
distributions correspond to the spatial distribution model.
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Mismatch analysis for the sample EUR1 revealed multimodal distribution (Figure 3).
Additionally, the statistical significance (p > 0.05) for both tests of goodness-of-fit supported
the previously defined hypotheses on the stable development of this population. We
determined only one high pick and the unimodal distribution for the EUR2 population
based on the results of the mismatch analysis (Figure 3). The results correspond to the
postglacial population. The EUR2 sub-lineage had the lowest value of the Tau parameter,
and it suggested the lowest numerical value of divergence time. The haplotype network
showed this genetic structure as one widely distributed haplotype, with a large number of
single haplotypes divided by one nucleotide substitution.
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Figure 3. Mismatch distributions of A. anatina samples based on the mitochondrial COI gene:
(A) mismatch distribution of the EUR1 sub-lineage; test of goodness-of-fit: sum of squared
deviation = 0.015; p (Sim. SSD >= Obs. SSD) = 0.440; Harpending’s raggedness index = 0.035;
p (Sim. Rag. >= Obs. Rag.) = 0.620; (B) mismatch distribution of the EUR2 sub-lineage; test of
goodness-of-fit: sum of squared deviation: 0.003; p (Sim. SSD >= Obs. SSD) = 0.150; Harpend-
ing’s raggedness index = 0.061, p (Sim. Rag. >= Obs. Rag.) = 0.360. Bold dashed black lines indicate
observed distribution, and solid red lines represent simulated distribution under a spatial expansion
model. Dashed lines represent lower and upper confidence intervals (p < 0.01).

3.2.2. Coalescent Simulation

The simulation under the coalescent model revealed two scenarios with the highest
values of significance in several neutrality tests, (including Fu’s Fs, Tajima’s D, and the
Ramos-Onsins and Rozas R2 statistic) (Table 3), which were the “decline” and “bottleneck”
scenarios. We rejected the decline scenario for the EUR2 population, according to data
presented in the haplotype network (star-like shapes) and based on data on the number
of specimens and unique haplotypes, which belonged to this sample. Therefore, the most
likely scenario for sample EUR2 was established as the “bottleneck”.

Table 3. The significance of Fu’s, Tajima’s, and Ramos-Onsins and Rozas’s neutrality tests used in
coalescent-based simulation: probabilities of the most appropriate scenario are in bold.

Neutrality
Test

Criteria
Value

Scenario

Growth Decline Bottleneck Split/Admixture

Fu’s Fs −65.184 p < 0.001 p < 0.001 p < 0.001 p < 0.001
Tajima’s D −2.480 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Ramos-
Onsins and
Rozas R2
statistic

0.014 p < 0.05 p < 0.0005 p < 0.0005 p < 0.05
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3.2.3. Divergence Time Estimation

The divergence time between the AZOV lineage and EUR1 sub-lineage was estimated
as 799 ka BP (95% CI = 659–2496 ka BP), whereas the divergence time between EUR1 and
EUR2 sub-lineages was estimated as 300 ka BP (95% CI = 211–731 ka BP), based on values
of the Tau parameter received from the mismatch distribution analysis.

Two events of the distribution of the postglacial population correspond to interglacial
periods on the geochronological scale, with data variation of oxygen isotopes in ice cores
during the Quaternary. These two episodes are illustrated in the haplotype network by
star-like shapes, and they included samples from the following freshwater basins: Neman,
Bzyb, Oder, Vistula, Dniester, Dnieper, Danube, Rhine, Elbe, Pechora, Severnaya Dvina,
Ob, Yenisey, Lena, Volga, and Ural River basins (Table S1).

The mean divergence of sub-lineage EUR2 from the AZOV lineage was higher than
the mean divergence of sub-lineage EUR1 from the AZOV lineage (mean p-distances were
2.44 ± 0.53 % and 2.29 ± 0.50 %, respectively; Mann–Whitney test: p < 0.0005) (Table 1).

The PCoA revealed the presence of statistically significant differences between sub-
lineages EUR1 and EUR2 using a comparison of these groups by principal coordinate 1
(p < 0.0001) (Figure 4).
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The results of the test of genetic structure using AMOVA were significant (FST = 0.766,
df1 = 4, df2 = 495, and p < 0.0001), and the highest variation was found among a group of
populations (76.56 %), compared to the variation within populations (23.44 %).

4. Discussion
4.1. Distribution Patterns
4.1.1. Interglacial Environment as a Driver of Anodonta anatina Distribution during the Late
Pleistocene in Northern Eurasia

The calculated ages of EUR2 sub-lineage divergence correspond to the Dnieper (Saale)
glaciation with the subsequent transition to Mikulino (Eemian) interglaciation. This episode
was characterized by the occurrence of giant interglacial waterbodies, which existed pe-
riodically in territories of the North European Plain and expanded to the east in Eurasia
across the Russian Plain with the occurrence of warm climate episodes [37–39]. The hap-
lotype network showed that the sub-lineage EUR2 has a star-like shape, corresponding
to the origin of this group from several haplotypes, with their subsequent radiation in
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suitable environmental niches. Multiple connections between periglacial waterbodies in
Northeastern Europe was one of the main drivers of freshwater pearl mussel distribution
after the Last Glacial Maximum in Northeastern Europe [40]. We can suggest a similar
scenario for the wide distribution of A. anatina, but at significantly broader scales. The
occurrence of the interglacial lakes allowed the spreading of freshwater mussels throughout
the freshwater basins of Northern Eurasia (including Eastern Europe and Siberia). This
scenario is supported by the received network’s shapes for recent lineages, the central
haplotype of which is presented there, and it is distributed in large river basins in a main
part of the plain. Several haplotypes are separated from the central one by single nucleotide
substitution, and these haplotypes are present in remote or locally separated freshwater
basins (the Onega River basin, Neva River basin, and separate river basins of the Eastern
Baltic Sea, Pechora River basin, the upper parts of the Yenisey River basin and Ural River
basin, and the upper part of the Ob River basin).

Additionally, the distribution of duck mussels in the Late Quaternary among the fresh-
water basins of the southern part of the Russian Plain may be related to changes in Caspian
Sea basin coastlines. Several authors provided data on changes in the sea level during the
Khazarian and Khvalyn transgressions, which may have caused the connection between
freshwater basins in the Russian Plain and may have led to the observed distribution of
freshwater mussels [38,41–43].

4.1.2. Recent Distribution Episodes of the Duck Mussel Induced by Connection between
Freshwater basins via Water Channels

The observed network shapes revealed the connection between two initially separated
freshwater basins in Europe (the Rhine and Danube River basins). However, there are some
pieces of evidence of the expansion of freshwater animals via the Rhine–Main–Danube
Canal [44]. The haplotype network of A. anatina samples suggested the existence of
similar distribution patterns for duck mussels, which may increase their dispersal between
freshwater basins. We recorded haplotypes of the AZOV lineage out of the Azov Sea’s
riverine basins in an artificial waterbody of the Dagomys River basin (Baranovskoe Lake)
that belongs to the Black Sea basin. The presence of duck mussel haplotypes from the AZOV
lineage may be explained by the existence of a fish farm that engages in carp breeding. It is
necessary to note that the largest river basins are currently connected by artificial channels
in the Russian Plain (e.g., the Volga and Don Rivers) and that it may lead to the discovered
distribution patterns and to changes in the genetic structure of a local mussel population,
such as that of the duck mussel.

4.2. Genetic Diversity and Differentiation

We confirmed previous results that suggested a relatively low genetic diversity in
the Italian lineage of duck mussels [4,10]. At the same time, new data on this group from
the upper part of the Po River basin showed that the real level of genetic diversity in this
group is compared with the one determined earlier. We should note here that this lineage
includes several haplotypes, which are distributed among separate riverine basins (e.g., the
Po, Tiber, Reno, and Ebro River basins). The shape of the haplotype network presented a
population that existed in these basins for a long time, and it had a high level of divergence,
both within the lineage and outside it, in relation to other samples.

The network structure for group IBER seemed similar to ITAL, but several separate
haplotypes were revealed in a few large river basins (the Guadiana, Tejo, and Douro River
basins). Additionally, we determined the highest mean value of the haplotype diversity
for this group among all genetic groups. The Moroccan population of duck mussels also
belongs to this genetic group, but its impact on the total diversity of this group is low. The
previously defined AZOV lineage is also present in freshwater basins in Transcaucasia,
including the relatively large Kura River basin and local populations in the Southern
Caspian basin, according to recent studies [11]. Despite this, we confirmed here by network
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shapes that the most distributed haplotypes from the lineage are present in the Kuban, Don,
Beisug, Chelbas, Yeya, and Kirpili Rivers [10].

The EUR lineage is presented in the network by the largest number of unique haplo-
types (Table 2) and it formed different structures there (Figure 2), including star-like shapes
in the eastern part of the distribution area and several abundant haplotypes in the western
part of Eurasia. These shapes for the western part of the duck mussel’s range are quite
similar to ones in the freshwater basins of the Iberian and Italian peninsulas. At the same
time, we determined the presence of large numbers of singleton haplotypes towards to
the eastern part of the range, which was influenced by several consequent glaciations over
the Pleistocene epoch [37]. We observed the most likely differentiation between these two
sub-lineages along the border between Europe and Asia, along the Bosfor Strait, Marmara,
and Aegean Seas, and the sub-lineages are divided there by four nucleotide substitutions
from each other.

The observed EUR1 sub-lineage did not deviate from a standard neutral model,
according to negative and insignificant values of neutrality tests (Table 2), which supported
the idea on some similarity of genetic structure of this sub-lineage to Iberian genetic group.
Significant and negative values from both neutrality tests were observed for the EUR2
sub-lineage. Additionally, the lowest value of the Tau parameter indicated the lowest
divergence time for this population. We determined that only one pick in the mismatch
analysis for this sub-lineage corresponds to a star-like network shape. Previous studies of
postglacial populations showed that such structure in a haplotype network indicates recent
expansion [45]. The bottleneck scenario was selected as the most probable demographic
scenario for the EUR2 sub-lineage after coalescent simulation. All this evidence may
indicate the postglacial expansion of duck mussels in the freshwater basins of Northern
Eurasia after the deglaciations of these territories, followed by a wide distribution of this
species in this region via ancient connections between periglacial waterbodies [37]. This
supports our conclusion on the distribution patterns of this species during periods of
significant climatic variations in this region in the Late Quaternary.

4.3. Conservation Priorities

Some populations of this species distributed in arid and semi-arid regions may need
conservation efforts [14]. Some of them exist in Western Asia in separate riverine basins,
which belong to the Caspian Sea and to the Eastern Mediterranean [11,14]. Additionally,
conservation efforts may be considered for isolated populations of duck mussels in Southern
Europe, where they are distributed in separate riverine basins along the Mediterranean
and Atlantic coasts [4].

5. Conclusions

The duck mussel has distribution patterns, which are related to regional environmental
changes. Past climatic fluctuations and changes in the hydrological regime of certain
territories had a significant influence on the current distribution and genetic diversity of
populations. The occurrence of geographic barriers to A. anatina dispersal has determined
the existence of separate populations or groups of populations. We determined relatively
high values of genetic diversity for the duck mussel populations in Northern Eurasia.

We determined the presence of structures in the haplotype network with a widespread
central haplotype and numerous singleton haplotypes. These divergent populations were
found in conditions of spatial isolation. The observed pattern in the median-joining network
showed a postglacial expansion of A. anatina from Southern and Western Europe towards
the regions of Northern Eurasia. The postglacial patterns in the genetic structure were
revealed for the recent group from these territories, and we determined the demographic
scenario of a possible bottleneck in the Late Quaternary. A. anatina has been diversified
in suitable environmental niches, which occurred after deglaciation. At the same time,
the Azov genetic group is the closest group with high values of genetic diversity. These
populations can be considered as key evolutionarily significant units for this model species,
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compared to the stressed populations at the western edge of its range. Future studies
should be aimed at the assessment of the diversity of stressed populations to develop
conservation priorities for them.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d15020260/s1, Table S1: List of Anodonta anatina (Linnaeus, 1758)
COI sequences used in this study.
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