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An analogue of the convergence part of the Khintchine–Groshev theorem is proved
for planar curves obeying certain curvature conditions.
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1. Introduction

Mahler’s fundamental studies in the theory of transcendental numbers led him to
conjecture in 1932 that for any ε > 0 the inequality

|P (x)| < H(P )−n−ε (1.1)

has at most a finite number of solutions in integer polynomials P of degree n for
almost all x ∈ R, where the height H(P ) is the maximum of the moduli of the
coefficients. About 30 years later this was proved by Sprindžuk (1967). Baker (1966)
subsequently proved the more general result that if the function ψ is monotonic,
decreasing, strictly positive and such that

∑∞
r=1 ψ(r) < ∞ then the set of those x

for which
|P (x)| < ψn(H(P )) (1.2)

holds for infinitely many P has Lebesgue measure zero. Bernik (1989) extended
Baker’s result by replacing the right-hand side of (1.2) with H−n+1ψ(H). Now by
Groshev’s theorem (1938) the set of points x ∈ Rn which satisfy the inequality

|q · x− p| < ψ(|q|)/|q|n−1

where |q| = max{|q1|, . . . , |qn|}, for infinitely many q ∈ Zn has full or zero Lebesgue
measure depending on whether

∑
r ψ(r) converges or diverges. Evidently Bernik

(1989) is an analogue of the convergence case of Groshev’s theorem and indeed is
the best possible as the complementary divergence case has been proved recently
(Beresnevich et al. 1997).

We now consider more general planar curves. Let I be an interval [a, b], and let
Γ = {(f1(x), f2(x)) : x ∈ I},

be a planar curve such that f ′′′1 , f ′′′2 are continuous, with Wronskian W (f ′1, f
′
2) given

by

W (f ′1, f
′
2) = det

(
f ′1 f ′2
f ′′1 f ′′2

)
.
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Further, let
F (x) = q0 + q1f1(x) + q2f2(x),

where q = (q0, q1, q2) ∈ Z3.
Schmidt (1964) proved the remarkable result that if the Wronskian W (f ′1, f

′
2)

is non-zero almost everywhere (equivalent to the curvature being non-zero almost
everywhere), then for any positive ε, the inequality

‖q1f1(x) + q2f2(x)‖ < q−2−ε, (1.3)

where for each real θ, ||θ|| = mink∈Z |θ − k| and q = max{|q1|, |q2|}, has only finite-
ly many solutions (q1, q2) ∈ Z2 for almost all x ∈ R. This inequality can also be
expressed in the essentially equivalent form in which

|F (x)| < H(F )−2−ε, (1.4)

where H(F ) = max{|q0|, |q1|, |q2|}, holds for infinitely many F for almost no x ∈ I. In
other words, the planar curve Γ is extremal (see Sprindzuk 1979). For ε = 0 it follows
from Dirichlet’s theorem that every point satisfies the inequality. Subsequently, Baker
(1978) generalized this result by replacing inequality (1.4) by

|F (x)| < ψ(H(F ))2,

where the function ψ is monotone decreasing and
∑∞

q=1 ψ(q) <∞. By combining
some estimates for differentiable functions and using Schmidt’s theorem (1964) (for
step 3 below), we obtain the following Khintchine-type result which is sharper than
Baker (1978).

Theorem 1.1. Let f1, f2 be two functions with continuous third derivatives and
such that W (f ′1, f

′
2) is non-zero almost everywhere. Suppose that ψ is a decreasing

positive function and
∑

r ψ(r) < ∞. Then the set S(ψ) of points x ∈ R for which
the inequality

|F (x)| = |q0 + q1f1(x) + q2f2(x)| < H(F )−1ψ(H(F )), (1.5)

holds for infinitely many F (or infinitely many (q0, q1, q2) ∈ Z3) has Lebesgue measure
zero.

In view of Beresnevich et al. (1997), this theorem is the best possible. Note that
if the curvature vanishes on an interval, the measure of the set of points for which
|F (x)| < H−n+1ψ(H(F )) can be positive.

To avoid expressing all the different constants (which do not affect the results)
the Vinogradov symbols (� and �) will be used (A� B means that there exists a
positive constant c such that A 6 cB with a similar definition for A� B). If A� B
and A � B then A is comparable to B, written A � B. As

∑
r ψ(r) converges, we

can assume without loss of generality that ψ(N) � N−1, where N is a sufficiently
large integer. We now state some technical lemmas. The first is due to Pyartli (1970).
The Lebesgue measure of a set X in R is denoted by |X|.

Lemma 1.2. Given positive real numbers δ, ε and a natural number n, let f :
[a, b]→ R be a function with |f (n)(x)| > δ for each x ∈ [a, b]. Then

|{x ∈ [a, b] : |f(x)| < ε}| < C(ε/δ)1/n,

where C is an absolute constant.

The next lemma is proposition 4 in Beresnevich & Bernik (1994).
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Schmidt’s theorem 181

Lemma 1.3. When γ > 0, the two inequalities

|F (x)| < H(F )−1−γ , |F ′(x)| < H(F )−γ/2

hold simultaneously for infinitely many F for almost no real x.

Finally, we state lemma 7 in Baker (1966).

Lemma 1.4. For each positive integer N , denote by U(N) a finite set of closed
intervals. Let K(N) denote a subset of U(N) such that for each interval I ∈ K(N)
there exists an interval J 6= I, J ∈ U(N), for which |I ∩ J | > 1

2 |I|. Let V (N) denote
the union of the points of the intervals I of K(N) and let v(N) denote the union
of the intervals I ∩ J . Further, let W and w denote the set of points contained
in infinitely many V (N) and in infinitely many v(N) respectively. Then if w has
measure zero so does W .

2. The proof

Let σ(F ) be the set of x in the interval I such that (1.5) holds, i.e.

σ(F ) = {x ∈ I : |F (x)| < H(F )−1ψ(H(F ))}.
Then σ(F ) is the union of a finite number of open intervals and we can suppose
without loss of generality that σ(F ) is an interval. Using this notation S(ψ) can be
written in the form

S(ψ) =
∞⋂
N=1

⋃
F :H(F )>N

σ(F ) ⊂
⋃

F :H(F )>N
σ(F ).

This is a standard covering of the set; four different cases of F will be considered.
Let ε > 0 be a sufficiently small real number. We proceed to make some sim-

plifications. Clearly we may assume that H(F ) is sufficiently large. By the implicit
function theorem, we can take F to be of the form

F (x) = q2f(x) + q1x+ q0

on a suitable interval [a, b]. As in Baker (1978) the problem can be reduced to con-
sidering those x for which

|f ′′(x)| > c (2.1)
for c > 0 since the inequality complementary to (2.1) holds only for sets with small
measure (this follows from the inequality |W (f ′1, f

′
2)| > 0 holding almost everywhere).

Further, we can assume that for x in σ(F )

c1H(F ) < |F ′′(x)| < c2H(F ). (2.2)

From (1.5), one of q1, q2 must be� H(F ). The upper bound for |F ′′(x)| = |q2f
′′(x)|

in (2.2) follows from the continuity of f ′′ on [a, b]. Using this fact and |F ′′(x)| =
|q2f

′′(x)| � q2, it is not difficult to show that if the lower bound of (2.2) does not
hold, then |F ′(x)| � H(F ). The case of large first derivative is the ‘transverse’ case,
that is the vector (q1, q2) is almost parallel to the curve Γ = {(x, f(x) : x ∈ I}. The
set of x for which (1.5) holds for one vector q ∈ Z3 is the length of curve which is
within a distance H(F )−2ψ(H(F )) of the line {(x1, x2) ∈ R2 : q1x1 + q2x2 + qo = 0}.
For the transverse case this line is almost normal to the curve so the intersection
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is � H(F )−2ψ(H(F )) and the theorem readily follows from the convergence of∑
r ψ(r).
We now consider various ranges for |F ′(x)|. Note that |F ′(x)| = |q2f

′(x) + q1| �
H(F ). It follows that if H(F ) is sufficiently large and ε > 0 then |F ′(x)| < H(F )1+ε.
The inequality

|F ′(x)| = |q2f
′(x) + q1| 6 H(F )−2−ε

holds only for a set of small Lebesgue measure, and the set of those x for which
it holds infinitely often is of measure zero by Khintchine’s theorem (see Sprindžuk
1979). Thus we can assume without loss of generality that

H(F )−2−ε < |F ′(x)| 6 H(F )1+ε. (2.3)

For details see remark 5 in Beresnevich & Bernik (1994). Now the exponent of H(F )
in (2.3) is divided into ranges of length ε. Suppose that ` ∈ Z and

H(F )(`−1)ε < |F ′(x)| < H(F )`ε.

Evidently, from (2.3) it is only necessary to consider −2ε−1 < ` 6 1 + ε−1.
It follows from (2.2) that q2 � q1. Denote by F(N) the class of functions F with

q2 = N and with
H(F ) = max{|q0|, |q1|, |q2|} � N,

so that H(F ) � N . Let F(N, `) denote the subclass of functions F ∈ F(N) with
fixed `. In what follows, if σ(F ) is not empty, α ∈ σ(F ) will be given by

|F ′(α)| = inf
x∈σ(F )

|F ′(x)|.

The proof now falls into four steps, in each of which a different range for the exponent
` of F ′(α) is considered.

Step 1, 1/(2ε)+1 < ` < 1/ε+1. Denote by F(N, `, q1) the subclass of functions
F (x) = Nf(x) + q1x+ q0 in F(N, `) with q1 fixed. Let σ1(F ) be the set of x ∈ [a, b]
satisfying

|x− α| 6 1
4|F ′(α)| .

For large N and each F , the interval σ1(F ) lies in the interval [a − 1, b + 1]. By
Taylor’s formula,

F (x) = F (α) + F ′(α)(x− α) + 1
2F
′′(ξ)(x− α)2,

where ξ ∈ [x, α], whence for large N the inequalities

|F (α)| < 1
8 , | 12F ′′(ξ)(x− α)2| � N1−2(`−1)ε < 1

8 ,

hold (since α ∈ σ(F )) and we obtain

|F (x)| < 1
2 .

It follows that intervals of the form (α−1/(4|F ′(α)|), α+1/(4|F ′(α)|)) cannot inter-
sect for different F ∈ F(N, `, q1), since if x ∈ σ1(F1) ∩ σ1(F2) where F1, F2 are in
F(N, `, q1), then

1 6 |F1(x)− F2(x)| < 1
2 + 1

2 = 1.

Proc. R. Soc. Lond. A (1998)

 on January 27, 2013rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Schmidt’s theorem 183

Thus ∑
F∈F(N,`,q1)

|σ1(F )| 6 (b− a) + 2

and ∑
F∈F(N,`)

|σ(F )| �
∑
|q1|�N

∑
F∈F(N,`,q1)

|σ(F )|

�
∑
|q1|�N

∑
F∈F(N,`,q1)

|σ1(F )|ψ(N)N−1 � ψ(N),

since from lemma 1.2 (with n = 1) we have

|σ(F )|
|σ1(F )| �

N−1ψ(N)|F ′(α)|−1

|F ′(α)|−1 � N−1ψ(N).

Hence ∑
F

|σ(F )| =
∞∑
N=1

[1+1/ε]∑
`=[1+1/(2ε)]

∑
F∈F(N,`)

|σ(F )| �
∞∑
N=1

ψ(N) <∞.

The proof of step 1 now follows from the Borel–Cantelli lemma.

Step 2, 1 < ` 6 1/(2ε) + 1.
Let

σ2(F ) = {x : |x− α| < N−1|F ′(α)|−1}. (2.4)
It is evident (by lemma 1.2 with n = 1) that σ(F ) ⊂ σ2(F ). The Taylor series
expansion for F (x) at α is

F (x) = F (α) + F ′(α)(x− α) + 1
2F
′′(ξ)(x− α)2.

But |F (α)| � N−1 (as α ∈ σ(F )); by the definition of σ2(F ) the second term is also
� N−1. The last term F ′′(ξ)(x − α)2 can be shown to be � N−1 using (2.4) and
the range of `. Therefore

|F (x)| � N−1.

In order to estimate the sum
∑

F |σ(F )| more efficiently, essential and inessential
domains, introduced by Sprindžuk (1967), are used. The interval σ2(F ) is called
inessential if there exists a function G ∈ F(N, `) such that

|σ2(F ) ∩ σ2(G)| > 1
2 |σ2(F )|

and essential otherwise.
If the interval σ2(F ) is inessential then on the interval I1 = σ2(F ) ∩ σ2(G) the

difference
R(x) = F (x)−G(x) = b1x+ b0

satisfies
|R(x)| � N−1, H(R)� N.

As the length of the interval I1 is � N−1|F ′(α)|−1 and R is linear, the height H(R)
of R satisfies

H(R)� |F ′(α)|
Proc. R. Soc. Lond. A (1998)
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and
|R(x)| � H(R)−1−ε′ ,

for some ε′ > 0. By the one-dimensional case of Khintchine’s theorem the last inequal-
ity holds for infinitely many R only on a set of measure zero. At the moment we
have only proved that the set of x in the intersections of inessential intervals is of
measure zero. However, lemma 1.4 extends the result to the whole interval.

If σ2(F ) is an essential interval, then every point x ∈ [a − 1, b + 1] belongs to no
more than three essential intervals and hence∑

F∈F(N,`)

|σ2(F )| < 3(b− a+ 2).

Since |σ(F )| � |σ2(F )|ψ(N) (by lemma 1.2 with n = 1) it follows that∑
F∈F(N,`)

|σ(F )| � ψ(N)
∑

F∈F(N,`)

|σ2(F )| � ψ(N).

But the series
∑∞

N=1 ψ(N) converges, whence by the Borel–Cantelli lemma, the set
of x falling into infinitely many essential intervals σ2(F ) has zero measure.

Step 3, 1− 1/(4ε) < ` 6 1.
Let Fn(N, `, k) be the set of polynomials with k2 < q2 = N 6 (k + 1)2, |q1|,

|qo| � |q2|. Thus the cardinality of Fn(N, `, k) is � k5. Let

σ3(F ) = {x : |x− α| < k−3|F ′(α)|−1}.
Then σ(F ) ⊂ σ3(F ). As in step 2 the Taylor expansion of F at α is

F (x) = F (α) + F ′(α)(x− α) + 1
2F
′′(ξ)(x− α)2

and for x ∈ σ3(F ),
|F (x)| � k−3.

Similarly, the sets σ3(F ) will be divided into essential and inessential intervals. First
assume that σ3(F ) is inessential, that is there exist F1, F2 in Fn(N, `, k) such that

|σ3(F1) ∩ σ3(F2)| > (1
2)|σ3(F1)|.

Let R(x) = F1(x)− F2(x) = b2f(x) + b1x+ b0. Then it is evident that |b2| � k and
on the interval σ3(F1) ∩ σ3(F2) that |R(x)| � k−3. Also R′(x) = b2f

′(x) + b1 and
as |F ′(x)| < N ε this implies that |b1| � k. This and the fact that |R(x)| is small
implies that |b0| � k. Thus H(R) � k. It follows from Schmidt’s theorem that the
set of x for which these results hold for infinitely many R is of measure zero. Again
lemma 1.4 can be used to extend this to the whole interval σ3(F ).

Now assume that σ3(F ) is an essential interval. As before∑
F∈Fn(N,`,k)

|σ3(F )| � 1.

Also |σ(F )| 6 N1/2ψ(N)|σ3(F )|. Therefore∑
F∈Fn(N,`,k)

|σ(F )| �
∑

F∈Fn(N,`,k)

N1/2ψ(N)|σ3(F )|

�
∑

F∈Fn(N,`,k)

(k + 1)ψ(k2)|σ3(F )| � (k + 1)ψ(k2).
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Schmidt’s theorem 185

Thus it remains to prove that
∑∞

k=1(k + 1)ψ(k2) converges. Obviously for k > 2

(k + 1)ψ(k2) 6 2kψ(k2) 6
k2∑

r=(k−1)2+1

ψ(r) + ψ((k − 1)2),

giving
∞∑
k=1

(k + 1)ψ(k2) 6
∞∑
r=1

ψ(r) +
∞∑
r=1

ψ(r2),

which is convergent by hypothesis. As before the proof of this step follows from the
Borel–Cantelli lemma.

Step 4, −2ε−1 < ` 6 1− 1/(4ε).
Since ψ(N)� 1/N , it follows from (1.5) that the system of inequalities

|F (x)| < N−2, |F ′(x)| < N−1/4+ε,

holds. But the set of x which satisfy this system is contained in the set of x satisfying
the system in lemma 1.3 and thus |S(ψ)| = 0 proving theorem 1.1.

Note that the measure is not estimated explicitly. Thus we cannot use regular
systems to obtain the Hausdorff dimension of S(ψ) in contrast with Baker (1978).
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to the referees for their helpful comments.
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