Определение тяжелых металлов в чае

Матвейко Н.П. Белорусский государственный экономический университет, г. Минск Matveiko NP@mail.ru

Чай — это один из самых распространенных напитков, употребляемых человеком. Согласно гигиеническим требованиям к качеству и безопасности продовольственного сырья и пищевых продуктов для чая установлены допустимые уровни (мг/кг), не более: Pb–10,0; As–1,0; Hg–0,1; Cd–1,0; Cu–100,0 (СанПиН 11–63 РБ 98). Цель работы — методом инверсионной вольтамперометрии с применением анализатора марки TA–4, сопряженного с персональной ЭВМ, определить Zn, Cd, Pb, Cu в чае и заварке чая.

Минерализацию проб чая и заварки для всех образцов проводили с использованием азотной кислоты и пероксида водорода при температуре 450°С. Определение проводили на фоновом электролите, содержащем 0,75 моль/л муравьиной кислоты. Индикаторным являлся ртутно-пленочный электрод. Электродом сравнения — хлоридсеребряный полуэлемент, который применяли также в качестве вспомогательного электрода. В таблице представлены статистически обработанные результаты определения металлов в чае (первых четыре вида чая изготовлены в виде пакетиков).

Название чая	Содержание металлов, мкг/дм ³							
	Zn	S _r , %	Cd	S _r , %	Pb	S _r , %	Cu	S _r , %
Жасмин № 105 (зеленый)	29,23±0,03	0,07	0,0004± 0,0001	15,6	0,056± 0,001	1,10	5,24±0,04	0,50
Каркадэ (цветочно- гравяной)	70,70±0,06	0,05	_		7,360± 0,029	0,24	30,21±0,04	0,08
Лісови ягоды № 115	148,20±0,05	0,02	0,0830± 0,001	0,8	7,800± 0,031	0,25	85,20±0,05	0,04
Heladiv	69,52±0,06	0,05	0,0065± 0,0004	3,8	4,890± 0,025	0,32	18,32±0,03	0,09
Meri chai	18,45±0,02	0,08	_		0,096± 0,001	0,65	7,25±0,05	0,40
Edvin green tea	16,38±0,02	0,08	_	_	0,086± 0,001	0,73	4,73±0,04	0,50

Анализ данных таблицы показывает, что во всех видах исследованного чая содержание тяжелых металлов не превышает допустимые уровни. Видно, что наибольшее количество Zn, Cd, Pb и Cu содержится в чае «Лісові ягоды», основой которого согласно информации представленной на упаковке, является китайский зеленый чай. При этом содержание свинца и меди в этом чае достаточно велико и близко к установленным допустимым уровням (СанПиН 11–63 РБ 98). Значительное количество свинца и меди содержится также в цветочно-травяном чае «Каркадэ».

Нами определено также содержание тяжелых металлов в заварке чая. Оказалось, что содержание Zn, Cd, Pb и Cu в заварке чая значительно меньше, чем в чае. Так, например, содержание свинца в заварке чая в 2, 294, 210, 195, 7, 21 раз меньше, чем в чае «Жасмин» № 105, «Каркадэ» (цветочно-тровяной), «Лісови ягоды» № 115, «Heladiv», «Veri chai», «Edvin green tea» соответственно. Кадмий ни в одном из заваренных чаев не обнаружен. При этом тяжелые металлы в разных видах чая находятся в виде химических соединений, имеющих различную растворимость в воде.