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The article presents a method for distributing tasks to agents of a heterogeneous UAV group in a cluster
field of tasks, when the number of tasks exceeds the number of agents by 5–20 times. The proposed task
distribution method based on a three-stage procedure for distributing agents of different specializations
among task clusters, taking into account the agent value function. To evaluate the effectiveness, the
method compared with the greedy task distribution algorithm, the collective plan improvement algo-
rithm, and the consensus-based linking algorithm with local rescheduling. 2400 experiments were car-
ried out with different group sizes and randomly generated task maps, the results of which revealed
the high efficiency of the proposed method. According to the results of the study, a relationship found
between the efficiency of the method depending on the concentration of the number of tasks per agent.
With an increase in the specific number of tasks per agent, the task execution time improves and the indi-
cator of the path traveled by agents worsens. With a ratio of 5–10 agents per 100 tasks, the method shows
the best results in terms of the parameters of the path traveled by agents and task execution time.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Problems and state of research

Robotic applications and the intensive development of micro-
electronics have led to the miniaturization of robots and the ability
to use multi-robot systems (MRS). In this paper, a multi-robot sys-
tem understood as a homogeneous (swarm) or heterogeneous
group of mobile robotic agents with a decentralized control system
for the joint implementation of a global task.

The main properties of MRS are scalability, communication
(communication between agents within the group), coordination,
cooperation (collective decision-making). Heterogeneity reflected
in the difference in the set of specializations and sensory equip-
ment of agents (Kalyaev et al., 2009; Zakiev et al., 2018).
The advantages of MRSs and swarms are high mobility, low
maintenance costs, the ability to perform many tasks, as well as
scalability. The UAV group is a special case of the MRS and has
its own specifics, which consists in the use of the agents in the
airspace.

MRSs are usually stochastic, nonlinear, so building mathemati-
cal models to test and optimize control models is difficult. The lack
of methods of transition from the specific behavior of an agent to
the universal behavior of a group does not allow building an effec-
tive management system for groups of robots (Chung et al., 2018).

In this regard, there is a number of problems in MRS control.
One of these problems is widely known as labour division (task
allocation, task assignment).

Solving the problem of task allocation is also relevant when
using groups and swarms of UAVs, which are a special case of
the MRS. The main tasks solved by UAVs are: survey and explo-
ration of territories, detection of dangerous objects or places of
emergency, monitoring the condition of various objects, mapping
the terrain, search and rescue, etc. (Chung et al., 2018). The use
of UAVs allows performing multiple homogeneous and heteroge-
neous tasks, including the cases with a significant excess of the
number of tasks over the number of agents.
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Nomenclature

Designation Meaning

1. Section ‘‘Problems and state of research”
k The number of groups of tasks
Ck
n The number of combinations of k objects from a set with n

objects
t Total calculation time
N Total number of tasks

2. Section ‘‘The studied analogues”
M Total number of agents
N Total number of tasks
Di Array of efficiency values of the i-th agent
di;j Efficiency metric of the i-th agent for the j-th task
A The set of agents of the group
Yc The value of the target functional
qi The i-th task
nj;l ¼ 0;1f g The l-th target label of j-th agent
ai The i-th agent of the set A
Ddj Change in the target functional

3. Section ‘‘Mathematical formulation of the problem”
A The set of agents of the group
ai The i-th agent
n The number of agents of the set A
Q The set of tasks
qi The i-th task
s The number of tasks of the set Q
K The set of characteristics of agents and tasks
kj The j-th characteristic
u The number of characteristics in the set K
t Task execution time
ei Energy potential of agent i
W ¼ w1;w2; � � � ;wk; � � �wcf g Clusters of tasks
B ¼ b1;b2; � � � ;bp; � � �bu

� �
The set of base stations

_X Limitation on the number of agent characteristics
_Y Limitation on the number of task characteristics

4. Section ‘‘Proposed task allocation method and algorithm”
X Cube face size
W ¼ w1;w2; � � � ;wk; � � �wcf g Clusters of tasks
Pi ¼ p1;p2; � � � ;pk;psf g The set of planes of the i-th cluster

F Efficiency matrix
pij Efficiency metric of the i-th agent in the j-th cluster
Kj ai½ � ¼ 0;1f g Feature label
K Wi½ �ð Þj Number of characteristics j of the cluster Wi
K The set of characteristics
ki The j-th characteristic
A The set of agents
Aj j Cardinality of the set A
n Number of agents
S General performance metricbS ¼ cS1 ;cS2 ; � � � ;cSnn o

The set of local maxima of the metric S

L
�
¼ a1

�
;a2
�
; � � � ;ak

�n o
The set of agents unallocated across clusters

L ¼ ak1
;ak2

; � � � ;akl

� �
The set of agents distributed across clusters

Qi

�
¼ q1

� i;q2
� i; � � � ;qs

� i
n o

The set of tasks of the i-th clusereQ The set of unallocated tasks
R ¼ R1;R2; � � � ;Rnf g The set of preliminary distances between tasks

A
�
¼ a1k

;a2l
; � � � ;ans

� �
The set of agents sorted by Ri in ascending

orderfAj ¼ a1j
;a2j

; � � � ;asj

n o
The set of agents with the characteristic kj

Vj ¼ v1j
;v2j

; � � � ;vsj

n o
The set of numbers of tasks of category kj

T KjeQ
� 	

The number of tasks with the characteristics kj of the set eQ
5. Section ‘‘Method of simulated annealing”
tmin Lower temperature limit
tmax Upper temperature limit
tv Initial temperature
sv The set representing the order of tasks execution
F svð Þ New state generation function
u svð Þ Power consumption function
P Duð Þ Probability function
v Number of iterations

6. Section ‘‘Evaluation of computational complexity”
N Number of tasks
M Number of agents
Ni Number of tasks in i-th cluster
v Number of iterations
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This article is devoted to the task allocation (division of labor,
solving the assignment problem) in a group of UAVs, provided that
the number of heterogeneous tasks significantly exceeds the num-
ber of agents by 5–20 times.

The main problem of the assignment, taking into account
heterogeneous specializations of tasks and agents, is the need to
iterate over NP solutions of the type ‘‘agent – tasks”. The problem

lies in the complexity of evaluating Ck
n ¼ n!

n�kð Þ!k! combinations,

where n is the number of tasks and k is the number of clusters
the tasks grouped into. The maximum of such a function is
achieved when k ¼ dn2e. Let assume that the calculations are per-
formed using a hypothetical computer processing one billion
‘‘agent – task” pairs per second. Then to calculate combinations
of 36 tasks for 18 groups in the worst case, C18

36 ¼ 9075135300
actions are needed (about 9 s of calculations on assumed machine),
for combinations of 40 tasks for 20 groups the calculation time is
approximately 138 s.
2

The relationship between the calculation time and the number
of characteristics x is expressed by the following formula:

t � 109 ¼
N
x !

N
2x !

N
x � N

2x

� �
!

 !x

ð1Þ

where t is the total calculation time, N is the total number of tasks.
The task allocation between the agents of UAV swarm or the

agents of MRS is an urgent problem for researchers. Many well-
known scientists have proposed methods and algorithms for solv-
ing it.

The analysis of the paper (Pshikhopov et al., 2015) shows a large
variety of theoretical methods for solving this problem, especially
for the case of equal numbers of agents and tasks. Heuristic algo-
rithms (Kowalczyk, 2002; Mathew et al., 2015), analytical algo-
rithms (Zavlanos et al., 2008; Notomista et al., 2019), market
economy models (Zavlanos et al., 2008; Bertsekas and Castanon,
1991; Luo et al., 2015), methods of potential fields (Zavlanos and
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Pappas, 2008; Zavlanos and Pappas, 2007), probabilistic and ran-
dom algorithms (Berman et al., 2009; Liu et al., 2020), methods
based on machine learning and artificial neural networks
(Mouton et al., 2011; Zhao et al., 2021) can be distinguished by
popularity, fuzzy logic methods (Mukhedkar and Naik, 2013; Wei
et al., 2021), ant algorithms (Yuan et al., 2008; Payton et al.,
2001; Payton et al., 2005; Oliveira et al., 2017; Liao et al., 2014;
Brutschy et al., 2012), dynamic and integer programming methods
(Murphy, 1999; Sikanen, 2008; Yu and LaValle, 2016), genetic algo-
rithms (Shimaa et al., 2006; Patel et al., 2020; Soleimanpour-
Moghadam and Nezamabadi-Pour, 2020), blockchain and cloud
computing (Husheng et al., 2021; Msala et al., 2019), mixed algo-
rithms (Zhang et al., 2012), particle swarm optimization (Kong
et al., 2019; Wei et al., 2020), etc.

The paper (Liao et al., 2014) considers the application of itera-
tive algorithms of task allocation, including for the case of exceed-
ing the number of tasks over the number of agents. Ensuring high
convergence of iterative algorithms is an advantage of their
application.

Recent studies on the allocation of tasks in heterogeneous
groups of robotic systems are presented in (Chen et al., 2022; Cui
et al., 2018; Majeed and Lee, 2018; Buckman et al., 2019; Zhang
et al., 2020; Shang, 2021; Liu et al., 2019; Shang, 1844). In the pub-
lications studied, the emphasis placed on various factors: dynamic
changes in tasks, the presence of obstacles in the environment, the
allocation of tasks in conditions of environmental uncertainty or
information security incidents in the process of reaching consensus
during voting.

In (Chen et al., 2022; Buckman et al., 2019; Zhang et al., 2020),
modifications of the consensus-based decentralized task allocation
algorithm (CBBA) considered, which is a close analogue to the pro-
posed method in terms of implementing methods. The specificity
of the solutions under consideration lies in the modification of
CBBA for the tasks of a dynamic environment with a partial reallo-
cation of tasks.

In (Cui et al., 2018), the allocation of tasks carried out under
conditions of environmental uncertainty, while in (Majeed and
Lee, 2018) there fixed deterministic obstacles in the environment.
In the papers (Shang, 2021; Shang, 1844), the allocation of tasks is
carried out in the conditions of Byzantine generals, which compli-
cates the procedure of decision-making based on consensus.

In (Romeijn and Romero Morales, 2000), a greedy algorithm for
the allocation of tasks is considered. The greedy algorithm is a uni-
versal solution to the assignment problem, providing high conver-
gence of the solution and ease of implementation in practice.
However, these positive aspects compensated by such a disadvan-
tage as low efficiency of task allocation. Under the effectiveness of
performing multiple tasks by the MRS group, it is possible to allo-
cate the total distance traveled by agents and the execution time of
the global task and all local tasks.

This article differs from those presented by considering the case
of the allocation of tasks in a group of UAVs, provided that the
number of heterogeneous tasks significantly exceeds the number
of agents.

Earlier in (Petrenko et al., 2022; Petrenko et al., 2020), a method
of task allocation (division of labor) in a swarm of UAVs monitoring
a dynamic emergency zone was proposed. This paper presents an
adaptation of the presented method for a heterogeneous group of
UAVs and a wide range of experimental studies of the effectiveness
of the developed method.

1.2. Purpose and objectives

The purpose of this article is to develop a method for allocating
tasks in a heterogeneous group of UAVs in a clustered field of tasks
3

when the number of tasks is significantly higher than the number
of agents, and to demonstrate the efficiency of the proposed solu-
tion in comparison with the analogues. The proposed method des-
ignated as a method for allocating tasks with clustering and
dissection.

The conditions of the problem to solved are as follows. There is
a heterogeneous group of UAVs and a field of heterogeneous tasks.
The types and specializations of tasks and agents are identical. The
communication system between agents implemented in the form
of a fully connected graph. The radius of communication between
agents exceeds the geometric parameters of the task field. The task
considered completed if the agent reaches the task location, i.e. the
task execution time is zero. The purpose of agents (the global task
of agents) is to allocate and complete all tasks in the field.

The article sets and solves the following research tasks:

� mathematical formulation of the problem;
� description of the proposed method;
� description of the modification of the simulated annealing
method;

� building a software simulation;
� comparison of the efficiency of the proposed method with the
analogues.

1.3. The studied analogues

In this paper, as analogues are considered:

� greedy task allocation algorithm and modification due to versa-
tility (Romeijn and Romero Morales, 2000) (2000 u.);

� the method of collective improvement of the plan and modifica-
tion in connection with the use of iterative algorithms of high
convergence (Liao et al., 2014) (2009 u.);

� consensus-based bundle algorithm with local replanning for
heterogeneous multi-AV system due to the uniformity of the
problem solved in this study (Chen et al., 2022) (2022 u.).

1.3.1. Greedy algorithm (GrA)
Each agent is an independent computing system. The algorithm

consists of 4 stages.

Stage 1. Task selection. Each agent of the group ai; i ¼ 1;N
�

selects the nearest available task qi; i ¼ 1;N
�

from the general list
of tasks with similar characteristics.

Stage 2. Broadcasting of information. The agent notifies other
agents about the choice of a specific task.

Stage 3. Completing the task. The agent proceeds to perform the
selected task.

Stage 4. Completion of the task. The agent transmits informa-
tion about the completion of the task to the other agents and pro-
ceeds to stage 1.

The results of the algorithm given in the section «Results and
discussion».
1.3.2. Collective plan improvement (PCIA)
The algorithm of the collective improvement of the plan con-

sists of 3 stages.
Stage 1. Formation of the evaluation matrix. Each agent ai gen-

erates a one-dimensional array Di of N performance ratings. Each

agent generates performance evaluations dij; j ¼ 1;N
�

and transfer
the array Di to other agents of the group. At the beginning of the
procedure, all elements of the Di are zeroed. As a result, each agent
has a two-dimensional efficiency matrix of the size M � N.
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Allocation of the task among the agents of the group in such a
way as to provide maximum functionality:

Yc ¼
XN
j¼1

XM
l¼1

dj;l � nj;i ! max ð2Þ

under restrictionsXM
l¼1

nj;l ¼ 1; j ¼ 1;N
�

;
XN
j¼1

nj;i � 1; l ¼ 1;M
�

; ð3Þ

where dj;l 	 0 – relative assessment of the effectiveness of
achieving j agent l task.

Stage 2. Analysis of the evaluation matrix. Each agent ai; i ¼ 1;N
�

analyzes its matrix and finds the maximum value of the di;l. If the
maximum values have several estimates, then one with a lower l
value selected. The value of the l index indicates the number of
the candidate task to select by this agent. The estimate dih h–lð Þ
found, which has the value closest to the maximum, and the value

Ddj ¼ maxdil�
i¼1

maxdih
h¼1;h–l

j ¼ 1;N
�
 �

calculated that shows how much

the functional can change if agent ai chooses another task. The
selected task with the number ij assigned to the agent if the value

d
P
j ¼ dj;ij þ Ddj is maximum. If several agents have the same max-

imum values of d
P
j , then the task is assigned to the agent with the

largest Ddj. The agents that have not selected tasks collectively
allocate the tasks that not occupied. Either stage 2 repeats until
all tasks occupied or all agents have selected their tasks.

1.3.3. Collective improvement of the plan with simulated annealing
(PCIASAM)

In this article, proposed an extension of the method of collective
plan improvement. Inserted an additional stage in the formation of
tasks sequence. The sequence of tasks is determined by a simple
iteration when qjk

< 10. If qjk
> 10 the method of simulated anneal-

ing is used to find the shortest way to complete tasks. When
assigning a final task sequence to an agent, the agent proceeds to
perform the assigned tasks.

A mathematical description of the simulated annealing method
given in section II C.

The algorithm under consideration and its improved version
have 100% convergence of the solution, thus, the algorithm of col-
lective improvement of the plan chosen as an analogue.

1.3.4. Greedy algorithm with simulated annealing (GrASAM)
We propose an improvement of the greedy algorithm. The

improvement involves the formation of a sequence of tasks from
a pre-formed sequence for each agent.

Each agent is an independent computing system. The algorithm
consists of 3 stages.

Stage 1. Task selection. Each agent of the ai; i ¼ 1;N
�

group

selects the nearest available task qi; i ¼ 1;N
�

.
Stage 2. Broadcasting of information. The agent notifies other

agents about the choice of a specific task. Stage 1 repeats as long
as there are available tasks.

Stage 3. Formation of the task sequence. The agent forms a
sequence of tasks. The sequence of tasks is determined by a simple
iteration when qjk

< 10. If qjk
> 10 the method of simulated anneal-

ing is used to find the shortest way to complete tasks. When
assigning a final task sequence to an agent, the agent proceeds to
perform the assigned tasks.

Consensus-based bundle algorithm with local replanning
(CBBA-LR).

From the general list of tasks, the task T closest to the agents’ base
point selected. Task T is allocated among the agents in 4 stages.
4

Stage 1. Formation of agent efficiency metrics. Agents generate
performance metrics based on the distance to task T , prevalence,
and feasibility.

Stage 2. Formation of lists of recalled tasks. Each agent gener-
ates a list of recalled tasks. A task ji from the agent’s task execution
sequence falls into the recalled list based on the criterion of aver-
aging the agents’ traveled path and proximity to task T.

Stage 3. Redistributing agent tasks. Tasks included in the list of
recalled tasks of each agent ai excluded from the sequence of tasks
of agent ai and form a set of J ¼ j1; j2; � � � ; js; � � �f g excluded tasks.

Stage 4. The set of tasks J and task T redistributed between the agents.
Agents update task sequences.
Let consider the proposed method of task allocation in a hetero-

geneous group of UAVs in a clustered field of tasks.

2. Method and algorithm for task allocation in a heterogeneous
group of UAVs in a clustered field of tasks

2.1. Mathematical formulation of the problem

Let there be n agents ai of the set A, tasks qj of the set Q , and u
characteristics kj of the set K. Each agent of the set A has at most X
characteristics of the set K. Each task of the set M has at most Y
characteristics of the set K. The task allocation for each agent ai

consists in performing a certain number of tasks qj, taking into
account the match of agent ai characteristics to the characteristics
of tasksmj in such a way that all tasks of the set Q are completed in
time t if the agents have sufficient energy potential ei. The task
field shown schematically in Fig. 1.

Let consider the mathematical formulation of the problem. The
set of agents ai of the UAV group is denoted as A ¼ a1; a2; � � � ;½
ai; � � � an�:
ai ¼ xi; yi; zi; ei½ � ð4Þ
where xi; yi; zi is current coordinates of the agent ai; ei is energy
potential of the agent ai.

The set of subtasks qj (further on referred to as ‘‘tasks”) of the
global task Q ¼ q1; q2; � � � ; qj; � � � qm

� �
presented as:

qj ¼ xj; yj; zj; ej
� � ð5Þ

where xj; yj; zj are task coordinates; ej is energy reserve of the task.
Clusters of tasks formed according to the geometric characteris-

tics of the environment are represented as W ¼ w1;w2; � � � ;f
wk; � � �wcg, where k is cluster number; c is total number of clusters.
Clustering of the task field performed by dividing the zone into
equal parts in volume. The number of clusters is equal to the num-
ber of agents of the set A. Task cluster wk after splitting includes a
certain number of tasks qi.

The set of characteristics of tasks kj is represented as
K ¼ k1; k2; � � � ; kg

� �
.

The function eij corresponds to the energy costs of the agent ai

to move to the task qj.
B ¼ b1; b2; � � � ; bp; � � � bu

� �
is the set of base stations, where p is

the number of the base station; u is the number of stations
u 	 1ð Þ. Each base station characterized by coordinates:

bp ¼ xp; yp; zp
� � ð6Þ

The result of the task allocation method is a mapping R, that
matches each agent ai with a unique task qj 2 Q , return to base
action bp 2 B, or a waiting task £:

R : A ! Q [ B [£: ð7Þ
The global task Q is considered completed (condition F), if the

current energy reserve of the tasks is equal to zero (ej ¼ 0), pro-
vided that all the agents ai 2 A have returned to the home station:



Fig. 1. The input data scheme of the proposed method for task allocation in a group of UAVs.
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F : Q ¼
XK
k¼1

ek ! 0; 8ai 2 AR aið Þ 2 B: ð8Þ

2.2. Proposed task allocation method and algorithm

In the proposed method, considered a particular case, when the
base station is only one (u ¼ 1), which is a typical case of using
groups of UAVs during training flights.

To solve the proposed problem, it is proposed to use an algo-
rithm of task allocation with collective decision-making based on
majority criteria in a clustered field of task. Algorithms based on
collective decision-making have high convergence of solutions,
low computational complexity, the ability to search for a subopti-
mal solution and have great potential for further development. The
possibility of modifying the method for other conditions of the
problem is an important condition imposed on the method. The
development of the current research suggests the presence of a
‘‘flexible” mathematical apparatus for solving the problem of divi-
sion of labor.

The task allocation method consists of 5 steps.
Step 1. Selecting clusters. The input data for the agents ai are the

coordinates of the agent launch center bp and the coordinates of
the tasks qk. Additionally, agents ai exchange their own coordinates
ai ¼ xi; yi; zi½ �.

Regardless of the variant of the task allocation method, each
agent calculates the lengths of vectors between the centers of mass
of the task clusters and the agent’s base station:

Lwi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wix � bxð Þ2 þ wiy � by

� �2 þ wiz � bzð Þ2
q

ð9Þ
5

where i is cluster index,bx; by; bz are coordinates of the base sta-
tion,wix;y;z are coordinates of i-th cluster.

Agents collectively divide the task field into clusters. The initial
field reduced to a cube with minimal size so that all the tasks fit in.
The cube edge length is denoted as X. Next, the cube divided into
clusters along the edge with coordinates 0; 0;0ð Þ; 0;0;Xð Þ½ � into
parts of the same volume, the number of which is equal to the total
number of agents. Each cluster is defined by a number (index) and
is bounded by planes Pi ¼ p1; p2; � � � ; pk; psf g.

The task qj ¼ xj; yj; zj; ej
� �

belongs to a cluster Wi, if bounded by
planes Pi.

For each of the resulting clusters, the distance to the base sta-
tion is calculated:

LWi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qix � bxð Þ2 þ qiy � by


 �2
þ qiz � bz
� �2r

ð10Þ

where i is cluster index,bx; by; bz are coordinates of the base sta-
tion,qix;y;z are coordinates of the i-th cluster.

Step 2. Cluster analysis. The cluster Wi received for evaluation
by a group of agents.

The agents calculate the efficiency metrics of tasks in the cluster
and enter into the individual collective decision-making protocol,
represented by the efficiency matrix F:

ð11Þ
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The decision-making protocols are identical for all of the agents.
The efficiency metric pij is determined based on the assessment of
the agent’s ai ability to perform tasks in the cluster wj as follows.
The value scoreij calculated as:

scoreij ¼ pij

¼ K1 ai½ �K Wj
� �� �

1

K1
þ K2 ai½ �K Wj

� �� �
2

K2
þ � � � þ Kg ai½ �

K Wj
� �� �

g

Kg

ð12Þ

where i is index of agent, j is index of cluster, i ¼ 1;n; j ¼ 1; c;
where n is the number of UAVs, c is the number of clusters.

Value Kj ai½ � ¼ 1; iftheagentaihasthecharacteristickj;
0; otherwise:


, displays

the presence or absence of a characteristic kj from the agent ai.
The value Kj displays the total number of tasks of characteristics
kj. The value K Wi½ �ð Þj displays the number of tasks of characteristics
kj in the cluster Wi.

In this case, the agent ai; with the set of characteristics 1;2;3f g,
of cluster Wj with the tasks of characteristics {1,2,4} of quantity
{3,2,3} respectively, total number of tasks for each characteristic
{10,2,12,20}, corresponds to the final metric pij ¼ 1 � 3

10 þ 1 � 2
2þ

0 � 0
12 þ 0 � 3

20 ¼ 1.
Step 3. Collective decision-making. Agents begin the procedure

of collective decision-making. The procedure of collective decision-
making uses the majority principle and includes 3 rounds.

In the first round, the agents ai of the UAV group start decision-
making protocols, in which each agent sets its own metrics pij for
tasks in the cluster. The protocol considered filled if it contains
the number of metrics pij equal to the product of the number of
agents and the number of clusters.

In the second round, the total metric calculated which displays
the optimal value of the overall performance metric:

S ¼ max
i

Si ¼ max
i

X
j

pij ð13Þ

The difficulty of calculating S is O n!ð Þ:
If Aj j � 10, calculations are carried out in parts. Each agent ai,

depending on its index i, searches for a local maximum bSi on the
interval i� 1; i½ �. As a result, each agent has a set of local maxima

found by all agents bS ¼ cS1 ;cS2 ; � � � ;cSnn o
and selects the global max-

imum S. Thus, each agent will perform n� 1ð Þ! � 36288 computa-
tional operations.

If jAj > 10, calculations of distances between tasks are carried
out in parts using the method of simulated annealing.

In the third round, agents check their records in the decision-
making protocol. If the highest value of the product criterion does
not relate to the index of the agent, then the agent refuses to per-
form tasks in the cluster. Else, the agent assigned to the cluster.

It is possible that the set of agents �L ¼ �a1 ; �a2 ; � � � �; akf g not allo-
cated across all clusters �L–£ in the case of uneven allocation of
task-characteristics in the original field. Then a set
L ¼ ak1 ; ak2 ; � � � ; akl

� �
; L [ �L#A of agents formed between which

tasks will be further allocated.
Step 4. Task allocation. The process includes 2 rounds.
In the first round, agents form personal task lists. Each agent of

set A forms a set �Qi ¼ �q1
i; �q2

i; � � � ; �qs
i

� �
, consisting of cluster Wi

tasks, provided that the characteristics of the tasks correspond to
the parameters of the agents. Let denote by Kj ai½ � ¼ 1;

j 2 H �q1
i½ �;H �qi

i½ � the set of characteristics of the task �qi from cluster
Wi.

In the second round, the agents allocate the tasks unallocated
after the first round. Each agent ai of the set A calculates the pre-
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liminary distance Ri of the task sequence �Qi by simulated anneal-
ing when the number of tasks is more than 10 or by brute force
when the number of tasks is less than 10, then the agents exchange
the values of these distances. As a result, each agent generates a set
of distance values R ¼ R1;R2; � � � ;Rnf g.

The sequence of tasks in the cluster is determined by a simple
iteration at qjk

< 10. If qjk
> 10, then the method of simulated

annealing is used to find the shortest way to complete tasks.

Tasks of the set eQ ¼ Qleftf �Q1 [ �Q2 [ � � � [ Q Lj j
�
 o

Þ–£ allocated

by averaging the distance traveled between tasks by each agent
as follows:

1) agents are sorted in ascending order of Ri, a set of agents
�A ¼ a1k ; a2l ; � � � ; ans

� �
is formed;

2) for each characteristic of the kj a set of agents is defined:eAj ¼ a1j ; a2j ; � � � ; asj
n o

; Kj aij
h i

¼ 1; eAj

��� ��� ¼X
i

Kj ai½ � ð14Þ

3) for the agents of each set eAj , a set Vj ¼ v1j ;v2j ; � � � ; vsj

n o
is

formed, displaying the number of tasks of category kj:

v ij ¼
R aij
h i

T KjeQ
� 	

P
iR aij
h i ð15Þ

where T KjeQ
� 	

is the number of tasks having the characteris-

tics kj, of the set eQ , the agents of the set eAj are sorted by Ri in
descending order;

4) each agent of the set eAj replenishes the set �Qi with the near-
est tasks v ij .

Step 5. Performing tasks from the generated lists.
Each agent of the set A forms a final sequence of tasks using the

set �Qi to fly around, taking into account the return to the home
point. The sequence of tasks determined by a simple iteration at
qjk

< 10 if qjk
> 10 then the method of simulated annealing used

to find the shortest way to complete tasks. When assigning a final
task sequence to an agent, the agent proceeds to perform a flight
task.

A generalized algorithm of task allocation between agents of a
heterogeneous group of UAVs in a clustered field of tasks shown
in Fig. 2.

2.3. Method of simulated annealing

Simulation of annealing in iterative problems used to approxi-
mate the suboptimal global minimum of functions with a large
number of free variables.

The algorithm of the simulated annealing method is probabilis-
tic and shows good results in practice when solving NP-complete
problems. The simulated annealing allows reducing the average
total traveled distance by 45% in less than 1500 iterations in com-
parison with the worst initial value when solving the traveling
salesman problem.

Let S be the set of states of the system, which in the physical
sense reflects the energy consumption function u of agent ai for
moving through tasks qj in the sequence wk. The energy consump-
tion function u calculated by the agent based on its characteristics,
state and environmental parameters, i.e. the amount of energy that
the agent will spend on moving through the tasks qj of the
sequence wk in the generated sequence of visiting tasks.

The function F, based on the initial state sv (where v is the iter-
ation step) generates a new candidate state svþ1, into which the



Fig. 2. A flowchart of the proposed algorithm for task allocation.
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system can move, or it can discard depending on tv – system state
temperatures. Here is the algorithm of the method.

The lower temperature limit is set tmin ¼ 0 for a state So;
A random state is applied to the input sv (set the order of visit-
ing tasks) with the initial temperature tv = 100;
tv ¼ tmax ¼ 100;
While tv > tmin:
svþ1 ¼ F svð Þ– starting the function of generating a new sys-
tem state;
Du ¼ u svþ1ð Þ �u svð Þ;
If Du � 0, then tvþ1 ¼ tv

u svð Þ
u svþ1ð Þ;

If Du � 0 then the temperature drops: tmax ¼ tvþ1: A new itera-
tion is repeated, where the state is fed to the input svþ1 and
tmax ¼ tvþ1:

If Du > 0 then a new iteration is carried out with probability:
P Duð Þ ¼ exp

�v

tmax�
u svþ1ð Þ
u svð Þ ð16Þ

For the effective operation of the method, restrictions on the
number of iterations v additionally introduced.
2.4. Software simulation

Mathematical modeling carried out in C++ (Task-Allocation,
2023). Microsoft Visual Studio 2019 software, ISO C++ 14 standard,
used as an integrated development environment. A graphical
description of the algorithm given in Fig. 3.

To evaluate the effectiveness of the proposed solutions, con-
ducted 2400 computational experiments conducted. Six methods
implemented in the simulation: the proposed method is a method
of task allocation with clustering and dissection. (DFCM) and 5
analogues: greedy algorithm (GrA), collective plan improvement
7

(PCIA), collective plan improvement with simulated annealing
(PCIASAM), greedy algorithm with simulated annealing (GrASAM),
consensus-based layering algorithm with local rescheduling
(CBBA-LR).

In the simulation, 100 uniformly allocated tasks generated on
the map, and groups of 5, 10, 15 and 20 agents performed tasks
in clusters. The results summed up for each generated map of
100x100x100 conditional units. In total, 100 maps generated for
one set of agents and clusters. The model contains one home point.
The characteristics of agents and tasks generated randomly for
each map. Each task and agent had at least one and no more than
three characteristics out of five possible, respectively. To evaluate
the efficiency of task allocation, the distance traveled by all agents
and the execution time measured.
3. ResultS and discussion

3.1. Performance evaluation

The results of experiments presented in Figs. 4, 5, where Fig. 4
shows the distance traveled by agents when performing 100 tasks,
and Fig. 5 shows the execution time of global task.

In Fig. 4 and Fig. 5 the performance of the studied methods is
shown: method of task allocation with clustering and dissection
(DFCM); greedy algorithm (GrA), greedy algorithm with simulated
annealing (GrASAM), the algorithm of collective improvement of
the plan (PCIA), the algorithm of collective improvement of the
plan with simulated annealing (PCIASAM), consensus-based bun-
dle algorithm with local replanning (CBBA-LR). The number to
the right of the method designation means the number of agents
in the group when performing 100 tasks indicated on the abscissa
axis. The ordinate axis reflects the conventional units of distance
and task execution time. The box plots of the results shown in
Figs. 6-7.



Fig. 3. Graphical description of the simulation program.

Fig. 4. Graphs of the total path traveled by agents when performing tasks.

Fig. 5. Graphs of the time spent by agents when performing tasks.
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Fig. 6. The total distance traveled by 5, 10, 15 and 20 agents when performing 100 tasks.

Fig. 7. The total time of performing 100 tasks by 5, 10, 15 and 20 agents when performing 100 tasks.
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The analysis of the graphs presented in Fig. 6 allows concluding
that the proposed method of task allocation with 15 and 20 agents
per 100 tasks shows significantly good results of the metric of the
path traveled compared to all the studied analogues. With 5–10
agents per 100 tasks, it shows significantly good results in compar-
ison with methods of collective plan improvement and greedy
algorithms, while the CBBA-LR algorithm is only slightly inferior
to the proposed DFCM. Thus, it can be concluded that it is advisable
to use DFCM to minimize the path traveled by agents and, as a
result, minimize the energy spent on movement.

Analysis of the graphs presented in Fig. 7 allows concluding that
the proposed method DFCM of task allocation with 5 and 10 agents
per 100 tasks shows good results in terms of time spent in compar-
ison with methods of collective plan improvement and greedy
algorithms, while the CBBA-LR algorithm is only slightly inferior
9

to the proposed DFCM. The effectiveness of the method changes
significantly with an increase in the number of agents. The time
spent performing tasks by the DFM algorithm with an increase in
the number of agents makes it ineffective in comparison with
analogues.

For a more accurate analysis, let’s consider the results of the
average distance traveled and the average task completion time
for 5, 10, 15 and 20 agents when performing 100 tasks, which
are presented in Tables 1 and 2, respectively. In the tables, the best
values of time or distance for the method of task allocation in the
UAV group are highlighted in bold. Fig. 8 and Fig. 9 show the
results of the studies presented in histograms.

The results of experiments showed that the proposed method of
task allocation in a clustered field of tasks reduces the average total
distance traveled by agents when performing 100 tasks by 16%,



Table 1
The average distance traveled when the agents of the UAV group perform tasks in clusters.

S distance DFCM GrA GrASAM PCIA PCIASAM CBBA-LR

5x100 3424,12 4395,45 5670,36 5997,27 4077,16 3448,37
10x100 4457,12 5716,99 6844,80 6713,72 5336,42 4550,70
15x100 4961,51 6844,80 6859,71 7200,16 6443,82 5585,71
20x100 5459,49 7803,58 7160,26 7540,29 7322,94 6688,59

Table 2
Average time of the global task completion.

T TIME DFCM GrA GrASAM PCIA PCIASAM CBBA-LR

5x100 823,80 1130,96 1446,18 1669,65 997,36 907,89
10x100 559,66 752,90 873,78 1071,32 597,25 611,47
15x100 500,65 621,21 648,65 960,65 473,10 501,60
20x100 544,22 524,56 441,33 936,52 415,34 438,10

Fig. 8. Histogram of the average total path traveled by agents when performing tasks.

Fig. 9. Histogram of the average total time of the global task completion.
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16.5%, 23% and 25.4% for 5, 10, 15, 20 agents, respectively, com-
pared with the collective improvement of the plan algorithm with
simulated annealing.

The proposed method of task allocation in a clustered field of
tasks reduces the average distance traveled by agents when per-
forming 100 tasks by an average of 20.1%, 22%, 27.5% and 30% for
5, 10, 15, 20 agents, respectively, compared with the greedy
algorithm.

The proposed method of task allocation in a clustered field of
tasks reduces the average distance traveled by agents when per-
forming 100 tasks by an average of 39.6%, 34.8%, 27.6% and 23.7%
for 5, 10, 15, 20 agents, respectively, compared with the greedy
algorithm with simulated annealing.

The proposed method of task allocation in a clustered field of
tasks makes it possible to reduce the average distance traveled
by agents when performing 100 tasks by an average of 0.7%,
2.1%, 11.2% and 18.38% for 5, 10, 15, 20 agents, respectively com-
pared to the consensus-based bundle algorithm with local
replanning.
10
The proposed method of task allocation in a clustered field of
tasks shows 17.4% and 6.3% reduction in task execution time for
5 and 10 agents compared to the algorithm of collective improve-
ment of the plan with improved simulated annealing. At the same
time, the results deteriorate for 15 and 20 agents and show that the
PCIASAM algorithm is 5.8% and 31% more efficient for 15 and 20
agents, respectively. There is a negative trend of increasing the task
execution time by the proposed method with an increase in the
number of agents. Thus, the proposed method is effective in reduc-
ing the travel distance of agents, when the number of agents is rel-
atively low compared to the number of tasks.

Can be noticed an interesting pattern. With an increase in the
specific number of local tasks per agent (from 5 to 20 tasks per
agent), the proposed method shows an increasingly worse dynam-
ics of the results of the gap difference according to the metric of the
path traveled, while under these conditions it is the best of the
methods considered. However, under the same conditions, with
an increase in the specific number of local tasks per agent (from
5 tasks per agent to 20 tasks per agent), the opposite shows the
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results of reducing the execution time of all tasks. So the result
improves in direct proportion to the number of specific tasks per
agent. Thus, with 20 tasks per 1 agent, the best result is obtained
in comparison with analogues, provided that when the specific
number of tasks was equal to 5, the method showed an ineffective
result according to the metric of time spent.

Using these patterns and test results presented in Figs. 4-9, it
can be determined that under certain conditions the proposed
method is the most effective for all considered metrics under cer-
tain conditions, which is the main scientific result of this paper.

3.2. Evaluation of computational complexity

Let consider a comparison of computational complexity of the
proposed method and the studied analogues.

The proposed method. The total number of tasks is N. The num-
ber of tasks in the i-th cluster, i 2 1;M½ �, is Ni, and the number of
agents is M.

The set number of iterations of the simulated annealing method
is v .

1. Allocation, formation of clusters of M pieces, matching task –
cluster: M � N actions.

2. Formation of the efficiency matrix for each cluster of agents.
Each agent forms its own efficiency array of dimension M and
sends data to the other agents. Total number of calculations is
M � N is the number of operations performed by all agents.
Table 3
Computational complexity of DFCM, PSIASAM and CBBA-LR for 20 agents and 100 tasks.

Number of tasks Number of agents DFCM PCIASAM CBBA-LR

100 1 301 10,100 10,100
100 2 603 10,300 10,200
100 3 907 10,500 10,300
100 4 1214 10,700 10,400
100 5 1536 10,900 10,500
100 6 1936 11,100 10,600
100 7 2840 11,300 10,700
100 8 7464 11,500 10,800
100 9 43,049 11,700 10,900
100 10 365,913 11,900 11,000
100 11 4337 12,100 11,100
100 12 4642 12,300 11,200
100 13 4947 12,500 11,300
100 14 5252 12,700 11,400
100 15 5557 12,900 11,500
100 16 5863 13,100 11,600
100 17 6168 13,300 11,700
100 18 6474 13,500 11,800
100 19 6779 13,700 11,900
100 20 7085 13,900 12,000

Fig. 10. Graph of changes in computational com
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3. Calculation of the best agent–cluster combination. Agents
divide all permutations for iteration intoM intervals and choose
a personal permutation corresponding to the agent index. At
M < 10, each agent performs calculations: M!

M ¼ M � 1ð Þ!. The
total number of calculations is M!. At M 	 10, each agent per-
forms v calculations. The total number of calculations for all
agents is M � v .

Forming the path of each agent based on combining the tasks of
the agent cluster and tasks that are not included in the cluster.
Sorting agents by distance traveled: M � logM. Task allocation to
agents (taking into account the averaging criterion of the distance
traveled), the number of remaining tasks is taken as N (estimate
from the top): N �M. Total number of calculations:
M � logM þ Nð Þ. The total number of calculations (top estimate,
M < 10) will be:

Vm<10 ¼ MN þMN þ M!þM logM þ Nð Þ
¼ M 3N þ M � 1ð Þ!þ logMð Þ ð17Þ

The total number of calculations (top estimate, M 	 10) will be:

Vm>10 ¼ MN þMN þ Mv þM logM þ Nð ÞÞ
¼ M 3N þ v þ logMð Þ ð18Þ

The algorithm of collective improvement of the plan with the
improvement of simulated annealing. The designations of the
number of tasks N and the number of agents M introduced.

The set number of iterations of the simulated annealing
method: v .

1. Formation of the efficiency matrix for each cluster of agents.
Each agent forms its own efficiency array of dimension N and
sends data to the other agents. Total number of operations
spread across all agents is M � N.

2. Calculation of the best agent-cluster combination. Agent ai finds
the maximum value of Ddi : N. Number of iterative cycles equals
N. Total number of calculations is N � N.

3. Comparison of the maximum element with elements of other
agents:M � 1. The number of iterative cycles is N. Total number
of calculations equals M � 1ð ÞN.

The total number of calculations (estimated from above) is:

Vkp ¼ 2MN � N þ N2 ð19Þ
The algorithm of CBBA-LR. The designations of the number of

tasks N and the number of agents M introduced.

1. The number of iterations of the method is equal to the number
of tasks of the original field: N.

2. To compile a list of excluded points of each agent requires: N.
3. The formation of new sequences of each agent requires: M.
plexity with increasing number of agents.
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The total number of calculations: N N þMð Þ ¼ NN þ NM.
Let’s build a table of computational complexity of the proposed

method, the method of collective plan improvement with
improved simulated annealing and consensus-based bundle algo-
rithm with local replanning, taking into account the increase of
agents to 20 units for 100 tasks (Table 3).

The results shown on in Fig. 10.
Based on the analysis of computational complexity, it should be

noted that the number of operations of the proposed method is
growing rapidly with an increase in the number of agents from 7
to 10 units. 10 is a computationally valid number and the iteration
method stops there, as can be seen from the graph. The restriction
on the transition of calculation by simulated annealing allows
reducing computational complexity. Thus, all three considered
methods implemented on current UAV and MRS applications in
general.

3.3. Evaluation of memory costs

The proposed method.
The designations of the number of tasks N and the number of

agents M introduced. Storing information about tasks requires 4N
bytes of memory. Storing cluster information requires 4M bytes
of memory. Dynamic storage of efficiency matrix requires
4MM þ 8M bytes of memory. Storing information about tasks of
each agent requires 24M þ N bytes of memory. The total value of
the occupied memory: 4MM þ 36M þ 5N.

The algorithm of collective improvement of the plan with the
improvement of simulated annealing.
Table 4
Memory costs in bytes of DFCM, PCIASAM and CBBA-LR for 20 agents and 100 tasks.

Number of tasks Number of agents DFCM PCIASAM CBBA-LR

100 1 540 16,400 524
100 2 588 32,800 548
100 3 644 49,200 572
100 4 708 65,600 596
100 5 780 82,000 620
100 6 860 98,400 644
100 7 948 114,800 668
100 8 1044 131,200 692
100 9 1148 147,600 716
100 10 1260 164,000 740
100 11 1380 180,400 764
100 12 1508 196,800 788
100 13 1644 213,200 812
100 14 1788 229,600 836
100 15 1940 246,000 860
100 16 2100 262,400 884
100 17 2268 278,800 908
100 18 2444 295,200 932
100 19 2628 311,600 956
100 20 2820 328,000 980

Fig. 11. Graph of changes in memory cos
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The designations of the number of tasks N and the number of
agents M introduced. Storing information about each task requires
4N bytes of memory. Dynamic storage of efficiency matrix requires
4NM þ 8M bytes of memory. Storing information about tasks of
each agent requires 24*M + N bytes of memory. The total value
of the occupied memory:.5N þ 32M þ 4NM

The algorithm of CBBA-LR.
Storing information about each task requires 4N bytes of mem-

ory. Storing information about tasks of each agent requires
24M þ N bytes of memory. The total value of the occupied mem-
ory: 24M þ 5N.

Let’s build a table of memory costs of the proposed method, the
method of collective plan improvement with simulated annealing
and consensus-based bundle algorithm with local replanning, tak-
ing into account the increase of agents to 20 units per 100 tasks
(Table 4).

The results shown on in Fig. 11.
Based on the estimate of memory costs, the following conclu-

sion can be drawn: the proposed method can be implemented in
the UAV group and the MPC as a whole, but it is worth noting that
the PCIASAM algorithm shows a linear increase in memory costs as
the number of agents in the group increases.
4. Discussion

The studied analogues of GrA, PCIA and their improvements
showed significantly worse results in the parameter of the traveled
path (from 16% to 33.8%), while with the number of agents from 10
units, the time to complete the global task by the method of collec-
tive plan improvement with the proposed improvement of PCIA-
SAM annealing simulation is significantly better (up to 31% with
20 agents) of the proposed method. Perhaps these indicators
depend on the clustering parameters and the inclusion of the sim-
ulated annealing method, which gives suboptimal solutions. In
order to improve the performance characteristics of the method
over time, in subsequent studies it is proposed to introduce an
additional time cost optimization function along with the ‘‘level-
ing” function of the traveled path into the task allocation
algorithm.

An interesting pattern observed in comparison with the CBBA-
LR method. With the ratio of the number of agents to the number
of tasks as 5:100, the values of the metrics of the traveled path are
almost equal, but the execution time of the global DFCM task is
9.2% better than CBBA-LR.

At the same time, with a ratio of 20:100, the distance traveled
by DFCM is 18.3% less, but the task execution time is 24.2% worse.
The inverse proportionality of solutions is observed. It is worth
noting that DFCM created specifically for conditions where the
number of tasks exceeds the number of agents, while CBBA-LR is
an algorithm for a dynamic environment.
ts with increasing number of agents.
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In this regard, in the future it is planned to conduct additional
studies and modifications of the algorithm in the presence of sev-
eral agent departure bases and dynamic tasks, both in time and in
the space of the expandable field of tasks.
5. Conclusion

This article describes the development and evaluation of the
effectiveness of the method of task allocation in a group of UAVs
in a clustered field of heterogeneous tasks with a significant excess
of the number of tasks over the number of agents by 5–20 times.
The proposed method based on the allocation function of tasks in
a clustered field of tasks according to the criterion of minimizing
the path traveled by agents based on collective decision-making
according to majority criteria.

To evaluate the effectiveness of the proposed method, it com-
pared with the greedy task allocation algorithm, the algorithm
for collective plan improvement and their improved versions with
the construction of a flight task by simulated annealing and
consensus-based bundle algorithm with local replanning. To con-
duct experimental research, a mathematical model implemented
in the C++ environment. Based on the results of 2400 experiments,
it can be concluded that the proposed method of task allocation is
promising to reduce the path traveled by agents and, as a conse-
quence, minimize the energy expended.

The proposed method makes it possible to reduce the distance
traveled by a group of 5 to 20 agents when performing 100 tasks
by an amount from 16% to 25.4% in comparison with the consid-
ered analogue of the method of collective plan improvement with
modification of simulated annealing. At the same time, the task
execution time by the proposed method with 15 and 20 agents
per 100 tasks shows worse results by an amount from 17.4% to
31%. The improvement of the indicators of the traveled path is
made by increasing the time to complete the global task. At the
same time, for the number of agents from 5 to 10 per 100 tasks,
the method shows consistently better performance of tasks in
comparison with analogues, both in terms of the metric of the path
traveled and in terms of task completion time.

In comparison with the consensus-based bundle algorithmwith
local replanning, a consistently good result observed with 5–15
agents and 100 tasks, however, with an increase in the number
of agents to 20, a deterioration in the metric of time spent is
observed. Based on the results of the study, it is noticeable that
the proposed method has a wide potential for its application and
development. The inverse proportionality of the results with the
CBBA-LR method observed in wider ranges of the ratio of the num-
ber of tasks and the number of agents, which is interesting for
future research.

The computational complexity of the method at the peak point
with 10 agents is no more than 4 � 105 operations, and the amount
of memory consumed by the method allows it to be used on cur-
rent UAV and MPC applications in general.

In the continuation of the research, the authors plan to further
develop the proposed method for working in conditions of a non-
deterministic terrain map, several bases of departure and landing
of agents and dynamic tasks, both in time and in the space of an
expandable field of tasks. Additionally, in subsequent studies, cases
will be considered when one or several agents will be needed for
one heterogeneous task.
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