= РУБРИКА =

УДК 621.384.63+539.172

НАКОПЛЕНИЕ ТРИТИЯ И ДРУГИХ НЕЖЕЛАТЕЛЬНЫХ β-ИЗЛУЧАЮЩИХ РАДИОНУКЛИДОВ ПРИ ПРОИЗВОДСТВЕ РАДИОФАРМПРЕПАРАТОВ ДЛЯ ПЭТ ДИАГНОСТИКИ

© 2023 г. С. Д. Бринкевич^{a, b}, Д. И. Бринкевич^a, *, А. И. Киевицкая c , А. Н. Кийко d

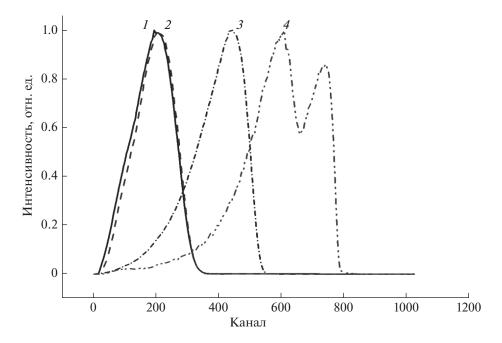
^аБелорусский государственный университет, Минск, Беларусь
^bOOO "Мой медицинский центр — высокие технологии",
Октябрьский пр., 122, г. Всеволожск, Ленинградская область, 188640 Россия
^cМеждународный государственный институт имени А.Д. Сахарова
Белорусского государственного университета, Минск, Беларусь
^dБелорусский государственный институт метрологии, Минск, Беларусь
*E-mail: brinkevich@bsu.by

В работе рассматривается проблема образования нежелательных β -излучающих радионуклидов (PH) при производстве радиофармпрепаратов для ПЭТ-диагностики. Установлено, что тритий является основным примесным PH, образующимся по реакции $^{18}O(p,t)^{16}O$ при облучении воды $[^{18}O]H_2O$ протонами. Другие примесные β -излучатели в воде накапливаются в основном в результате выщелачивания активированных материалов стенки мишени. Продемонстрирована возможность использования активности трития в воде $[^{18}O]H_2O$ в качестве индикатора ее повторного обогащения. Показана необходимость контроля содержания примесных β -излучающих PH в промежуточных продуктах, отходах производства и конечном радиофармпрепарате.

Ключевые слова: радиофармпрепараты, циклотрон, [18 O]H₂O, тритий, β -излучающие радионуклиды **DOI:** 10.56304/S2079562923030090

ВВЕДЕНИЕ

Позитронно-эмиссионная томография (ПЭТ) является динамично развивающимся методом ранней диагностики онкологических, неврологических и кардиологических заболеваний, в котором используется внутривенное введение радиофармацевтических препаратов (РФП) на основе позитрон-излучающих короткоживущих радионуклидов с периодом полураспада $t_{1/2} = 10-120$ мин [1]. На ПЭТ-исследования приходится основная доля из ~40 млн диагностических процедур ядерной медицины, ежегодно выполняемых в мире. При этом спрос на позитрон-излучающие радиоизотопы ежегодно увеличивается в мире на 5%.


Наиболее распространенным радионуклидом для ПЭТ-диагностики является 18 F, который получают при облучении протонами с энергией 9-20 МэВ воды (H_2^{18} O), обогащенной по 18 O до 95-97%. Накопление целевого нуклида происходит вследствие реакции (p,n), при этом также протекает реакция 18 O(p,t) 16 O с пороговой энергией 3.91 МэВ [2], продуктом которой является тритий. 3 H также образуется при взаимодействии протонов с атомами входного окна (Fe, Co, Ni) и тела мишени, однако сечения этих реакций неве-

лики ($\leq 10^{-3}$ барн), поэтому вероятность поступления трития в облучаемую H_2^{18} О вследствие такого процесса низка.

Тритий является чистым β -излучателем с $E_{\beta \, \text{max}}$ = $= 18.58 \, \text{кэВ}$ и периодом полураспада 12.5 года. Он распадается по схеме $^3\text{H} \rightarrow ^3\text{He}^+ + \text{e}^-$. Пробег излучаемых при этом электронов составляет ~ 6 мм в воздухе и ~ 5 мкм в воде. Он не может быть детектирован большинством дозиметров, поскольку γ -излучения при его распаде не наблюдается,

Бета-излучение трития полностью задерживается кожным покровом и для персонала он может представлять опасность только при попадании внутрь человека. Поступая в организм в виде тритиевой воды $^3{\rm H}_2{\rm O}$ или тритийорганических соединений, $^3{\rm H}$ способен замещать атомы водорода в биологически активных молекулах, что может приводить при распаде трития к радиационному повреждению клеток.

Серьезной проблемой на радиохимических предприятиях является загрязнение оборудования тритием. Тритий легко диффундирует практически во всех конструкционных материалах (металлах, полимерах, стеклах) и растворяется в них. Дезактивация узлов и емкостей, контактирующих с

Рис. 1. β-спектр облученной на циклотроне Cyclone 18/9 HC воды [18 O]H $_2$ O, измеренный методом жидкостной сцинтилляционной спектроскопии: 1 – анализируемый образец (сплошная линия); 2 – эталон 3 H (пунктирная линия); 3 – эталон 14 C; 4 – эталон 90 Sr + 90 Y

тритием, погружением в травильные и штатные десорбирующие растворы не дает удовлетворительных результатов. В результате радиоактивного распада трития образуется гелий, который со временем накапливается в объеме конструкционных материалов, что приводит к деградации их физико-химических свойств (так называемому "старению").

Большинство γ -излучающих радионуклидов (PH), детектированных при производстве РФП для ПЭТ, являются также β -излучателями [3], причем энергия их излучения варьируется в широких пределах — вплоть до ~900 кэВ. Указанные обстоятельства обуславливают необходимость контроля содержания β -излучающих PH в промежуточных продуктах, отходах производства и конечном радиофармпрепарате. Кроме того, требуется мониторинг рабочих помещений ПЭТ центра с целью оценки доз, получаемых как персоналом, так и пациентами [2]. Целью настоящей работы являлось исследование накопления нежелательных β -излучающих PH при производстве различных РФП на основе 18 F.

МЕТОДИКА ИЗМЕРЕНИЙ

Идентификацию γ-излучающих радионуклидов и определение их активности выполняли с использованием спектрометра на особо чистом германии: детекторная система GEM40-83/DSPEC jr 2.0; энергетический диапазон 14.5—2911.4 кэВ; разрешение 0.182 кэВ/канал. Идентификацию радионуклидов проводили посредством соотнесения энер-

гий γ-квантов, определенных экспериментально со справочными значениями. Из-за высокой активности измерения проводили не менее, чем через двое суток после последнего облучения.

Контроль содержания β-излучающих радионуклидов проводился с использованием автоматического жидкостного сцинтилляционного спектрометра с TDCR регистрацией HIDEX 300 SL и гаммабета-спектрометра МКС-АТ1315. Для HIDEX 300 SL энергетический диапазон составил 0-2 МэВ по β-частицам, интервал – 0.182 кэВ/канал, эффективность — более 70% (для трития), более 95% (для 14 С). Средний фон для β -частиц — 9 имп/мин. Использован жидкий сцинтиллятор на основе толуола. Пробы объемом 1 мл разводились в 19 мл жидкого сцинтиллятора. Время измерения β-спектра — 1000 с. Для МКС-АТ1315 диапазон энергий бета-излучения: 0.15-3.5 МэВ. Средний фон для β -частиц — 270 имп/мин, чувствительность для 90 Sr в геометрии $0.03 \, \text{л} - 3.5 \cdot 10^{-3} \, \text{имп л/(c Бк)}.$

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

При облучении новой ("чистой") мишени в β -спектрах облученной [18 O]H $_2$ O после хранения в течении 3 мес наблюдается один пик, обусловленный излучением трития (рис. 1). Для сравнения на рис. 1 также приведены спектры калибровочных растворов (3 H, 14 C, 90 Sr + 90 Y).

Содержание трития в облученной воде прямо пропорционально длительности облучения и ве-

Номер партии	Доза облучения, мкА мин	Активность ³ Н, Бк	Отношение активность/доза, Бк/ мкА мин
1	4700	88016	18.73
2	9867	158834	16.10
3	4884	100993	20.68
4	533	9266	17.39

Таблица 1. Содержание трития в регенерированной [18 O] H_2 O из разных партий

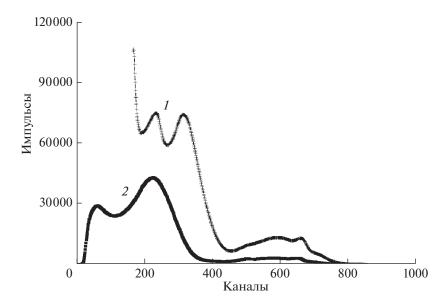
личине ионного тока. Соотношение активностей трития и $^{18} F$ в облученной $H_2^{18} O$ воде $A_{\rm H3}/A_{\rm F18}$ не зависит от тока на мишени и определяется в основном энергией протонов и варьируется от $A_{H3}/A_{F18} = 2.6 \cdot 10^{-6}$ при энергии протонов 9.6 МэВ [2] до $A_{\rm H3}/A_{\rm F18} = 1.0 \cdot 10^{-6}$ при 16.5 МэВ [4]. Моделирование процесса методом Monte Carlo дает значения активности трития на 40% более высокие, чем полученные экспериментально. Этот эффект по мнению авторов [4] обусловлен осаждением радионуклида на стенках мишени и полимерных капиллярах линии трансфера облученной воды от циклотрона в модуль синтеза. При длительностях облучения, превышающих период полураспада 18 F ($t_{1/2}$ = 110 мин), отношение A_{H3}/A_{F18} несколько возрастает, что обусловлено распадом части наработанного ¹⁸ F. Так по нашим экспериментальным данным при длительности облучения ≥110 мин и энергии протонов 16.5 МэВ отношение A_{H3}/A_{F18} возрастает до значений ~2.2 · 10⁻⁶.

По оценке менеджмента корпорации Таіуо Nірpon Sanso (Япония) — крупнейшего мирового производителя ¹⁸O₂ методом криогенной дистилляции - около половины мирового потребления $[^{18}O]H_2O$ составляет повторно (или многократно) использующаяся вода [5]. Необходимо отметить, что при повторном использовании для производства РФП очищенной регенерированной воды [18O]H₂O нет линейной зависимости активности трития от дозы облучения, наблюдается большой разброс активностей ³H при близких значениях дозы облучения (табл. 1). Это обусловлено тем, что в результате обогащения воды по изотопу кислорода ¹⁸О как центрифужным, так и дистилляционным методами, одновременно с накоплением тяжелых изотопов кислорода (18 O и 17 O) будет увеличиваться и активность ³H. При этом большинство мелких производителей зачастую после повторного обогащения не проводят очистку от трития посредством окисления воды до молекулярного кислорода $[^{18}O]O_2$ с последующим его восстановлением водородом природного изотопного состава.

В то же время, как отмечалось выше, тритий накапливается в облученной [18О]Н₂О в весьма существенных количествах. Так в условиях рутинного производства содержание трития в регенерированной воде, прошедшей через анионообменный картридж и собираемой для повторного использования, варьируется в пределах от 30 до 230 кБк/мл в зависимости от условий облучения энергии протонного пучка, величины ионного тока, длительности облучения и т.д. [2.6–10]. В условиях рутинного производства на циклотроне Суclone 18/9 HC с энергией 18 МэВ при ионном токе 70-80 мкА и длительности облучения 80-140 мин удельная активность ³H в регенерированной воде, собираемой с 200 синтезов, составляло 130-200 кБк/мл [5]. Для сравнения — содержание трития в коммерчески поставляемой $H_2^{18}O$ воде варьируется в диапазоне $2.2 \cdot 10^{-3} - 0.4$ Бк/мл по разным данным [2, 6, 7].

Активность ³Н такова, что согласно требованиям СанПИН Республики Беларусь № 142 "Требования к обеспечению радиационной безопасности персонала и населения при обращении с радиоактивными отходами и Гигиеническому нормативу "Критерии оценки радиационного воздействия" содержащая тритий регенерированная вода должна рассматриваться как радиоактивные отходы низкого уровня активности. Причем удельная активность регенерата с рутинного производства на 2— 3 порядка выше уровня освобождения из-под контроля согласно вышеприведенным нормативным документам. Аналогичные требования присутствуют и в нормативных документах Российской Федерации (ОСПОРБ-99/2010). С учетом периода полураспада трития ($t_{1/2} = 12.5$ лет) возникает проблема хранения (или утилизации) регенерированной воды.

Тритий, кроме облученной H_2^{18} О воды, детектировался также в воде, прошедшей через анионообменный картридж (так называемой регенерат), в отходах органических растворителей от промывки модулей (растворе ацетонитрила), а также в воде, которой промывалась мишень. Основная доля ³Н (около 95%) остается в регенерате. Остатки (5%) смываются с ионообменной смолы ацетонитрилом, две трети которых (3.2%) попадает в отходы [2]. Содержание трития в отходах производства 2-фтордезоксиглюкозы (ФДГ) по данным [2] составляет 1.46 Бк/мл, что согласуется с нашими данными. 1.6% от наработанной активности трития уносится из зоны синтеза с газами и парами воды, образующимися при синтезе. Это составляет около 4 · 10⁻⁸ от наработанной на циклотроне активности ¹⁸ F. Обычно в одном производственном цикле наработка ¹⁸F составляет от 150 до 300 ГБк. Соответственно, следует ожидать, что за 1 синтез с газообразными веществами улетучивается 6—15 кБк трития. В рутинном производстве в течение года проводится ~250-500 синтезов при работе в односменном режиме и, соответственно, ~3-6 МБк ³Н выбрасывается с газообразными отходами. К слову, отдельные производственные площадки в России имеют свыше 1800 наработок фтора-18 в год. При синтезе холина объем газообразных выбросов может увеличиваться в 2 раза, но не будет выше 3-4% от активности трития, что эквивалентно $\sim 1 \cdot 10^{-7}$ от активности ¹⁸F, наработанной на циклотроне.


Оценка выбросов трития в окружающую среду при производстве радиофармпрепарата ФДГ и определение дозы, получаемой населением, была выполнена в работе [10]. Газообразные выбросы из горячих лабораторий перед попаданием в атмосферу проходили через фильтры из древесного угля. Содержание ³Н определялось методом электролитического обогащения с последующими измерениями на жидкосцинцилляционном спектрометре. Обнаружено увеличение средней активности трития в воздухе после ввода циклотрона (наработки активности в течении 3 лет) в 3–4 раза — с ~0.30 Бк/л до 0.80—1.02 Бк/л. Дополнительно накопленная населением вследствие этого доза была оценена как 0.08 мЗв/год.

Согласно данным работ [2, 6, 8, 11] в готовой форме большинства РФП (ФДГ, холин, метионин) концентрация трития близка к пределу разрешения методики измерения. Так максимальное содержание трития в ФДГ по данным авторов [9] составляло 0.269 ± 0.016 Бк/мл, что почти на 5 порядков величины ниже содержания трития в облученной воде. Среди РН исключение составляет $Na^{18}F$. Содержание 3H в РФП ^{18}F -NaF было $^\sim$ на 3 порядка выше, чем в ФДГ, и составляло 560 Бк/мл, что связано с особенностями технологии его получения.

Тритий накапливается в стенках мишени циклотрона и линии трансфера вследствие диффузии из облученной воды. Материал тела мишени Nb легко поглощает водород с образованием твердого раствора водорода и гидрида NbH, представляющего собой серый кристаллический порошок. Серый налет на поверхности ниобиевых мишеней визуально наблюдался нами и авторами [12] после длительного облучения (более 2000 мкА ч). Как известно, входное окно водной мишени циклотрона делается из сплава Havar, основными компонентами которого являются Fe, Ni и Co [3]. Накопление трития может приводить к преждевременной деформации или даже разрыву входного окна мишени. Поэтому целесообразно периодически проводить промывку мишени для удаления остатков облученной воды, обогащенной тритием. Отметим, что после промывки мишени содержание трития в воде по данным различных исследователей сильно различается. Так по данным [13] удельная активность ³Н в промывочной воде составляет 1.4 Бк/мл, в то же время авторы [8] дают существенно более высокое значение — 92 Бк/мл. Причина такого расхождения не совсем ясна, но возможно сказывается различный дизайн мишени, ее объем (1.3 и 2.4 мл), материал мишени (Nb и Ті), режим продувки мишени, объем промывочной воды и количество производственных циклов перед промывкой мишени.

При облучении мишеней с большой накопленной дозой (свыше 2500 мкА ч) β-спектры регенерированной воды [¹⁸O]H₂O существенным образом трансформируются (рис. 2) Они кардинально отличаются от аналогичного спектра после облучения "чистой" (необлученной) мишени (рис. 1 и 2). Кроме максимума, обусловленного тритием, на спектрах наблюдается еще ряд максимумов как в низко-, так и в высокоэнергетической части спектра. Причем хранение в течение 3 мес приводит к существенной трансформации спектров - резко снижается интенсивность низкоэнергетического крыла спектра регенерированной воды, исчезает максимум в области 300 канала, в то время как интенсивность высокоэнергетического крыла (от 450 до 700 канала) снижается не столь кардинально. В результате доминирующим становится пик в области 200 канала, обусловленный тритием.

Экспериментальные результаты указывают на присутствие в регенерированной [18 O]H $_2$ O ряда β -излучающих нуклидов с разной энергией испускаемых электронов и периодом полураспада. Их суммарная активность в первые несколько дней после синтеза значительно превышает активность 3 H. Сильное излучение в низкоэнергетической области β -спектров при облучении "грязной" мишени увеличивает погрешность измерения концентрации трития. Форма его полосы сильно искажается (кривая 1 рис. 2). Содержание 3 H в об-

Рис. 2. β-спектры регенерированной [18 О] 18 О] после облучения на циклотроне Cyclone 18/9 HC мишени с накопленной дозой 4000 мкА·ч, измеренные через 2 дня (1) и 3 месяца (2) после синтеза.

лученной воде методом сцинтилляционной спектрометрии достаточно достоверно можно оценить только после длительного (около 3 мес) хранения, когда полоса трития становится доминирующей в β -спектре (кривая 2 рис. 2).

Отметим, что-после облучения "грязной" мишени (с накопленной дозой \sim 7000 мкА·ч) в готовых радиофармпрепаратах ([18 F]метилхолине и [18 F]ФДГ) содержание трития и других β -излучающих радионуклидов было ниже предела обнаружения использовавшейся методики [14]. Это обусловлено высокой степенью очистки указанных препаратов от нежелательных радионуклидов в процессе синтеза.

Для анализа полученных экспериментальных данных авторы использовали ранее опубликованные материалы [3] по исследованию γ -излучающих радионуклидов при облучении мишеней с большой накопленной дозой. В работе [3] были идентифицированы более 20 нежелательных γ -излучающих PH, образующих в процессе производства РФП на основе ¹⁸ F. Большинство из них являются β -излучателями: в основном распадаются посредством K-захвата или испускают позитроны (β ⁺-распад), реже электроны (β ⁻⁻-распад).

Доминирующими радионуклидами в γ -спектрах регенерированной воды, измеренных на третьи сутки после синтеза, являются изотопы кобальта ⁵⁶Со и ⁵⁸Со с периодом полураспада 77.3 и 70.9 суток, соответственно, и активностью на момент окончания синтеза фармпрепарата $\sim (5-10)\cdot 10^4$ Бк/мл каждый [3]. Они имеют ряд линий β -излучения в диапазоне 195—1500 кэВ и могут определять вид высокоэнергетической

области β-спектров (в районе 500–700 каналов) регенерированной воды.

Сигнал в низкоэнергетической области спектра β-излучения, вероятнее всего, обусловлен Оже-электронами, а также выбиванием низкоэнергетических электронов ү-квантами и рентгеновским излучением при прохождении через воду [5]. Оже-электроны и рентгеновское излучение образуются при распаде радионуклидов в процессе Кзахвата. В работе [3] в у-спектрах наблюдались радиоизотопы Re, Tc, Ni и Mn с удельной активностью в диапазоне 50–1000 Бк/мл на момент окончания синтеза, которые являются короткоживущими (период полураспада менее недели) и распадаются путем К-захвата, сопровождающегося рентгеновским излучением. Вероятнее всего, указанные радионуклиды ответственны за низкоэнергетическую часть β-спектров регенерированной воды.

Следует также учитывать возможность образования в процессе облучения изотопа ⁵⁵Fe, который образуется при распаде короткоживущего 55Со [3]. Он также образуется при облучении Наvar фольги протонами по реакции 55 Mn(p,n) 55 Fe с пороговой энергией 1.032 МэВ. Указанный РН излучает в рентгеновском диапазоне (энергия 5.9 кэВ) и по этой причине не детектировался нами при измерении γ-спектров. ⁵⁵Fe наблюдался авторами [15] при облучении водной мишени с входным окном их Havar-фольги на 9.6 МэВ циклотроне CYPRIS MINI trace. Его удельная активность в регенерированной воде может быть достаточно высокой. Так согласно [15] она была максимальной из всех обнаруженных РН и составляла 1243 Бк/мл на 3-й день после синтеза. Радиоизотоп ⁵⁵Fe распадается путем К-захвата и является долгоживущим

радионуклидом с периодом полураспада 2.7 года. По всей вероятности, он ответственен за оставшийся после 3-месячной выдержки низкоэнергетический пик в области 20 канала.

Авторы [15] в облученной воде [18 O] H_2 O обнаружили еще один низкоэнергетический радионуклид — 59 Ni с энергией 6.9 кэВ и периодом полураспада $t_{1\backslash 2} = 7.5 \cdot 10^4$ лет. Этот PH должен образовывать в Havar фольге по реакции 59 Co(p,n) 59 Ni. Его удельная активность в регенерированной воде была в 3 раза ниже удельной активности 55 Fe. Он также должен вносить вклад в низкоэнергетический пик в области 20 канала после 3-месячной выдержки.

ЗАКЛЮЧЕНИЕ

В работе рассмотрена проблема образования β-излучающих нуклидов при производстве радиофармпрепаратов для ПЭТ-диагностики. Проведенные исследования показали, что тритий является основным примесным радионуклидом, образующимся по реакции ${}^{18}O(p,t){}^{16}O$ при облучении воды [18 O]H $_2$ O протонами. Другие β -излучатели в воде накапливаются в основном в результате выщелачивания активированных материалов стенки мишени. Продемонстрирована возможность использования измерений активности трития в воде $[^{18}O]H_2O$ в качестве индикатора ее повторного обогащения. Показана необходимость контроля содержания β-излучающих РН в промежуточных продуктах, отходах производства, конечном радиофармпрепарате и проведения мониторинга рабочих помещений ПЭТ-центра для снижения дозовых нагрузок на персонал и загрязнения окружающей среды.

СПИСОК ЛИТЕРАТУРЫ/REFERENCES

 Peller P., Subramaniam R., Guermazi A. PET-CT and PET-MRT in Oncology: A Practical Guide (Medical Radiology). Springer Science & Business Media. 2012. 470 p.

- 2. Ito S., Saze T., Sakane H., Ito S., Ito S., Nishizawa K. // Applied Radiation and Isotopes. 2004. V.61. P.1179.
- 3. Brinkevich S.D., Brinkevich D.I., Kiyko A.N. // Physics of Atomic Nuclei. 2020. V. 83. No 12. P. 1732.
- Remetti R., Burgio N.T., Maciocco L., Arcese M., Filannino M.A. // Applied Radiation and Isotopes. 2011. V.69. P.1046.
- 5. Brinkevich S.D., Krot V.O., Brinkevich D.I., Tugai O.V., Edimecheva I.P., Ivanyukovich A.A. // Radiochemistry. 2019. V. 61. No. 4. P. 483. https://doi.org/10.1134/S1066362219040131
- Marshall C., Talboys M.A., Bukhari S., Evans W.D. // J. Radiological Protection. 2014. V. 34. P. 435.
- 7. Bowden L., Vintro L.L., Mitchell P.I., O'Donnell R.G., Seymour A.M., Duffy G.J. // Applied Radiation and Isotopes. 2009. V. 67. P. 248.
- 8. Mochizuki S., Ogata Y., Natano K., Abe J., Ito K., Ito Y., Nishino M., Miyahara H., Ishigure N. // J. Nuclear Science and Technology. 2006. V. 43. No. 4. P. 348.
- Kohler M., Degering D., Zessin J., Fuchtner F., Konheiser J. // Applied Radiation and Isotopes. 2013. V. 81. P. 268.
- Peixoto C.M., Jacomino V.M.F., Dias V.S. // 2011 Intern. Nuclear Atlantic Conf. – INAC 2011; Belo Horizonte, MG, Brazil, 24–28 Oct. 2011 – 7 p.
- Tylets P.V., Tugay O.V., Krot V.O., Ivaniykovich A.A., Soroka S.A., Brinkevich D.I., Brinkevich S.D., Baranovski O.A., Chizh G.V. // Proceedings of the National Academy of Sciences of Belarus, Chemical Series. 2018. V. 54. No. 3. P. 359 (in Russian). https://doi.org/10.29235/1561-8331-2018-54-3-359-368
- 12. Wilson J.S., Avila-Rodriquez M.A., Johnson R.R., Zyuz-in A., McQuarrie S.A. // Applied Radiation and Isotopes. 2008. V. 66. P. 565.
- 13. Kilian K., Pegier M., Pecal A., Pyrzynska K. // Journal of Radioanalytical and Nuclear Chemistry. 2016. V. 307. No. 2. P. 1037.
- 14. Brinkevich D.I., Brinkevich S.D., Baranovski O.A., Chizh G.V., Ivaniykovich A.A. // Meditsinskaya fizika. [Medical physics]. 2018. No. 1(77). P. 80 (in Russian).
- 15. *Ito S., Sakane H., Deji S., Saze T., Nishizawa K.* // Applied Radiation and Isotopes. 2006. V. 64. No. 3. P. 298.

Накопление Трития и Других Нежелательных β-ИЗлучающих Радионуклидов при Производстве Радиофармпрепаратов для ПЭТ Диагностики

S. D. Brinkevich¹, D. I. Brinkevich², *, H. I. Kiyavitskaya³, and A. N. Kiyko⁴

¹Belarusian State University, Minsk, Belarus

²FSUE "Federal center of nuclear medicine projects design and development" of FMBA of Russia, branch "Zavod Medradiopreparat", Moscow, Russia

³International Sakharov Environmental Institute of Belarusian State University, Minsk, Belarus

⁴Belarusian State Institute of metrology, Minsk, Belarus

*e-mail: brinkevich@bsu.by

В работе рассматривается проблема образования нежелательных β -излучающих радионуклидов (PH) при производстве радиофармпрепаратов для ПЭТ-диагностики. Установлено, что тритий является основным примесным PH, образующимся по реакции $^{18}\text{O}(\text{p,t})^{16}\text{O}$ при облучении воды $[^{18}\text{O}]\text{H}_2\text{O}$ протонами. Другие примесные β -излучатели в воде накапливаются в основном в резуль-

тате выщелачивания активированных материалов стенки мишени. Продемонстрирована возможность использования активности трития в воде [18 O]H $_2$ O в качестве индикатора ее повторного обогащения. Показана необходимость контроля содержания примесных β -излучающих PH в промежуточных продуктах, отходах производства и конечном радиофармпрепарате.

Ключевые слова: радиофармпрепараты, циклотрон, [18 O]H₂O, тритий, β -излучающие радионуклиды