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We describe a unified numerical model which allows fast and accurate simulation of nonlinear light
propagation in nanoparticle composites, including various effects such as group velocity dispersion,
second- and third-order nonlinearity, quasi-free-carrier formation and plasma contribution, exciton
dynamics, scattering and so on. A developed software package SOLPIC is made available for the
community. Using this model, we analyze and optimize efficient generation of THz radiation by
two-color pulses in ZnO/fused silica composite, predicting an efficiency of 3%. We compare the
role of various nonlinear effects contributing to the frequency conversion, and show that optimum
conditions of THz generation differ from those expected intuitively.

I. INTRODUCTION

THz technology has attracted a lot of attention in
the recent years, since it provides unique experimental
tools and techniques in nonlinear and time-domain spec-
troscopy, biology and medicine, remote sensing, security
screening, as well as information and communication sys-
tems (see e.g. [1–4]). For generation of THz radia-
tion, different techniques were proposed, such as two-
color ionizing femtosecond pulses in gases [5–10], surface
plasmas[11], as well as optical rectification of intense ul-
trashort pulses in non-linear crystals [12–16] which pro-
vide a basis for compact low-intensity devices. The needs
of the THz technology require, however, extension of the
range of the available techniques and materials, in order
to provide a flexible design required in multifarious appli-
cations. Following this line, investigations of THz genera-
tion in various media such as water [17], strongly magne-
tized plasma [18], and centro-symmetric two-photon res-
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onant molecular impurities [19] were performed. Emis-
sion of terahertz radiation with broad bandwidth by
femtosecond photoexcitation of spintronic materials (fer-
romagnetic and synthetic multiferroic heterostructures)
was also reported recently [20, 21].
Nanoparticle (NP) composites were actively investi-

gated in the past as a nonlinear material, e.g. [22–24],
and their particular strength lies in the flexibility of their
design leading to unusual properties such as e.g. nega-
tive refractive index [25]. However, surprisingly, up to
our knowledge they have not attracted attention as a
medium for THz generation. In this paper, we close this
gap by concepting a numerical model suitable for sim-
ulation of THz generation in nanocomposites. A range
of linear and nonlinear effects such as group velocity dis-
persion, second- and third-order nonlinearity, quasi-free-
carrier formation, exciton dynamics and so on are encom-
passed by the developed model. We use it to explore THz
generation by two-color pulses in nanoparticle compos-
ites, to elucidate the contributions of different frequency
conversion mechanisms, and to predict efficiencies in few-
percent range.
The applicability of the above model is, in fact, much
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broader than mere simulation of THz generation; a wide
range of nonlinear effects such as soliton dynamics and
supercontinuum generation, frequency conversion, multi-
level dynamics and electromagnetically-induced trans-
parency, and so on can be studied using this unified ap-
proach. With this is mind, we have created the extensive
documentation of the code and made the code publicly
available [26], in a hope that it will be useful to the optical
community for investigations of the nonlinear processes
in nanocomposites and other materials.
The paper is organized as follows. In Section 2, we

present the numerical model, including detailed formal-
ism for all the relevant mechanisms. In Section 3, we
optimize the THz generation by two-color pulses, and
analyze the role of different parameters. A summary of
the paper is given in the conclusion.

II. THEORETICAL MODEL

We consider a composite consisting of two components,
a homogeneous host material and spherical NPs (inclu-
sions) randomly distributed in space. We assume a suffi-
ciently low (typically few percent or below) filling fraction
of the inclusions so that neither percolation nor interac-
tion between the inclusions play a role. We consider ho-
mogeneous inclusions to be sufficiently small with diam-
eter below the light wavelength so that effective-medium
theory can be applied. Note that we do not place any
limitations on the nature of host and inclusion materi-
als, i.e., either of them could be a dielectric, a metal, or
a semiconductor. We do not require point symmetry in
host material or in the inclusions, so that the second-
order susceptibility can be non-zero in either material.
The model is designed to simulate light propagation over
relatively short distances of few millimeters, below the
damage threshold, and without back-reflection, there-
fore (1+1)D treatment using unidirectional propagation
equation [27] is the most suitable.
Under these conditions, the following effects have to

be taken into account: linear dispersion including intrin-
sic and scattering losses, second- and third-order optical
nonlinearities and photoionization accompanied by ion-
ization losses and plasma dynamics. In addition, transi-
tions between excitonic states can play a significant role
in the inclusion response, in particular for the generation
of new frequencies in the THz range. Among the effects
which were neglected in this treatment are thermal effects
(due to slow ns-scale response), coupling to phonons (be-
cause of relatively slow ps-scale response), Raman scat-
tering (which is typically weaker than instantaneous non-
linearities), anisotropy of the host material (due to the
manufacturing limitations for composites), deviations of
the inclusion from a sphere (because of typical manufac-
turing conditions), and generation of high-order harmon-
ics (because of the considered intensity ranges).
The following unidirectional propagation equation is

used to model the light propagation in a homogeneous

medium [27, 28]:

∂E(z, ω)

∂z
= −i

(

[
√

ǫ(ω)− ng]ω

c
− β(ω0)

)

E(z, ω)

− iω

2c
√

ǫ(ω)
PNL(z, ω), (1)

where E(z, ω) = F̂E(z, t) =
∫

∞

−∞
E(z, t) exp(−iωt)dt

is the Fourier transform F̂ of the electric field E(z, t), z
is the propagation coordinate, ǫ(ω) is the linear dielec-
tric permittivity (generally speaking, complex-valued to
include loss mechanisms), ng is the group refractive in-
dex, ω0 is a characteristic frequency of the pulse spec-
trum, β(ω) =

√

ǫ(ω)ω/c, and PNL(z, ω) is the Fourier
transform of the nonlinear part of the polarization. We
would like to empathise that no slowly-varying envelope
approximation was used, and E(z, t) represents the real-
valued field including the carrier oscillations. This ap-
proach yields a unified treatment for a pulse with arbi-
trary spectral content, which is particularly important
for extremely broad spectra.

A. Linear dispersion

The effective-medium theory allows to substitute the
composite material by a homogenised medium with ap-
propriately defined effective material parameters. The
effective refractive index of a composite can be expressed
as [28]

neff =

[

(1 − f)ǫh + fǫi
3ǫh

2ǫh + ǫi

+ 2i

(

ǫh − ǫi
2ǫh + ǫi

)2(rNPω
√
ǫh

c

)3
]1/2

, (2)

where f is the volume filling factor of the inclusions,
rNP is their radius, and ǫh,i are the frequency-dependent
dielectric functions of the host and of the inclusions, cor-
respondingly. The last term in the square brackets de-
scribes scattering losses.

B. Second- and third-order nonlinearities

The second- and third-order nonlinear processes can
also be described in the framework of the effective-
medium theory. The expression for the effective second-
order susceptibility looks like [29]

χ
(2)
eff (ω1 = ω2 + ω3;ω2, ω3) = (1− f)χ

(2)
h +

+ fx(ω1)x(ω2)x(ω3)χ
(2)
i , (3)
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where χ
(2)
h and χ

(2)
i are the susceptibilities of host and

inclusion materials, correspondingly. Note that we ne-
glected the frequency dependence of the susceptibilities
of host and inclusions, which is a good assumption far
from resonances. Quantity x(ω) is the ratio of local field
inside the inclusion and the incident field:

x(ω) =
3ǫh(ω)

2ǫh(ω) + ǫi(ω)
. (4)

Here we note that, due to photoionization as described
below, the ǫi(ω) and therefore x, strictly speaking, de-
pend on time due to buildup of plasma during the pulse.
However, in the current simulation we neglect this de-
pendence, assuming that corresponding change of ǫi(ω)
is small and that we are far from the plasmonic resonance
given by 2ǫh(ω) = −ǫi(ω).
Similarly, for the effective third-order susceptibility we

write [29]

χ
(3)
eff (ω1 = ω2 + ω3 + ω4;ω2, ω3, ω4) = (1− f)χ

(3)
h +

+ fx(ω1)x(ω2)x(ω3)x(ω4)χ
(3)
i , (5)

where χ
(3)
h and χ

(3)
i are the susceptibilities of host and

inclusion materials, correspondingly. The final expres-
sions which were used to calculate the corresponding po-
larizations look like

Pχ(2)(z, ω) = (1 − f)ǫ0χ
(2)
h F̂E(z, t)2 +

+ fǫ0χ
(2)
i F̂ [F̂−1{E(z, ω)x(ω)}2], (6)

Pχ(3)(z, ω) = (1 − f)ǫ0χ
(3)
h F̂E(z, t)3 +

+ fǫ0χ
(3)
i F̂ [F̂−1{E(z, ω)x(ω)}3]. (7)

C. Plasma dynamics

Let us turn to the description of plasma formation and
dynamics. In the framework of SOLPIC, we consider a
case when the ionization potential Ip of the inclusions
is lower than that of the host material, so that due to
the sensitive dependence of the polarization rate on the
ionization potential we can neglect plasma formation in
host material.
The contribution from the plasma is determined by the

average displacement 〈d〉(z, t) of the electron from the
equilibrium position in the parent ”molecule”, whereby
by a ”molecule” we denote an atom or a group of atoms of
the solid-state material which can provide a single ioniza-
tion event. Furthermore, it is determined by the relative
ionization of the solid state ρ(z, t), which is the ratio of
the conduction-band electron density to the density of
”molecules”:

Pplasma(z, ω) = −NmoleF̂ [〈d〉(z, t)ρ(z, t)] (8)

Here Nmol is the concentration of the molecules and
e = 1.6×10−19 is the electron charge. The above expres-
sion would be valid in a homogeneous medium; however,
as it refers to a polarization which occurs inside of NPs,
in contrast to averaged macroscopic polarization, in the
case of effective-medium theory it has to be additionally
multiplied by x(ω). For the origin of this factor and fur-
ther details see Ref. [29].
The dynamics of the quantity 〈d〉(z, t)ρ(z, t) is given

by [34]

∂(〈d〉(z, t)ρ(z, t))
∂t

= 〈v〉(z, t) + x0Γ(t), (9)

where 〈v〉 is the average velocity of electrons and
x0 ≃ −Ip/eE(t) is the initial displacement of the elec-
tron immediately after the ionization event, Ip being the
bandgap. It can be shown that the second term describes
the energy loss of the pulse due to the photoionization.
The dynamics of the 〈v〉(z, t)ρ(z, t) is given by second
Newton’s law as

∂(〈d〉(z, t)ρ(z, t))
∂t

= −eE(z, t)

me
ρ, (10)

where me is the effective electron mass near the bot-
tom of the conduction band. Here we neglect the initial
displacement and velocity of electron just after the ion-
ization.
The dynamics of the relative plasma density ρ is given

by

∂ρ

∂t
= Γ(F̂−1[x(ω)E(z, ω)]), (11)

where x(ω)E(z, ω) is the local field inside of inclusions
which determines the photoionization rate Γ.

D. Ionization rate

Depending on the relation between the frequency of
pump light and the ionization potential of inclusions, we
consider two models for the ionization rate. For the case
when the energy of pump photons is much smaller than
the ionization potential, the photoionization occurs ei-
ther in a multiphoton regime or in a tunneling regime, as
determined by intensity and Keldysh parameter. Here we
utilize so-called Yudin-Ivanov model [30], which provides
a formalism for both of these regimes in a unified way.
This model was initially developed for isolated atoms; its
use for solid state is justified in a case a negligible an-
harmonicity of the bands in the center of the Brillouin
zone.
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FIG. 1. Dependence of the spectra (a) and the electric field
(b) on the propagation length. 15-fs pulses at 2.26 fs−1 and
4.58 fs−1 are considered, with intensity of 1 TW/cm2 and
propagation length of 0.75 µm (magenta curves), 2.25 µm
(green curves), and 6.75 µm (bluecurves). In (b), additionally
the relative plasma density is shown for propagation length
of 6.75 µm. A composite of ZnO inclusions with f = 0.03 in
fused silica is considered.

The cycle-resolved ionization rate Γ is given (in atomic
units, that is, with frequency ω, time t and field E mea-
sured in the corresponding Hartree units ωa = 0.26
rad/as, ta = 24.2 as, xa = 0.0529 nm, and Ea = 514.2
V/nm) by

Γ(z, t) =
π

τT
exp

(

−σ0
〈2E(z, t)2〉

ω3

)

[

2κ3

√

〈2E(z, t)2〉

]2Z/κ

× exp

[

−E(z, t)2
2ω3

σ1

]

. (12)

Here τT = κ/E(z, t), κ =
√

Ip/(~ωa), σ0 = 1
2 (γ

2 +
1
2 ) lnC − 1

2γ
√

1 + γ2, γ = ωτT , Z is the effective atomic

charge, C = 1 + 2γ
√

1 + γ2 + 2γ2, and σ1 = lnC-

2γ/
√

1 + γ2. The quantity 〈E(z, t)2〉 is the averaged
value of the squared electric field over few past periods
(5 fs is assumed in this work).
The Yudin-Ivanov model was initially derived for gases;

its applicability for solid state, while generally justi-
fied for materials with tight binding, is not strictly es-
tablished. We have benchmarked Yudin-Ivanov model
by comparing it to the numerical solution of the time-
dependent Schrodinger equation in single active elec-
tron approximation [31]. In this approach the empiri-
cal pseudo-potential method was used for describing the
electron band structure of ZnO [32]. We have found that
the difference of the ionization rate does not typically ex-
ceed one order of magnitude. This difference is, in fact,

not very significant: because of the threshold-like behav-
ior of the ionization rate, it leads to only a slight shift
of the intensity at which a strong plasma generation is
reached.
For the special case when the energy of pump photons

is around two ionization potentials, it is preferable to
use the two-photon formalism [33] and write the cycle-
resolved ionization rate Γ (in SI units) as

Γ(z, t) =
2e4x4

aν

~4ω2
0 [(2ω0 − Ip/~)2 + ν2

〈E(z, t)2〉E(z, t)2,

(13)
where ν is the relaxation constant of the two-photon

transition.

E. Contribution by excitons

Finally, we include the nonlinear polarization due to
excitons into treatment. We consider multiple excitonic
levels and utilize the standard Bloch equations for the de-
scription of the ionization. The dynamics of the density
matrix ρe is given by (see e.g. [33])

i~
∂ρe
∂t

= [H, ρe], (14)

where H = H0 + Hint, H0 is the Hamiltonian of the
system in the absence of excitation, Hint is the interaction
Hamiltonian, which components Hij are related with the
corresponding dipole transition moments eMij :

Hij = eMijF̂
−1[E(z, ω)x(ω)]. (15)

In addition, polarization decay (decay of the off-
diagonal elements of ρe) with decay time T2 and decay
of the population to the ground state with decay time T1

are included. In order to avoid numerical instabilities,
the normalization of the density matrix ρ is performed
each few steps in time, by a) enforcing 0 ≤ ρe,ii ≤ 1, b)
enforcing Tr(ρe) = 1, and c) adjusting the non-diagonal
elements which exceed the maximum possible value de-
termined by the corresponding level populations.
The excitonic polarization is then defined in a standard

way as

Pexc(z, ω) = x(ω)F̂ [fTr(ρeM)]. (16)

We solve the propagation equation by an extended
split-step method, whereby each of the contributions to
the polarization is treated subsequently, which allows to
reduce the accumulation of numerical error. Nonlinear
steps are performed using the Runge-Kutta approach,
the order of which can be selected between 1,2, and 4.
Fixed step of the grid both in time and in the propa-
gation coordinate is used. The appearance of numerical
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artifacts during the propagation is monitored by tracing
the total pulse energy as well as the total energy absorbed
at the boundaries of the numerical time window.

III. NUMERICAL RESULTS AND DISCUSSION

In order to exemplify the above model and function-
ing of SOLPIC, we present in this section a simulation of
THz generation. We consider a composite of ZnO inclu-
sions in SiO2 matrix. Phenomenological Sellmeyer-type
expressions were used to describe dispersion on ZnO [36]
and SiO2 [37]. Similarly, experimental data on second-
order [38] and third-order [39] susceptibility of bulk ZnO
and third-order susceptibility of SiO2 [41] were used. We
estimated the value of T2 as 50 fs from Ref. [42] and used
T1 = 2T2. For ZnO, the typical exciton size is larger than
interatomic distance, meaning that we are dealing with
Wannier-Mott type of excitons. In a case of sufficiently
small inclusions, the exciton is bounded by the inclusion
boundaries, therefore its wavefunctions (as well as energy
levels and dipole momenta) are better described, instead
of hydrogen-like potential, by a constant potential inside
a sphere [43] with a step on its boundary. We have taken
into account 5 lowest excitonic levels, and typical values
of the off-diagonal dipole momenta, as calculated by this
approach, are around 3×10−28 C·m, for same-size NPs
with a radius of 2.5 nm which are considered here and
hereafter. For the permanent dipole momenta of ZnO,
we have adopted a typical value of 6.66×10−30 C·m per
ZnO molecule, which was used to define the on-diagonal
elements of the dipole matrix. We used the ionization
potential of 3.37 eV equal to the bandgap of ZnO to char-
acterize the transition from valence band to conduction
band, and all the presented numerical results correspond
to the conditions below the damage threshold of ZnO
[44].
The evolution of the field profile and spectra with prop-

agation is illustrated in Fig. 1, for two-color pulsed exci-
tation with pump pulses around 800 nm and 400 nm, for
conditions given in the caption. In Fig. 1(a) one can see
that initial stages of the propagation are characterized by
self-phase modulation with typical spectral side lobes. At
later stages, spectrum becomes irregular and transform
into a supercontinuum extending up to the absorption
edge given by the bandgap. The evolution of the tempo-
ral profile, shown in Fig. 1(b), shows gradual reduction
of the energy of electric field, as well as significantly ir-
regular envelope for longer propagation. This reduction
of the maximum field determines the saturation of the
THz generation efficiency and is caused both by strong
group-velocity dispersion for broad spectrum and energy
absorption due to transition to conduction band. One
can see from the red curve in Fig. 1(b) that relative
plasma density reaches values of roughly 0.01 after the
pulse, which is sufficient to induce significant energy ab-
sorption.
In Fig. 2 the evolution of the spectrum in the THz
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FIG. 2. Dependence of the spectra in the THz range on the
propagation distance. We consider 1-TW/cm2, 15-fs pump
pulses at 2.26 fs−1 and 4.58 fs−1, in a composite of ZnO NPs
with filling fraction of f = 0.03 in a fused-silica matrix, after
propagation length of 5 µm (magenta curve), 15 µm (green
curve), 45 µm (blue curve), and 50 µm (yellow curve).

range is shown. One can see that while the spectrum is
flat at early stages of propagation, for larger propagation
lengths the spectrum is localized around 28 THz, proba-
bly due to phase-matching effects with a phase-mismatch
length of 10.5 µm for the four-wave mixing between the
two photons at 2.26 fs−1, one photon at 4.58 fs−1, and a
THz photon. Losses around 15 THz and below can also
contribute to saturation of generation. After 45 µm prop-
agation length, the efficiency of the generation reaches
3.05%, which is sufficiently high for practical applica-
tions.
In order to determine the optimum conditions of THz

generation, in Fig. 3 we plot the dependence of the gener-
ation efficiency on the distribution of energy between the
830-nm pulse and 412-nm pulse (a), intensity of pulses
(b), and wavelength of the short-wavelength pulse (c).
One can see that the efficiency of THz generation is non-
zero but very small for the cases when only one of the
pulses is present (energy fraction of 0 or 1). This indi-
cates that the optical rectification based the second-order
susceptibility of ZnO cannot efficiently generate THz for
the considered conditions, and that the dominant contri-
bution comes from the third-order susceptibility of ZnO
NPs, third-order susceptibility of SiO2 being compara-
tively weak. In an ideal case without pump pulses mod-
ification, the efficiency of the THz generation is propor-
tional to E2

830(Etot − E830), where E830 is the energy
of the pulse at 830 nm and Etot = E830 + E412 is the
total energy of the pulses. The maximum efficiency is
then reached at E830/Etot = 1/3, however, as shown in
Fig. 3(a), maximum numerical efficiency is achieved for
E830/Etot = 0.5. This could be due to strong SPM-
induced spectral spreading of high-frequency pulse dur-
ing the propagation, which needs to be compensated by
relatively higher value of E412. In Fig. 3(b), the depen-
dence of the efficiency on the pulse intensity is shown, ex-
hibiting saturation and decrease after a certain intensity
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FIG. 3. Dependence of the THz generation efficiency on en-
ergy fraction of the 800-nm pulse (a), intensity of each of the
pump pulses (b), and the wavelength of the second-harmonic
pulse (c). A composite of ZnO NPs with f = 0.03 in fused
silica is considered. In (a), 15-fs pulses at 2.26 fs−1 and 4.58
fs−1 are considered, with total intensity of 2 TW/cm2 and
propagation length of 50 µm. In (b) we consider 15-fs (red
curve) and 150-fs (green curve) pulses at 2.26 fs−1 and 4.58
fs−1. In (c), 1 TW/cm2, 15-fs pulses are considered, with IR
pulse frequency of 2.26 fs−1 and propagation length of 50 µm.
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FIG. 4. Spectra in the THz range with (a) plasma contri-
bution on (red) and off (green) and (b) exciton contribution
on (red) and off (green), as well including both exciton con-
tribution and permanent dipole moment (blue). We consider
1-TW/cm2, 15-fs pump pulses at 2.26 fs−1 and 4.58 fs−1, in a
composite of ZnO inclusions with filling fraction of f = 0.03
in a fused-silica matrix, after propagation length of 10 µm (a)
and 0.75 µm (b).

as well as lower efficiencies for longer pulses. We attribute
these features to detrimental contribution of the accumu-
lated plasma, which grows with intensity and pulse du-
ration [cf. Fig. 4(a)]. In Fig. 3(c), the dependence of
the efficiency on the wavelength of the short-wavelength
pulse exhibits several maxima. Note that while one might
expect an optimum THz generation for 415 nm, which
would correspond to generation of frequencies near zero,

our simulation in fact predict a minimum around this
value, determined most probably by phase mismatch and
losses below 15 THz.
Finally, in order to access the role of plasma and ex-

citons in the THz generation in composites, in Fig. 4
we compare the spectra for plasma contribution (a) and
exciton contribution (b) switched on/off. One can see
that the plasma contribution is significant, both due to
contribution to refractive index and due to losses, and
absence of plasma contribution leads to a notable (more
than twofold) increase of the efficiency. On the other
hand, from Fig. 4(b) one can see that exciton polar-
ization do not provide a strong contribution to the effi-
ciency for the considered parameters. Also, additionally
including the permanent dipole momenta, described in
the model above, does not significantly increase the effi-
ciency of THz generation, as indicated by the blue curve
in Fig. 4(b) which is close to the red and green curves.
We note, however, that this conclusion is of limited gen-
erality; for other parameters of the medium excitons can
provide the key mechanism of THz generation (see e.g.
[45, 46] and references therein).

IV. CONCLUSION

In this paper we have established a comprehensive nu-
merical model for the simulation of light propagation in
composites, including all the relevant physical effects for
a broad range of parameters, such as linear dispersion
of the composite, second- and third-order nonlinear ef-
fects, plasma contribution, excitons contribution and so
on. The model was applied to simulate the generation of
THz radiation in a ZnO-SiO2 composite. We have per-
formed optimization of the frequency conversion process,
predicting an efficiency of 3.05%. We show that sim-
ulations provide insights into the optimization, such as
the power distribution between the pump pulses, which
would not be accessible intuitively. We hope that the nu-
merical model and the corresponding software solution,
which we make available for the community, will con-
tribute to the capacity of the simulations in the area of
nonlinear optics.
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