Влияние наносекундной импульсной лазерной обработки на электрофизические характеристики слоев Ті и Ni на стекле

М. В. Лобанок, С. С. Гринько, А. А. Гринкевич, О. Р. Людчик

Белорусский государственный университет, Минск, Беларусь, e-mail: <u>lobanokMV@bsu.by</u>

Представлены результаты измерения слоевого сопротивления и морфологии слоев Ti и Ni (500 нм), сформированных на стеклянных подложках методом магнетронного распыления и облученных наносекундными (~ 60 нс) импульсами Nd: YAG лазера с плотностью энергии W = 0.64–1.3 Дж/см². Показано, что увеличение плотности энергии лазерного облучения приводит к изменению слоевого сопротивления и оптических характеристик слоев Ti и Ni.

Ключевые слова: импульсная лазерная обработка; модификация структуры, слоевое сопротивление.

Influence of nanosecond pulsed laser processing on the electrophysical characteristics of Ti and Ni layers on glass

M. V. Labanok, S. S. Grinko, A. A. Grinkevich, O. R. Lyudchik

Belarusian State University, Minsk, Belarus, e-mail: lobanokMV@bsu.by

The results of measuring the layer resistance and morphology of Ti and Ni layers (500 nm) formed on glass substrates by magnetron sputtering and irradiated with nanosecond (~ 60 ns) Nd:YAG laser pulses with an energy density W = 0.64-1.3 J/cm2 are presented. It has been shown that an increase in the energy density of laser irradiation leads to a change in the layer resistance and optical characteristics of the Ti and Ni layers.

Keywords: pulsed laser processing; structure modification, layer resistance.

Введение

В настоящее время тонкие слои металлов активно используются в качестве зеркальных, интерференционных, проводящих, защитных и декоративных покрытий. При этом, особый интерес представляют слои металлов на стеклянных и кремниевых подложках в качестве зеркальных покрытий в лазерных технике и технологиях, где учет эффектов взаимодействия мощного лазерного излучения с тонким слоем металла позволяет получить новые сферы применения [1].

В настоящее время прецизионная лазерная обработка является основным методом модификации характеристик материалов электроники, а также исследования изменений их физических характеристик в условиях воздействия лазерного излучения различной энергетики и длины импульса [2, 3]. Воздействие наносекундных лазеров приводит к нагреву электронов проводимости в достаточно тонком приповерхностном слое. При этом, передача энергии в решетку осуществляется посредством электрон-фононного теплообмена и плавление которой происходит за короткое время

Квантовая электроника: материалы XIV Междунар. науч.-техн. конференции, Минск, 21–23 ноября 2023 г.

(пикосекунды). Часть расплава в процессе лазерной обработки удаляется под действием возникающих в веществе растягивающих напряжений [2, 3].

В работе представлено исследование влияния импульсного лазерного излучения на электрофизические и структурные характеристики слоёв Ti и Ni.

1. Материалы и методы

В работе использовались слои Ті и Ni на стеклянных подложках, изготовленные путем магнетронного распыления мишеней Тi и Ni в аргон-азотной атмосфере при давлении порядка 7×10^{-2} Па на установке УВН 2М [4]. Импульсная лазерная обработка образцов проводилась с помощью Nd: YAG лазера, работающего в режиме генерации одиночных импульсов излучения с длиной волны 1064 нм, длительностью ~ 60 нс. Образец располагали на двухкоординатном предметном столике относительно фокусирующей линзы на расстояние несколько больше фокусного, где диаметр светового пятна составил порядка 1 мм. После каждого воздействия лазерного импульса образец, закрепленный на столике, сдвигался на новое место с шагом 0.1 мм. Плотность энергии в лазерном пятне измеряли с помощью измерителя Thorlabs PM100, и она составляла 20–68 мДж/см².

Исследования морфологии структур производились с помощью оптического и растрового электронного микроскопа (РЭМ) Hitachi S-4800в режиме вторичных электронов с энергией 15 кэВ. Элементный состав исследуемых слоев определяли с энергодисперсионной приставки (EDX) растрового микроскопа с разрешением по глубине 1,5 мкм. Толщину покрытия изучали с помощью СЭМ-микрофотографий сколов образцов. Измерения слоевого сопротивления проводили четырехзондовым методом с помощью установки ИУС-3.

2. Результаты и обсуждение

На рис. 1 представлены РЭМ-микрофотографии поперечного сечения образцов Ni/стекло (*a*) и Ti/стекло (б), помимо этого, на вставках рисунков представлены РЭМ-микрофотографии поверхности и энергодисперсионный рентгеновский спектр пленок металов напыленных на кремниевые подложки, выступающие в качестве спутников.

Рис. 1. РЭМ-микрофотографии поперечного сечения, поверхности (на вставке) и EDX-спектр структур: (a) Ni/стекло, (б) Ti/стекло

Квантовая электроника: материалы XIV Междунар. науч.-техн. конференции, Минск, 21–23 ноября 2023 г.

Из спектров следует, что концентрация кислорода не превышает погрешности измерения, других нежелательных примесей. Обнаружено, что толщина слоев Ті и Ni составила 432 и 595 нм соответственно. Слои металлов являются однородными, плотными и не содержат видимых дефектов по всей площади поверхности.

На рис. 2 представлены типичные снимки оптической микроскопии поверхности образца структуры Ti/стекло до (a) и после ИЛО (δ), а также на вставках представлены снимки структуры на просвет. Видно, что в результате лазерного облучения происходит модификация поверхности и при высоких значениях плотности энергии происходит нарушение целостности плёнки. Измерение интенсивности зондирующего лазерного излечения, проходящего сквозь структуру [5], показывают увеличение интенсивности проходящего излучения в 4 раза, что связано как с утонением слоёв металлов, так и с нарушением целостности плёнки.

Рис. 2. Оптические снимки структур Ті/стекло

В таблице приведены результаты измерения слоевого сопротивления структур металл/стекло до и после ИЛО четырехзондовым методом с помощью модернизированного измерителя ИУС-3. За счет усреднения серии измерений достигалась точность порядка 5 %.

n			
Влияние плотности эне	огии импульсов на	а слоевое сопроти	вление структур

Энергия	Слоевое сопротивление R_{\Box} ,		
Импульсов,	$O_{M/\Box}$		
Дж/см ²	Ti	Ni	
-	2.2	0,67	
0,64	2.3	15,61	
0,71	2.4	30	
0,77	2.5	32	
0,85	2.4	34	
0,91	2.5	0.224	
0,98	3.5	0,222	
1,06	3.7	-	
1,13	3.9	-	

Квантовая электроника: материалы XIV Междунар. науч.-техн. конференции, Минск, 21–23 ноября 2023 г.

Из анализа данных таблицы следует, что увеличение плотности энергии импульсов лазерного облучения приводит к увеличению слоевого сопротивления структур. При этом для структур Ti/стекло наблюдается практически линейный рост сопротивления, что связано с частичным испарением слоя Ti. В случае слоев Ni наблюдается резкий рост слоевого сопротивления в низкоэнергетическом диапазоне (мДж/см²), дальнейшее увеличение плотности энергии приводит к резкому снижению сопротивления. Поскольку ИЛО слоев металлов происходила на воздухе, то при низких плотностях энергии, вероятно, в зоне лазерного облучения происходило термостимулированное окисление. Дальнейшее увеличение энергии привело к частичному испарению металла, что привело к резкому снижению слоевого сопротивления и изменению оптических характеристик. При лазерном облучении с энергией мДж/см² произошло полное испарение слоя Ni со стеклянной подложки.

Заключение

Таким образом, импульсная лазерная обработка приводит к модификации слоев металлов на стекле. При увеличении плотности энергии лазерного облучения происходит увеличение слоевого сопротивления, что связано с частичным испарением металлов.

Библиографические ссылки

- 1. Экспериментальное исследование оптических характеристик тонких пленок щелочных металлов/ С. Л. Шергин [и др.] // Интерэкспо Гео-Сибирь. 2008. № 2.
- Оптическая диагностика лазерно-индуцированных фазовых превращений в тонких пленках германия на кремнии, сапфире и кварце / А. Г. Новиков [и др.] // Журнал технической физики. 2015. Т. 85. № 3. Стр. 89–95.
- Динамика отражательной способности и модификация тонких пленок TiAlN/Si при импульсном лазерном нагреве / Г. Д. Ивлев [и др.] // Взаимодействие излучений с твердым телом // Interaction of Radiation with Solids : Материалы 13-й Междунар. конф., Минск, Беларусь, 30 сент. – 3 окт. 2019 г. / редкол.: В. В. Углов (отв. ред.) [и др.]. Минск : БГУ, 2019. С. 60–63.
- 4. Система контроля расхода газов для применения в технологии реактивного магнетронного распыления / И. М. Климович [и др.]. // Приборы и методы измерений. Т. 6. № 2. С. 139–147.
- 5. Лобанок М. В. Структурные и оптические характеристики гетероструктур SiC/Si, полученных методом быстрой вакуумно-термической карбидизации кремния / М. В. Лобанок, А. И. Мухаммад, П. И. Гайдук // Журнал прикладной спектроскопии. 2022. Т. 89, № 2. С. 204–209.

Квантовая электроника: материалы XIV Междунар. науч.-техн. конференции, Минск, 21–23 ноября 2023 г.