Влияние добавок кремния на электрофизические и оптические свойства тонкопленочных покрытий TiAlN

В. А. Зайков¹⁾, А. А. Михалёнок¹⁾, С. В. Константинов²⁾, Ф. Ф. Комаров²⁾, И. В. Чижов²⁾, А. Р. Лученок³⁾

> ¹⁾ Белорусский государственный университет, Минск, Беларусь, e-mail: <u>zaikov@bsu.by</u>

²⁾ Институт прикладных физических проблем им. А. Н. Севченко Белорусского государственного университета, Минск, Беларусь, e-mail: <u>mymail3000@tut.by</u>
³⁾ ОХП Научно-исследовательский институт импульсных процессов с ОП, Минск, Беларусь, e-mail: <u>alar@tut.by</u>

Методом сканирующей электронной микроскопии (СЭМ) изучены свойства и состав нитридных покрытий TiAlN с добавками кремния (Si). Четырёхзондовым методом проведены измерения поверхностного R_{\Box} и удельного р сопротивления. Спектральный коэффициент отражения *R* определялся спектрофотометрированием в широком диапазоне длин волн $\lambda = 200 \div 2500$ нм. Зависимость спектрального коэффициента отражения демонстрирует металлический тип проводимости, который хорошо описывается теорией Друде - Лоренца.

Ключевые слова: сканирующая электронная микроскопия; спектрофотометрирование; удельное сопротивление; коэффициента отражения; концентрация электронов; подвижность.

The influence of silicon additives on the electrical and optical properties of thin film TiAlN coatings

V. A. Zaikov¹⁾, A. A. Mikhalenok, S. V. Konstantinov²⁾, F. F. Komarov²⁾, I. V. Chizhov²⁾, A. R. Luchenok³⁾

¹⁾ Belarusian State University, Minsk, Belarus, e-mail: <u>s0rd3s@aol.com</u>
²⁾A. N. Sevchenko Institute of Applied Physical Problems of Belarusian State University, Minsk, Belarus, e-mail: <u>svkonstantinov@bsu.by</u>
³⁾ The Semantic self supporting structural writ "Benarus Institute of Impulse Bracesses with Bilat.

³⁾ The Separate self-supporting structural unit "Research Institute of Impulse Processes with Pilot Production", Minsk, Belarus, e-mail: <u>alar@tut.by</u>

The properties and composition of TiAlN nitride coatings with silicon (Si) additives have been studied by scanning electron microscopy (SEM). Measurements of surface R_{\Box} and specific ρ resistivity were carried out by the four-probe method. The spectral reflection coefficient *R* in a wide wavelength range $\lambda = 200 \div 2500$ nm was determined by spectrophotometric methods. The dependence of the spectral reflection coefficient demonstrates the metallic type of conductivity, which is well described by the Drude - Lorentz theory.

Keywords: scanning electron microscopy; spectrophotometry; resistivity; reflectance; electron concentration; electron mobility.

Введение

Известно, что покрытия TiAlN обладают высокой твердостью и износостойкостью, стойкостью к коррозии, хорошей термической и химической стабильностью и являются перспективными материалами для применения в механических узлах космической техники [1]. Кроме превосходных механических характеристик покрытий TiAlN заслуживают внимания их оптические свойства. Варьирование соотношения

Квантовая электроника: материалы XIV Междунар. науч.-техн. конференции, Минск, 21–23 ноября 2023 г.

компонент Ti/Al/N в осаждаемом покрытии позволяет получить пленку с необходимыми оптическими характеристиками [2]. Такое свойство покрытий TiAlN позволяет применять их для обеспечения пассивной терморегуляции малых космических аппаратов и наноспутников [1]. Исходя из литературных данных, добавление небольшой концентрации кремния (Si) к составу покрытия TiAlN способно существенно изменить структурно-фазовое состояние на наноуровне и значительно улучшить эксплуатационные свойства покрытий TiAlN с добавками Si. Будем обозначать такие покрытия как покрытие – TiAlSiN.

Цель настоящей работы – определение оптических и электрофизических свойств нано- и микроструктурированных покрытий TiAlSiN, пригодных для применения в изделиях космической техники.

1. Формирования покрытий TiAlN с добавками Si

Нанесение покрытий TiAlSi/TiAlSiN проводилось методом реактивного магнетронного распыления из композитных мишеней, изготовленных методом взрывного прессования в ГНУ «Институт порошковой металлургии» НАН Беларуси [3]. В таблице 1 представлен состав двух переданных композитных мишеней TiAlSi. Состав первой композитной мишени в атомных долях: Ti = 46,4 атом.%; Al = 45,5 атом.%; Cu = 8,1 атом.%. Состав второй композитной мишени: Ti = 69,0 атом.%; Al = 23,0 атом.%; Cu = 8,0 атом.%.

В первой мишени соотношение атомных долей Ti:Al \approx 1:1, а во второй мишени соотношение Ti:Al \approx 3:1. Атомные доли Si в первой и во второй мишенях составляют 8,0 ат. %. Метод управления процессом реактивного магнетронного осаждения, использованный в данной работе, обеспечивает воспроизводимость процесса формирования покрытий по составу и толщине. При этом, основным параметром контроля процесса осаждения является величина α – степень реактивности [4], которая определяет соотношение потока распыленных частиц и потока азота на подложку, что обеспечивает необходимую стехиометрию состава.

Осаждение покрытий TiAlSiN проводилось в следующих режимах: давление $p = 7,0 \cdot 10^{-1}$ Па; ток разряда I = 1,00 А; при этом напряжение на источнике питания изменялось в пределах U = 350 - 420 В. Потенциал смещения $U_{cM} = -200$ В; температура подложки $T_s = 380$ °C. Покрытия состава, близкого к стехиометрическому, получали при значениях степени реактивности $\alpha_1 = 0,605$; а покрытия состава, обогащенного металлическими компонентами – при $\alpha_2 = 0,474$.

2. Результаты и обсуждение

В таблице 1 представлены результаты энерго-дисперсионного анализа (EDX) для покрытий TiAlSiN, полученные из мишеней 1 и 2, для двух различных режимов осаждения: степень реактивности $\alpha = 0,605$ и $\alpha = 0,474$.

Таблица 1

Стехномстрия состава, толщина, скорость осаждения нитридных покрытии тнающ	Стехиометрия состава,	толщина, скор	ость осаждения ні	итридных пок	рытий TiAlSiN
--	-----------------------	---------------	-------------------	--------------	---------------

Образец	α	(Ti + Al), %	(N + Si), %	(Ti+Al)/(N+Si)	h, нм	τ, c	<i>v</i> , нм/с
1N1	0,605	46,32	48,28	0,959	1370	1860	0,74
2N1	0,605	38,06	57,33	0,664	853	1400	0,61
2N2	0,474	51,18	45,07	1,136	823	720	1,14

Квантовая электроника: материалы XIV Междунар. науч.-техн. конференции, Минск, 21–23 ноября 2023 г.

Анализ данных таблицы 1 позволяет сделать вывод, что скорость осаждения нитридных TiAlSiN покрытий зависит от степени реактивности α, т. е. от соотношения между парциальными давлениями азота и аргона.

Слоевое (поверхностное) сопротивление покрытий TiAlSiN, измеряли четырехзондовым методом с помощью измерителя удельных сопротивлений (ИУС) на тонкопленочных покрытиях TiAlSiN, нанесенных на SiO₂-подложку. Удельное сопротивление р покрытий TiAlSiN, рассчитывали по формуле:

$$\rho = R_{\Box} \times h, \tag{1}$$

где R_{\Box} – слоевое сопротивление; h – толщина покрытия, полученная из СЭМ-микрофотографий.

Удельное сопротивление р связано с микропараметрами материала формулой:

$$\rho = \frac{1}{e \cdot n \cdot \mu},\tag{2}$$

где *е* - заряд электрона; *n* - концентрация; µ – подвижность электронов.

Спектральный коэффициент отражения тонкопленочных металлоподобных покрытий с высокой концентрацией свободных электронов (электронного газа), хорошо описывается теорией Друде - Лоренца. Фундаментальными понятиями теории являются плазменная частота и плазменная длина (λ_p). Концентрация электронов (*n*) связана с плазменной длиной (λ_p) по формуле [2]:

$$n = \sqrt{\frac{\pi}{\lambda_e \cdot r_e}},\tag{3}$$

где *n* - концентрация электронов; λ_p = плазменная длина; $r_p = 2,818 \cdot 10^{-15}$ м – радиус электрона.

В таблице 2 для TiAlSiN покрытий приведены: поверхностное и удельное сопротивление; плазменная длина; концентрация и подвижность электронов.

Таблица 2

Образец	<i>R</i> □, Ом/□	<i>h</i> , мкм	ρ, мкОм∙см	λ_p , мкм	$n, 10^{22} \text{ cm}^{-3}$	μ , cm ² /B·c
1N1	21,1	1,37	2891	0,996	0,112	1,92
2N1	35,4	0,853	3020	0,581	0,315	0,66
2N2	7,5	0,823	617,3	0,402	0,644	1,57

Слоевое и удельное сопротивление покрытий TiAlSiN

Анализ слоевого и удельного сопротивления нитридов TiAlSiN на SiO₂ - подложках показал, что образцы 1N1 и 2N1, состава близкого к стехиометрии, имеют более высокое сопротивление, чем 2N2 с большей долей металла (таблица 2).

Исследования коэффициента отражения в видимой и ближней ИК областях спектра покрытий TiAlSiN проводили с помощью двухлучевого спектрофотометра Lambda 1050. На рис. 1 представлены зависимости суммарного коэффициента отражения для образцов от длины волны. По точке перегиба (показано стрелками на

Квантовая электроника: материалы XIV Междунар. науч.-техн. конференции, Минск, 21–23 ноября 2023 г.

рис. 1), можно определить плазменную длину λ_p , а по формуле (3) рассчитать концентрацию свободных электронов *n*. Значение подвижности электронов μ , можно вычислить по формуле (2).

1 – образец - 1N1; 2 – образец 2N1; 3 – образец 2N2 *Рис.1.* Спектральный коэффициент суммарного *R* отражения

Коэффициент *R* отражения образца 1N1 ($\alpha = 0,605$, Ti / Al ≈ 1) имеет характер переходный от диэлектрического к металлическому типу поведения. Образцы 2N1 и 2N2 имеют типичный металлический тип поведения. У образца 2N2 ($\alpha = 0,474$, Ti / Al ≈ 3 , (Ti+Al)/(N+Si) = 1,136) величина $\lambda_p = 395$ нм и соответственно концентрация *n* и подвижность µ электронов существенно выше, чем у 2N1.

Заключение

В результате комплексного исследования удельного сопротивления, спектрального коэффициента отражения покрытий TiAlSiN и использования теории Друде - Лоренца определены основные микропараметры покрытий TiAlSiN различного стехиометрического состава: удельного сопротивления, плазменной длины, концентрации свободных электронов и подвижности электронов.

Библиографические ссылки

- 1. Titanium-aluminum-nitride coatings for satellite temperature control / M. Brogren [et al.] // Thin Solid Films. 2000. Vol. 370. P. 268-277.
- 2. *Patsalas P., Logothetidis S.* Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films // Journal of Applied Physics. 2001. Vol. 90, No 9. P. 4725–4734.
- Особенности формирования структуры порошковых мишеней из резистивных сплавов при импульсном прессовании / А. Р. Лученок [и др.] // материалы докладов Международного симпозиума «Инженерия поверхности. Новые порошковые композиционные материалы. Сварка» (23-25 марта 2011 г., Минск, в 2 частях). Часть 1. С. 333-337.
- 4. Система контроля расхода газов для применения в технологии реактивного магнетронного распыления / И. М. Климович [и др.] // Приборы и методы измерений. 2015. Т. 6, № 2. С. 139.

Квантовая электроника: материалы XIV Междунар. науч.-техн. конференции, Минск, 21–23 ноября 2023 г.