Оптические характеристики отожженных золь-гель пленок оксида кремния, чистых и легированных лантаноидами пленок титаната бария на кремниевых подложках

Н. И. Стаськов¹⁾, Е. А. Чудаков¹⁾, А. Б. Сотский¹⁾, Л. И. Сотская²⁾, Н. В. Гапоненко³⁾, Е. И. Лашковская³⁾, А. К. Лаврентьев⁴⁾

¹⁾ Могилёвский государственный университет им. А. А. Кулешова, Могилев, Беларусь, e-mail: <u>ni_staskov@mail.ru, kenni_mark@bk.ru, ab_sotsky@mail.ru</u>

²⁾ Белорусско-Российский университет, Могилев, Беларусь, e-mail :<u>li sotskaya@tut.by</u> ³⁾ Белорусский университет информатики и радиоэлектроники, Минск, Беларусь, e-mail: <u>katerinaxy90@gmail.com, nik@nano.bsuir.edu.by</u>

⁴⁾ ОАО «Рогачевский завод «Диапроектор», Рогачев, Беларусь, e-mail: <u>diaproector@mail.ru</u>

Для моделирования антибликовых покрытий, интерференционных зеркал и микрорезонаторов по измеренным в s и p поляризованном свете отражательным способностям с помощью разработанного программного обеспечения рассчитаны оптические и геометрические параметры отожженных золь-гель пленок BaTiO₃, SiO₂, BaTiO₃:(Er, Yb) на кремниевых подложках.

Ключевые слова:.спектры показателей преломления и поглощения; золь-гель пленки Ва-TiO₃, SiO₂, BaTiO₃:(Er, Yb).

Optical characteristics of annealed sol-gel silicon oxide films, pure and lantanoide-ligated barium titanate films on silicon substances

N. I. Staskov¹, E. A. Chudakov¹, A. B. Sotsky¹, L. I. Sotskaya², N. V. Gaponenko⁵, E. I. Lashkovskaya⁶, A. K. Lavrentiev⁴

¹⁾ Mogilev State University named after. A. A. Kuleshova, Mogilev, Belarus, e-mail: <u>ni_staskov@mail.ru, kenni_mark@bk.ru, ab_sotsky@mail.ru</u>

²⁾ Belarusian-Russian University, Mogilev, Belarus, e-mail: <u>li sotskaya@tut.by</u>

³⁾ Belarusian University of Informatics and Radioelectronics, Minsk, Belarus,

e-mail: <u>katerinaxy90@gmail.com</u>, <u>nik@nano.bsuir.edu.by</u>

⁴⁾ OJSC "Rogachev plant "Diaprojector", Rogachev, Belarus, e-mail: <u>diaproector@mail.ru</u>

To model anti-reflective coatings, interference mirrors and microcavities using reflectivities measured in s and p polarized light, the optical and geometric parameters of annealed sol-gel films BaTiO₃, SiO₂, BaTiO₃:(Er, Yb) on silicon substrates were calculated using the developed software.

Keywords: spectra of refractive and absorption indices; sol-gel films of BaTiO₃, SiO₂, BaTiO₃:(Er,Yb).

Введение

Для получения микрорезонаторов, антиотражающих покрытий, фотопреобразователей, интерференционных фильтров и зеркал используются пленки диоксида кремния (SiO₂) и легированные лантаноидами (Er, Yb) пленки титаната бария (BaTiO₃: (Er, Yb)) (рис. 1) [1]. Однородность и оптическая толщина отдельных пленок могут варьироваться путем изменения вязкости и концентрации золей,

Квантовая электроника: материалы XIV Междунар. науч.-техн. конференции, Минск, 21–23 ноября 2023 г.

скорости их нанесения, режимов термообработки, природы подложки и других факторов. Для моделирования вышеуказанных структур фотоники с заданными характеристиками необходимо знать толщину, спектры показателей преломления $n(\lambda)$ и поглощения $k(\lambda)$, ширину запрещенной зоны E_g каждого элемента многослойника. Предпринятые нами попытки определить оптические параметры отдельных элементов многослойной структуры с помощью стандартных компьютерных программ, прилагаемых к спектрофотометру Photon RT, не привели к удовлетворительному совпадению теории и эксперимента (χ^2 >10). Это явилось стимулом к разработке нового алгоритма решения обратной задачи спектрофотометрии [2]. По экспериментальным отражательным способностям (R_s, R_p) в области от 300 нм до 860 нм с шагом 2 нм при углах падения $\theta = 10^\circ$, 30°, 50° были определены оптимальные параметры полинома Лагранжа – Чебышева, интерполирующего спектр комплексного показателя преломления (N = n - ik) отожженных (450°C – 800°C) пленок BaTiO₃, SiO₂, BaTiO₃:(Er, Yb) на подложках монокристаллического кремния (cSi).

Fused silica

Рис. 1. Многослойный микрорезонатор на кварцевой подложке

В данной работе оценены толщина *d* пленок и их оптические параметры *n*, *k*. Это будет использовано в дальнейшем для моделирования и дизайна брэгговских отражателей, люминесцентных микрорезонаторов и антибликовых покрытий.

1. Эксперимент

Для формирования пленок нелегированного титаната бария (BaTiO₃), титаната бария, легированного эрбием и иттербием BaTiO₃:(Er, Yb), и нелегированного диоксида кремния SiO₂ были получены соответственно три золя. Золь BaTiO₃:(Er, Yb) синтезировали на основе изопропоксида титана Ti(OC₃H₇)₄, ацетата бария Ba(CH₃COO)₂, гидратов ацетатов эрбия Er(CH₃COO)₃·xH₂O и иттербия Yb(CH₃COO)₃·xH₂O, ацетилацетона CH₃COCH₂COCH₃, уксусной кислоты CH₃COOH, этанола C₂H₅OH и дистиллированной воды. Золь BaTiO₃ синтезировали на основе изопропоксида титана Ti(OC₃H₇)₄, ацетата бария Ba(CH₃COO)₂, ацетилацетона CH₃COCH₂COCH₃ и уксусной кислоты CH₃COOH. Золь SiO₂ син-

Квантовая электроника: материалы XIV Междунар. науч.-техн. конференции, Минск, 21–23 ноября 2023 г.

тезировали на основе тетраэтоксисилана Si(OC₂H₅)₄, этанола C₂H₅OH, дистиллированной воды и концентрированной азотной кислоты HNO₃. Золи наносили центрифугированием на Si KДБ-10 (100). После нанесения каждого слоя проводили сушку при 200 °C в течение 10 мин и затем отжиг на воздухе при 450 °C в течение 30 мин. Получили по 3 однослойных образца для каждого состава - SiO₂, BaTiO₃ и BaTiO₃:(Er, Yb) и 3 двухслойных образца состава BaTiO₃:(Er, Yb), с температурами окончательной термообработки 450, 600 и 800 °C.

2. Результаты

1. Однослойные пленки ВаТіО₃.

На рис. 2 ($\theta = 50^{\circ}$) представлены спектры $R_s(a)$, $R_p(b)$ и $n(\lambda)$, $k(\lambda)(c)$ отожженных пленок BaTiO₃.

Рис. 2. Отражательные способности (a, b) и оптические характеристики (c) пленок BaTiO₃

Отжиг при 450°С и 600°С практически не изменяет отражательные способности пленок. В таком случае спектры $n(\lambda)$, $k(\lambda)$ удовлетворительно коррелируют с подобными характеристиками пленок, полученных золь-гель методом на подложках КУ1 [3]. Ширина запрещенной зоны для непрямых межзонных переходов, рассчитанная по спектру $k(\lambda)$, составляет 3.76 эВ. Толщина пленок при увеличении температуры отжига до 800°С увеличивается от 58.9 нм до 80.1 нм. Возможно, в таком случае увеличивается степень кристалличности пленок [4] и на их поверхности образуются кластерные структуры [5]. Показатели преломления отожженных золь-гель пленок меньше показателей преломления пленок, полученными методами молекулярно-лучевой эпитаксии и импульсного лазерного напыления [6].

2. Однослойные пленки SiO₂.

На рис. 3 ($\theta = 30^{\circ}$) представлены спектры $R_s(a)$, $R_p(b)$ и $n(\lambda)$, $k(\lambda)(c)$ отожженных пленок SiO₂. Отжиг слабо влияет на отражательные способности и оптические характеристики пленок. Считается, что аморфный SiO₂ в видимой области спектра является прозрачным материалом ($k(\lambda) \approx 0$). Спектр $k(\lambda)$ золь-гель пленок в УФ убывает до нуля, а в видимой области растет. Показатели преломления пленок термического SiO₂ (рис. 3, *c*) на 0.035 больше показателей преломления зольгель пленок SiO₂. Большое $k(\lambda)$ пористых золь-гель пленок SiO₂ можно объяснить

Квантовая электроника: материалы XIV Междунар. науч.-техн. конференции, Минск, 21–23 ноября 2023 г.

Puc. 3. Отражательные способности и оптические характеристики пленок SiO₂

вкладом рассеяния в процесс поглощения. Толщина этих пленок с увеличением температуры отжига уменьшается от 115 нм до 107 нм, показатели преломления увеличиваются, а показатели поглощения в видимой области уменьшаются (рис. 3, *c*).

3. Однослойные и двухслойные пленки BaTiO₃:(Er, Yb). На рис. 4 ($\theta = 50^{\circ}$) представлены спектры $R_s(a, c)$, $R_p(b, d)$ и $n(\lambda)(f)$, $k(\lambda)(e)$ отожженных однослойных (a, b) и двухслойных (c, d) пленок BaTiO₃:(Er, Yb).

Рис. 4. Отражательные способности и оптические характеристики однослойных (a, b) и двухслойных (c, d) пленок BaTiO₃:(Er, Yb).

Квантовая электроника: материалы XIV Междунар. науч.-техн. конференции, Минск, 21–23 ноября 2023 г.

Наличие двух максимумов на спектрах $R_s(a, c)$ и $R_p(b, d)$ указывает, что толщина двухслойных пленок d = 174.0 нм (c, d) большая в сравнении с толщиной однослойных пленок d = 75.6 нм (a, b). Толщина однослойных и двухслойных пленок при увеличении температуры отжига увеличивается, показатели преломления уменьшаются, а показатели поглощения увеличиваются. Возможно, в таком случае увеличивается степень кристалличности пленок и на их поверхности образуются кластерные структуры. Этим можно объяснить зависимости характеристик однослойных и двухслойных пленок от выбора мест исследования на поверхности.

Благодарности

Работа выполнена в рамках Государственной программы научных исследований РБ «1.15 Фотоника и электроника для инноваций»

Библиографические ссылки

- 1. Optical properties and upconversion luminescence of BaTiO3 xerogel structures doped with erbium and ytterbium / E. I. Lashkovskaya [et al.] //Gels. 2022. T. 8. №. 6. C. 347.
- 2. Spectrophotometry of Layers on Plane Parallel Substrates / A. B. Sotsky [et al.] //Optics and Spectroscopy. 2020. T. 128. C. 1155–1166.
- 3. Optical characteristics of annealed barium titanate films formed by the sol-gel method / N. I. Staskov [et al.] //Journal of Applied Spectroscopy. 2021. T. 87. C. 1050–1056.
- 4. Structural and optical properties of TiO2 thin films derived by sol–gel dip coating process / K. K. Saini [et al.] //Journal of non-crystalline solids. 2007. T. 353. №. 24–25. C. 2469–2473.
- Theoretical and experimental study on the photoluminescence in BaTiO3 amorphous thin films prepared by the chemical route / F. M. Pontes [et al.] //Journal of Luminescence. 2003. T. 104. №. 3. C. 175–185.
- 6. Barium titanate nanostructures and thin films for photonics / A. Karvounis [et al.] //Advanced Optical Materials. 2020. T. 8. №. 24. C. 2001249.