# Определение оптимальных параметров для осуществления эффективной перекачки энергии между пучками при их взаимодействии в кристалле SBN

## В. В. Давыдовская, А. В. Федорова

Мозырский государственный педагогический университет имени И. П. Шамякина, Мозырь, Беларусь, e-mail: davalenta@inbox.ru

Составлена математическая модель для описания распространения и взаимодействия двумерных световых пучков в фоторефрактивном кристалле SBN. Теоретически обоснована возможность осуществления перекачки энергии между взаимодействующими пучками в фоторефрактивном кристалле SBN. Определены оптимальные условия, при которых достигается максимальная эффективная перекачка энергии между пучками.

*Ключевые слова:* фоторефрактивный кристалл; взаимодействие; двумерный световой пучок; супергауссов профиль; перекачка энергии; оптимальные условия.

# Determination of optimal parameters for efficient energy transfer between beams during their interaction in an SBN crystal

# V. V. Davydovskaya, A. V. Fedorova

Mozyr State Pedagogical University named after I. P. Shamyakin, Mozyr, Belarus, e-mail: <a href="mailto:davalenta@inbox.ru">davalenta@inbox.ru</a>

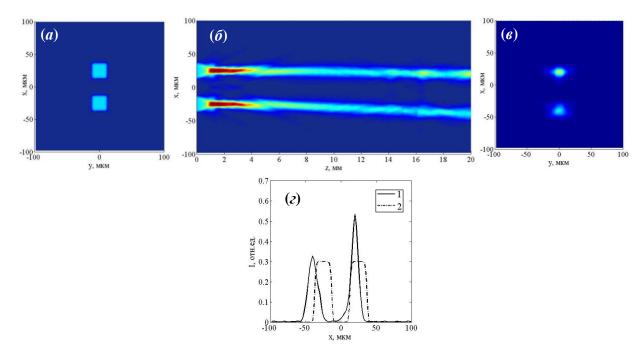
A mathematical model has been compiled to describe the propagation and interaction of two-dimensional light beams in a photorefractive SBN crystal. The possibility of energy transfer between interacting beams in a photorefractive SBN crystal has been theoretically substantiated. Optimal conditions have been determined under which maximum efficient energy transfer between beams is achieved.

**Key words:** photorefractive crystal; interaction; two-dimensional light beam; super-Gaussian profile; energy transfer; optimal conditions.

#### Введение

В настоящее время не ослабевает интерес к исследованиям в области новых оптических методов обработки информации, так как актуальной остается проблема создания эффективной элементной базы для оптических компьютеров и систем быстрой передачи и обработки данных, таких как матричные базы данных, пространственные модуляторы света, устройства для регистрации и преобразования оптических сигналов [1].

Можно выделить целый ряд задач нелинейной оптики, имеющих высокие перспективы практического использования в данной области. Довольно часто такие задачи связаны с исследованием особенностей распространения и взаимодействия двумерных световых пучков в фоторефрактивных кристаллах.

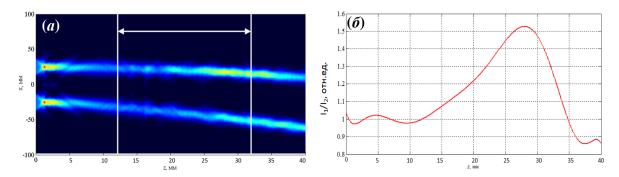

Одним из наиболее ценных для практического применения следствий фоторефрактивного эффекта является энергетический обмен между взаимодействующими в

фоторефрактивном кристалле лазерными пучками, вследствие которого можно посредством одного пучка контролировать, переключать или усиливать другой пучок. Этот эффект можно успешно использовать в адаптивных оптических устройствах [2, 3] и фильтрах новизны (novelty filters) [4].

Как правило, перекачка энергии между пучками осуществляется путем задания начальной разности фаз между пучками, однако если поперечные сечения взаимодействующих пучков на входе в кристалл расположены вдоль прямой, параллельной вектору напряжённости внешнего электрического поля приложенного вдоль оптической оси кристалла, то перекачка энергии может наблюдаться и без задания входной разности фаз между ними.

### 1. Обсуждение основных результатов

При вводе в фоторефрактивный кристалл SBN толщиной 20 мм, к которому вдоль оптической оси приложено внешнее электрическое поле с напряженностью  $E_0 = 3$  кВ/см, двух двумерных квадратных супергауссовых световых пучков с шириной 25 мкм и расстоянием между пучками, равным ширине пучка (рис. 1, a), наложение явлений дрейфа и диффузии электронов приводит в случае, когда поперечные сечения пучков на входе в кристалл расположены вдоль прямой, параллельной направлению внешнего электрического поля, к энергетическому обмену между пучками (рис. 1,  $\delta$ – $\epsilon$ ).

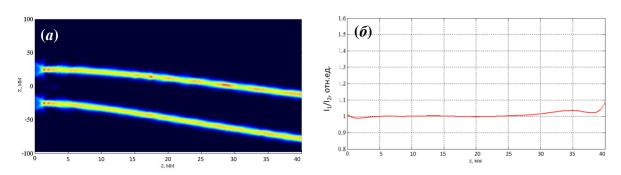



 $Puc.\ 1.$  Пучки на входе в кристалл SBN: (a) — световые пучки на входе в кристалл;  $(\delta)$  — распределение светового поля двумерных пучков по толщине кристалла;  $(\epsilon)$  — световые пучки на выходе из кристалла;  $(\epsilon)$  — 1 — профили световых пучков на выходе из кристалла, 2 — профили супергауссовых световых пучков квадратного сечения на входе в кристалл

Определим оптимальные параметры кристалла SBN; значения напряженности и направления внешнего электрического поля; характерных размеров и взаимного

расположения двумерных световых пучков с целью осуществления энергетического обмена между ними, а также достижения их квазисолитонного распространения.

Проанализируем взаимодействие двух пучков, расположенных на входе в кристалл SBN толщиной 40 мм параллельно направлению вектора внешнего электрического поля, (рис. 2). Модуль напряжённости внешнего электрического поля, в которое помещён кристалл SBN, равен  $E_0 = 3 \text{ кB/см}$ .

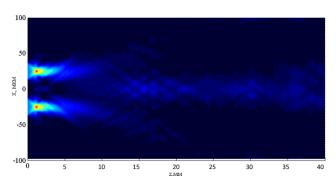



 $Puc.\ 2.$  Взаимодействие пучков при  $E_0=3$  кВ/см и z=40 мм; (a) — распределение светового поля двумерных пучков по толщине кристалла;  $(\delta)$  — отношение интенсивностей верхнего и нижнего пучков

Обозначим интенсивность верхнего пучка  $I_1$ , а интенсивность нижнего пучка  $I_2$ , оценивать будем отношение этих интенсивностей  $I_1/I_2$  (рис 2,  $\delta$ ). Из рис. 2 видно, что оптимальный промежуток для получения значительного энергетического обмена между пучками при  $E_0 = 3$  кВ/см от 15 мм до 33 мм (рис. 2, a), на этом промежутке отношение  $I_1/I_2$  больше, чем 1.1 (рис. 2,  $\delta$ ).

При толщине кристалла более 28 мм отношение  $I_1/I_2$  начинает убывать, так как расстояние между пучками увеличивается, и степень взаимодействия между ними уменьшается.

При увеличении поля до 4 кВ/см (рис. 3) энергетический обмен между взаимодействующими пучками практически не наблюдается. Из рис. 3,  $\delta$  видно, что отношение интенсивностей  $I_1/I_2$  мало отличается от 1, т. е. интенсивности верхнего и нижнего пучка практически одинаковы.




Puc.4. Взаимодействие пучков при  $E_0=4$  кВ/см и z=40мм; (a) — распределение светового поля двумерных пучков по толщине кристалла;  $(\delta)$  — отношение интенсивностей верхнего и нижнего пучков

При уменьшении поля до 2 кВ/см оба пучка дифрагируют, и энергетический обмен между ними не наблюдается (рис. 5).

При увеличении расстояния между пучками на входе в кристалл пучки взаимодействуют меньше и желаемые для исследования эффекты (объединение и энергетический обмен) практически отсутствуют.

Параметры подбирались для наблюдения сразу двух явлений (объединения и энергетического обмена), поэтому наиболее подходящими являются  $E_0 \approx 3$  кВ/см и толщина кристалла не более 20 мм.



*Puc.* 5. Распределение светового поля по толщине кристалла при  $E_0 = 2 \text{ кB/см}$ 

#### Заключение

Таким образом, в данной работе теоретически обоснована возможность осуществления энергетического обмена между взаимодействующими пучками без задания дополнительной разности фаз между ними на входе в кристалл.

Полученные в статье результаты могут быть использованы при определении оптимальных параметров кристалла SBN; направления внешнего электрического поля и значения его напряженности; размеров и взаимного расположения двумерных световых пучков с целью осуществления энергетического обмена между ними.

Рассмотренные в работе эффекты могут быть использованы при проектировании оптических волноводных устройств, осуществляющих каналирование световых потоков, передачу и обработку информации.

#### Библиографические ссылки

- 1. *Cuniot-Ponsard M.* Strontium Barium Niobate Thin Films for Dielectric and Electro-Optic Applications. Ferroelectrics Material Aspects // InTech. 2011. P. 498–518.
- 2. Динамические голограммы Денисюка в кубических фоторефрактивных кристаллах / С. М. Шандаров [и др.] // Квантовая электроника. 2008. Т. 11, № 11. С. 1059–1069.
- 3. Динамические отражательные голограммы для адаптивной интерферометрии / А. А. Колегов [и др.] // Изв. вузов. Физика. 2010. № 9/3. С. 147–148.
- 4. *Woerdemann*, *M*. Full field particle velocimetry with a photorefractive optical novelty filter / M. Woerdemann, F. Holtmann, C. Denz // Appl. Phys. Lett. Vol. 93. 2008. P. 021108–021111.