Моделирование эволюции конфигураций спутниковых группировок

В. В. Беглик, Н. Н. Кольчевский

Белорусский государственный университет, Минск, Беларусь, e-mail: vladbeglik@gmail.com, kolchevsky@bsu.by

На данный момент в мире функционируют три обсерватории, специализирующиеся на обнаружении гравитационных волн, и было зафиксировано уже 93 подобных событий. В сфере космической измерительной технологии представлена новая система, предназначенная для регистрации гравитационных волн, и она называется "S-LIGO-NxR-zy". Для анализа и расчета кинематических характеристик данной системы было создано специальное программное обеспечение, использующее среду разработки RAD Studio версии 10.4.2 и написанное на языке программирования С#. Кроме того, была проведена аналитика различных конфигураций группировок, основанных на использовании планетарных тел в качестве составных элементов.

Ключевые слова: спутниковые системы; гравитационные волны; космический детектор.

Modeling the evolution of satellite constant configurations

V. V. Beglik, N. N. Kolchevsky

Belarusian State University, Minsk, Belarus, e-mail: vladbeglik@gmail.com, kolchevsky@bsu.by

Currently, there are three observatories worldwide specialized in detecting gravitational waves, with 93 such events already recorded. In the field of space measurement technology, a new system designed for registering gravitational waves has been introduced, named "S-LIGO-NxR-zy." To analyze and calculate the kinematic characteristics of this system, specialized software has been developed using RAD Studio version 10.4.2 and programmed in the C# programming language. Furthermore, as part of the research, a detailed analysis of various satellite group configurations based on the use of planetary bodies as components has been conducted.

Keywords: satellite systems; gravitational waves; satellite space detector.

Введение

С начала обнаружения гравитационных волн в 2015 году и последующего наблюдения за множеством уникальных событий, таких как слияния черных дыр и нейтронных звезд, научное сообщество открыло новую эпоху в исследованиях космоса. Однако для точного изучения и анализа этих гравитационных волн требуется высокоточное оборудование и специализированные инструменты. Спутники предоставляют несомненные преимущества в области детектирования и исследования гравитационных волн. В отличие от земных детекторов, они обладают свободой от атмосферных и земных воздействий, что позволяет им функционировать на более высоких частотах и с более высокой чувствительностью. Это открывает возможности для регистрации новых классов гравитационных событий и точного изучения их характеристик.

1. Спутниковые системы детектирования гравитационных волн

Несколько проектов спутниковых систем для гравитационных волн уже находятся в разработке и планируются к запуску в ближайшие десятилетия. Наиболее известные из них включают:

LISA (Laser Interferometer Space Antenna): Этот амбициозный международный проект, разрабатываемый Европейским космическим агентством (ESA). Он состоит из трех свободно плавающих спутников, образующих масштабный лазерный интерферометр в космосе. LISA будет способен регистрировать гравитационные волны в низкочастотном диапазоне и позволит изучать слияния черных дыр и нейтронных звезд в далеких уголках Вселенной.

DECIGO (DECi-hertz Interferometer Gravitational Wave Observatory): Этот японский проект направлен на создание космической системы для обнаружения гравитационных волн в диапазоне децигерц (от 0.1 до $100 \, \Gamma$ ц). DECIGO предоставит новые данные о гравитационных волнах, включая их источники и происхождение.

BBO (Big Bang Observer): BBO - это концептуальный проект, рассматриваемый как потенциальный будущий спутник для изучения гравитационных волн, связанных с ранней Вселенной. Он может помочь нам понять происхождение Вселенной и дать информацию о космологических событиях.

TianQin: Это китайский проект спутниковой системы для обнаружения гравитационных волн. Он нацелен на регистрацию слияний черных дыр и нейтронных звезд в низкочастотном диапазоне.

Таіјі: это китайский космический проект по обнаружению и исследованию гравитационных волн в космосе. Основной целью проекта Таіјі является создание космической системы, способной обнаруживать гравитационные волны в низкочастотном диапазоне (от 0,01 до 0,1 Гц)

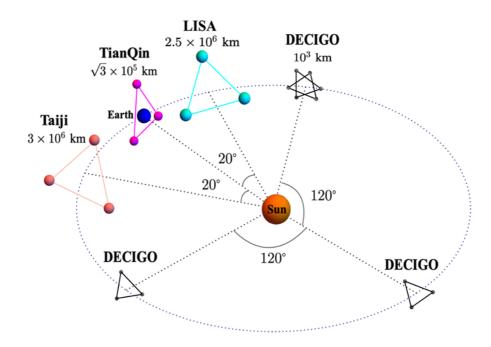


Рис. 1. Схема группировок известных космических детекторов гравитационных волн

2. Моделирование группировок спутников гравитационного детектора

Предложено исследовать модель космического детектора гравитационных волн, основанного на конфигурации спутников, которые используют в качестве своей основы "платоновские тела". Предложена космическая измерительная система ГВ из х спутников с условным обозначением «S-LIGO-NxR-zy» Space - Laser Interferometer Gravitational-Wave Observatory), где x – количество спутников Z типа орбиты (низкоорбитальные – L, среднеорбитальные – M, геостационарные – G, высокоэллиптичные – H – орбиты, z – не зависит от типа), расположенных на y – количестве орбит планеты наименования N (планета Земля – E).

Исследуется временная пространственная эволюция и возможности космического детектора ГВ с системой спутников, расположенных на геостационарных орбитах. Рассмотрены 6 конфигураций спутников, которые периодически образуют правильные многогранники в пространстве

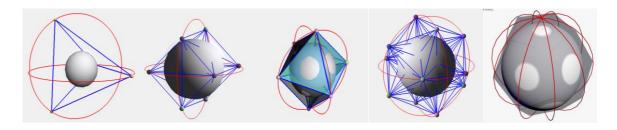


Рис. 2. Схема группировок спутника предложенного детектора

Пространственные конфигурации космических систем могут задаваться множеством способов, зависящих от выбора количества орбит и вариацией зависимого размещения спутников на этих орбитах. В общем случае, можно иметь разное количество спутников, обозначаемое как N, и следовательно, систему можно организовать в различные многоугольные конфигурации. Эта область требует дополнительного исследования и изучения. Кроме того, спутники могут находиться на разных орбитах и иметь различные характеристики орбиты. В такой ситуации система мониторинга космических объектов, способная обнаруживать и определять параметры орбиты этих объектов, позволяет развернуть космический детектор гравитационных волн или систему спутников, даже если их орбиты и кинематические параметры разнообразны и не определены.

3. Программное обеспечение

Для разработки программного обеспечения Тагахасит использовался инструмент – движок Unity, подобный тому, который применяется при создании компьютерных игр. Движок — это центральный программный компонент для создания интерактивных приложений с графикой, обрабатываемой в реальном времени. Он обеспечивает основные программные операции, упрощает разработку приложений и дает возможность запускать программы на нескольких платформах операционных систем, например, GNU/Linux, Mac OS X и Microsoft Windows.

Для реализации программы Taraxacum был создан алгоритм, блок-схема которого представлена на рис. 3.

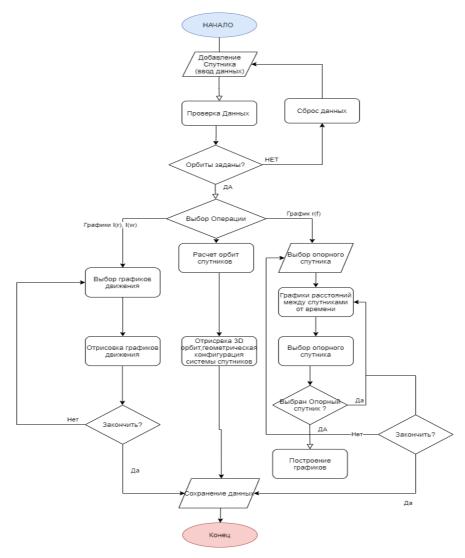


Рис. 3. Алгоритм программного обеспечения, моделирующего конфигурации спутников

В данной программе, пользователь может задавать и контролировать следующие параметры:

- 1. Задание спутника.
- 2. Расчеты координат спутников.
- 3. Задание направления движения спутников, высоты и других важных параметров.
- 4. Построение графиков движения системы спутников.
- 5. 3D моделирование спутников.
- 6. Импорт/экспорт конфигураций спутников.
- 7. Возможность записи видео.

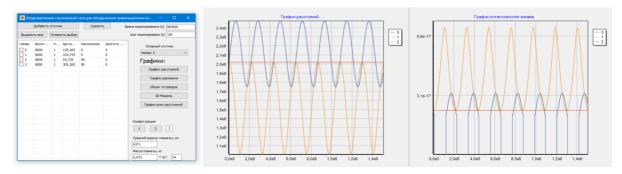


Рис. 4. Интерфейс программного обеспечения, графики интенсивности и расстояний

Данная программа запускается в OC Windows, но также может быть скомпилирована для OC Mac, и даже на мобильные платформы Android и iOS.

Заключение

Разработка и исследование космических систем для детектирования гравитационных волн открывают новые горизонты для астрофизики и космологии. Начиная с обнаружения гравитационных волн в 2015 году, научное сообщество сделало значительные шаги в понимании природы Вселенной. Спутниковые системы для наблюдения гравитационных волн предоставляют ряд преимуществ, включая свободу от атмосферных и земных воздействий. Несколько крупных проектов, таких как LISA, DECIGO и ВВО, находятся в разработке и планируются к запуску в ближайшие десятилетия. Эти проекты предоставят уникальную возможность исследовать гравитационные волны различных частотных диапазонов и раскроют новые аспекты природы Вселенной.

Разработана отдельная система космического детектирования ΓB на основе системы спутников. Нами предложена космическая измерительная система из N спутников с условным обозначением «S-LIGO-NxR-zy», где x – количество спутников z типа орбиты (низкоорбитальные – L, среднеорбитальные – M, геостационарные – G, высокоэллиптичные – H-орбиты, z – не зависит от типа), расположенных на y –количестве орбит планеты наименования N (планета 3 emn = E).

Разработано программное обеспечение, позволяющее задавать различные начальные конфигурации спутниковых систем и исследовать их взаимное положение с течением времени с функцией визуализации, что важно для построения околоземного гравитационного детектора и других исследовательских систем на основе группировки спутников.

Библиографические ссылки

- 1. *Abbot B. P.* Observation of Gravitational Waves from a Binary Black Hole Merger / B. P. Abbot, R. Abbot, T. D. Abbot // Phys. Rev. Let. 2016. 116 (iss. 6): 061102.
- 2. Poincare H. Sur la dynamique de l'électron. Rend. Circ. Mat. Palermo. 1906. 21(ser. 1): P. 129–176.
- 3. *Weber J.* Gravitational-wave-detector events. // Physical Review Letters. 1968. 20 (iss. 23): P. 1307–1308.