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Abstract

We consider the anti-plane shear waves in a domain consisting of an infinite
layer with thin coating lying on an elastic half-space. The elastic properties
of the coating, layer, and half-space are assumed to be different. On the
free upper surface we assume the compatibility condition within the Gurtin–
Murdoch surface elasticity, whereas at the plane interface we consider perfect
contact. For this problem there exist two possible regimes related to waves
exponentially decaying in the half-space. The first one, called TE-TE regime,
is related to waves described by exponential in transverse direction functions;
the second, TH-TE regime, corresponds to waves in the upper layer which
have the harmonic behaviour in the transverse direction. Detailed analysis of
the derived dispersion equations for both regimes is provided. In particular,
the effects of surface stresses, the layer thickness as well as of the ratio of
shear moduli of the upper layer and half-space on the dispersion curves is
analyzed.
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Introduction

Nowadays one can observe an essential extension of applications of con-
tinuum and structural mechanics towards description of material behaviour
at small scales and towards more detailed analysis of new composite materi-
als. Such an extension requires consistent modifications of classic mechanics.5

Among various enhancements of mechanics it is worth mentioning the surface
elasticity approach. It is based on the introduction of additional constitu-
tive relations defined at free surfaces or interfaces. The most popular mod-
els of surface elasticity relates to the seminal papers by Gurtin & Murdoch
(1975, 1978) and by Steigmann & Ogden (1997, 1999). These models ex-10

tend classic notion of surface tension by Laplace (1805, 1806); Young (1805);
Longley & Van Name (1928) to finite deformations of elastic solids with ma-
terial surfaces/interfaces. In particular, surface elasticity can describe so-
called size-effects observed at the nanoscale, see e.g. Duan et al. (2008);
Wang et al. (2011); Javili et al. (2013); Eremeyev (2016); Mogilevskaya et al.15

(2021a).
Let us note that the surface elasticity governing equations were intro-

duced by direct approach, i.e. by postulation of existence of surface energy
and surface stresses. But it could be also confirmed as a result of asymp-
totic analysis of so-called hard skins (Berdichevsky, 2010a,b) or stiff inter-20

faces Benveniste & Miloh (2001, 2007), see extended discussions given by
Gorbushin et al. (2020); Eremeyev et al. (2020). For example, within the
linear Gurtin–Murdoch surface elasticity the boundary conditions on the
interface coincide up to notations with the transmission condition on the
stiff interface in the case of anti-plane deformations given by Mishuris et al.25

(2006b). So surface elasticity could be also useful for modelling of thin
coatings or interface layers of finite thickness as discussed in Mishuris et al.
(2006a, 2010); Sevostianov & Kachanov (2007).

After Korteweg (1901) and Mindlin (1965) it was also established that
the surface elasticity is closely related to strain gradient elasticity, see e.g.30

Eremeyev et al. (2019), and to other nonlocal theories, see recent works
by Chebakov et al. (2016); Ghayesh & Farajpour (2019); Li et al. (2020);
Jiang et al. (2022b); Kaplunov et al. (2022); Yang et al. (2023). Similar surface-
related phenomena could be results of deformations localization in the vicin-
ity of a surface (Kaplunov & Prikazchikov, 2017; Kaplunov et al., 2019). More-35

2



over, surface elasticity could be derived as a continuum limit of lattice dy-
namics if one assumes a certain scaling law as in (Eremeyev & Sharma, 2019).
From the mathematical point of view, the surface elasticity approach has an
advantage, since in this theory we have only modified boundary conditions
whereas equation in the bulk remain in classic form.40

Presence of surface stresses results in essential changes in effective proper-
ties of nanostructured materials, see Duan et al. (2008); Wang et al. (2011);
Sevostianov et al. (2019); Nazarenko et al. (2019); Zheng et al. (2021); Kushch
(2021); Mogilevskaya et al. (2021b); Jiang et al. (2022a); Kushch & Mogilevskaya
(2022). Moreover, a surface bending resistance property of the Steigmann–45

Ogden model could also be essential (Han et al., 2018; Mogilevskaya et al.,
2021a). For example, it was established that due to surface elasticity a
nanoporous material could be even stiffer than its solid counterpart (Duan et al.,
2008). Surface stresses affect a material response during nanoindetation
that could be useful for determination of surface elastic moduli (Li & Mi,50

2019; Argatov, 2022; Zemlyanova & White, 2022). Since surface energy re-
sults in non-classic boundary conditions often called the generalized Young–
Laplace equation, they may essentially change stress singularity in the vicin-
ity of defects such as crack tips (Kim et al., 2013; Gorbushin et al., 2020)
or dislocations (Dai & Schiavone, 2019; Grekov & Sergeeva, 2020). In other55

words, surface elasticity may have essential influence on the strength and
fracture of nanostructured materials Duan et al. (2008); Zemlyanova (2020);
Piccolroaz et al. (2021); Zheng et al. (2021); Zheng & Mi (2021).

Finally, it is worth noting that surface energy and surface stresses af-
fect significantly propagation of surface waves. In particular, it was dis-60

covered a new class of anti-plane surface waves which do not exist without
surface effects (Xu & Fan, 2015; Eremeyev et al., 2016). They are similar
to Love waves in classic elastodynamics (Achenbach, 1973). The provided
analysis of these waves for a half-space and for a layer of finite thickness
given by Zhu et al. (2019); Eremeyev (2020); Mikhasev et al. (2021, 2022)65

demonstrated an essential role of surface energy on the wave propagation.
In particular new regimes of surface waves in an elastic layer were discussed
by Mikhasev et al. (2022). Similar to the case of plane geometry, surface
elasticity introduces new phenomena in waves in cylinders, see Chen et al.
(2014); Xu & Fan (2016); Huang (2018); Eremeyev et al. (2020). These wave70

phenomena could be useful for nondestructive damage evaluation of thin
coatings, for evaluation of surface properties including determination of sur-
face elastic moduli, as well as for modelling of acoustic signal propagation in
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nanowires and nanofilms.
Following Eremeyev et al. (2016); Mikhasev et al. (2022), in this paper75

we discuss anti-plane surface waves in a multilayered medium which consists
of thin coating modelled within the Gurtin–Murdoch surface elasticity and
an elastic layer of finite thickness perfectly attached to an elastic half-space
(Fig. 1). From the physical point of view, this structure describes a three-
layered medium with thickness of layers of different order of magnitude. For80

example, it may describe a thin film with modified surface properties attached
to a substrate. The considered layered medium generalizes recent results by
Mikhasev et al. (2022) towards more realistic behaviour of substrate, which
is now deformable and can transmit waves.

The paper is organized as follows. In Section 1 we formulate the state-85

ment of the problem under consideration in the case of anti-plane motions.
For the layer two types of solutions are possible that are expressed through
exponential and harmonic (trigonometric) functions, respectively. We call
these solutions transverse exponential (TE) and transverse harmonic (TH),
respectively. As in (Eremeyev et al., 2016), for the half-space there is only90

exponentially decaying solutions. Detailed analysis of TE solutions is given
in Section 2, whereas harmonic waves are analyzed in Section 3. Finally, in
Section 4 we provide detailed analysis of dispersion curves.

1. Setting the problem within linear Gurtin-Murdoch surface elas-

ticity95

Let us consider a three-dimensional elastic isotropic plate-like body of
thickness h rigidly attached to an elastic isotropic half-space. The origin of
the used Cartesian coordinate system is chosen at the interface as shown in
Fig. 1.

To study anti-plane waves we assume the vector of displacement u in the
form, see, e.g., Achenbach (1973),

u = u(x1, x2, x3, t) = u(x1, x2, t)i3, (1)

where t is time and ii are the base vectors, i = 1, 2, 3, see Fig. 1. In what
follows we restrict ourselves to isotropic homogeneous materials. So, using
Hooke’s law for the anti-plane shear in both the layer and half-space, we
obtain

σ =2µje = σ13(i1 ⊗ i3 + i3 ⊗ i1) + σ23(i2 ⊗ i3 + i3 ⊗ i2), (2)

σ13 =2µjε13, σ23 = 2µjε23, j = 1, 2,
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Figure 1: Infinite elastic plate-like domain lying on elastic half-space and used Cartesian
coordinate system.

where σ and e are the stress and strain tensors, respectively, and µj is a
shear modulus, which will be assumed to be different for the upper layer and
half-space (µ1 and µ2, respectively). Hereinafter, the subscripts j = 1 and
j = 2 correspond to the upper layer and half-space, respectively. Taking into
account (1), the strain tensor reads

e =ε13(i1 ⊗ i3 + i3 ⊗ i1) + ε23(i2 ⊗ i3 + i3 ⊗ i2), (3)

ε13 =
1

2

∂u

∂x1
, ε23 =

1

2

∂u

∂x2
.

Here ⊗ stands for the dyadic product.100

Taking into account the assumptions made, equations of motion for the
two parts of the continuum take the form of wave equations Achenbach (1973)

µj

(

∂2uj

∂x2
1

+
∂2uj

∂x2
2

)

= ρj
∂2uj

∂t2
, j = 1, 2, (4)

where ρj is the mass density in the bulk.
Below we consider the following boundary conditions. On the free surface

x2 = h, the compatibility condition within the Gurtin-Murdoch model of the
surface elasticity is assumed as in Gurtin & Murdoch (1975, 1978):

µ1
∂u1

∂x2

= µ
(s)
1

∂2u1

∂x2
1

− ρ
(s)
1

∂2u1

∂t2
at x2 = h, (5)

where µ
(s)
1 and ρ

(s)
1 are surface shear modulus and density, respectively. At

the interface x2 = 0, we consider perfect contact which is expressed by two
equations, namely,

u1 = u2 at x2 = 0, (6)
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µ1
∂u1

∂x2
= µ2

∂u2

∂x2
at x2 = 0. (7)

Also, for the half-space, we set the wave attenuation condition at infinity,

u2 −→ 0 as x2 −→ −∞. (8)

In the recently published contribution by Mikhasev et al. (2022), an anal-
ysis of the wave equation for a thick plate with at least one free surface re-
vealed the existence of two different regimes of anti-plane shear waves: (a)
the TE regime for which waves decay exponentially from the upper and lower105

surfaces of the plate and (b) the TH regime with the harmonic behaviour of
waves in the transverse direction. A similar analysis of Eqs. (4) for our prob-
lem shows that there exist both the TE and TH regimes in the plate and only
the TE regime in the half-space. Here, we refer to these regimes as TE-TE
and TH-TE, respectively.110

2. TE-TE regime of anti-plane waves

Consider the TE-TE regime for which the amplitudes of anti-plane waves
decay exponentially from the upper surface of the plate and from the interface
in both directions. For this regime, a solution of Eqs. (4) can be sought in
the form

u1 = ei(kx1−ωt)
(

a1e
α1(x2−h1) + a2e

−α1x2

)

, u2 = bei(kx1−ωt)eα2x2 , (9)

where i =
√
−1, k is a wave number, ω is the circular frequency, and a1, a2, b

are constants that have to be determined from the boundary conditions.
Substituting (9) in Eqs. (4) for j = 1, 2, we find

α1 = |k|
√

1− c2/c2T1, α2 = |k|
√

1− c2/c2T2 (10)

with

c =
ω

k
, cT1 =

√

µ1

ρ1
and cT2 =

√

µ2

ρ2
, (11)

where c is the phase velocity, and cT1, cT2 are the shear wave speeds in the
upper layer and the half-space, respectively. Here, c < cT1, c < cT2.115
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Substituting (9) into the boundary conditions (5)–(7) and using (10), we
arrive at the dispersion equation

(

1

|k|ld

√

1− c2

c2T1

+
cs
c2T1

− c2

c2T1

)(

µ2

√

1− c2

c2T2

+ µ1

√

1− c2

c2T1

)

+

(

1

|k|ld

√

1− c2

c2T1

− cs
c2T1

+
c2

c2T1

)(

µ2

√

1− c2

c2T2

−µ1

√

1− c2

c2T1

)

e−2|k|h1

√
1−c2/c2

T1 = 0

(12)

and the two relations for the required constants

a1 =
µ1α1 − µ

(s)
1 k2 + ρ

(s)
1 ω2

µ1α1 + µ
(s)
1 k2 − ρ

(s)
1 ω2

e−α1h1a2, b =
µ1α1

µ2α2

(

a1e
−α1h1 − a2

)

(13)

where

cs =

√

√

√

√

µ
(s)
1

ρ
(s)
1

, ld =
ρ
(s)
1

ρ1
. (14)

Here cs is a shear wave speed in an elastic membrane associated to the Gurtin-
Murdoch elasticity, and ld is the so-called dynamic characteristic length.

Introducing the notations

m12 =
µ1

µ2
, kd = |k|ld, h = nld, (15)

and performing the scaling

v =
c

cT1
, vs =

cs
cT1

, vr =
cT2

cT1
, (16)

we get the dispersion equation written in the dimensionless form as follows
(
√

1− v2

v2r
+m12

√
1− v2

)

(

1

kd

√
1− v2 + v2s − v2

)

+

(
√

1− v2

v2r
−m12

√
1− v2

)

(

1

kd

√
1− v2 − v2s + v2

)

e−2nkd
√
1−v2 = 0.

(17)
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Let us consider some particular cases. If m12 → ∞ (i.e., µ2 → 0), then
(17) degenerates into the equation (compare with Eq. (3.15) in Mikhasev et al.
(2022))

1

kd

√
1− v2 + v2s − v2 −

(

1

kd

√
1− v2 − v2s + v2

)

e−2nkd
√
1−v2 = 0 (18)

for the layer with free bottom surface (see boundary condition (7)) without
taking into account the surface effects.

On the other hand, when m12 → 0, we arrive at the dispersion equation
(see Eq. (3.7) in Mikhasev et al. (2022))

1

kd

√
1− v2 + v2s − v2 +

(

1

kd

√
1− v2 − v2s + v2

)

e−2nkd
√
1−v2 = 0 (19)

for the layer with the bottom layer clamped in the x3-direction.120

Passing to the limit as n → ∞, we get the simple dispersion equation

1

kd

√
1− v2 + v2s − v2 = 0 (20)

for the half-space with shear modulus µ1 and density ρ1.
Finally, if n → 0, then we obtain the following simple equation

1

kd

√

1− v2

v2r
+m12(v

2
s − v2) = 0, (21)

which is similar to Eq. (20). Reverting to the initial dimensional variables,
it is easy to show that the latter coincides with the same dispersion equation
as in Eremeyev & Sharma (2019), see Eq. (5),

c2

c2T2

=
c2s
c2T2

+
ρ2

|k|ρ(s)1

√

1− c2

c2T2

, (22)

but for the half-space with shear modulus µ2 and density ρ2.

3. TH-TE regime of anti-plane waves

For the TH-TE regime, we seek solutions of Eqs. (4) in the form

u1 = ei(kx1−ωt) (a1 sinλx2 + a2 cos λx2) , u2 = bei(kx1−ωt)eαx2 , (23)
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with a1, a2, b being constants.
Substituting (23) into Eqs. (4) gives

λ = |k|
√

c2

c2T1

− 1, α = |k|
√

1− c2

c2T2

. (24)

It can be seen that for the TH-TE regime cT1 < c < cT2, i.e., the velocity of125

anti-plane shear wave is larger than the velocity of shear waves in the upper
layer and less than the velocity of shear waves in the half-space.

Satisfying the boundary conditions (5)–(7) with (24) taken into account,
we observe the following dispersion equation

m12

√

c2

c2T1

− 1

(
√

c2

c2T1

− 1 tan

(

|k|h
√

c2

c2T1

− 1

)

− |k|ld
(

c2s
c2T1

− c2

c2T1

)

)

=

√

1− c2

c2T2

(
√

c2

c2T1

− 1 + |k|ld
(

c2s
c2T1

− c2

c2T1

)

tan

(

|k|h
√

c2

c2T1

− 1

))

(25)
and the relations for the constants in (23) as

a2 = b, a1 =
µ2

µ1

α

λ
b. (26)

For the subsequent analysis, it is convenient to rewrite the dispersion
Eq. (25) in the dimensionless form

m12

√
v2 − 1

(√
v2 − 1 tan

(

nkd
√
v2 − 1

)

− kd
(

v2s − v2
)

)

−
√

1− v2

v2r

(√
v2 − 1 + kd

(

v2s − v2
)

tan
(

nkd
√
v2 − 1

))

= 0.

(27)

We note that, in contrast to the TE-TE regime, Eq. (27) does not have
any solution if the shear wave velocities of the upper layer and half-space
coincide (vr = 1). The limiting case when the upper layer degenerates into130

the half-space (n → ∞) should also be excluded.
Let us consider again some particular cases. Let m12 → 0. Then Eq. (27)

admits a very simple form,

tan
(

nkd
√
v2 − 1

)

=

√
v2 − 1

kd (v2 − v2s )
, (28)
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which coincides with equation (3.10) derived in Mikhasev et al. (2022) for
the TH regime in the single layer with the bottom face clamped in the x3-
direction.

If m12 → ∞, then we get the novel equation

tan
(

nkd
√
v2 − 1

)

= −kd (v
2 − v2s)√
v2 − 1

, (29)

which goes for TH regime in the single elastic layer with free bottom face135

without taking into account surface effects.
Finally, letting the upper layer vanish, i.e. n → 0, we again arrive at

Eq. (22), which is not valid for the TH regime, but can be used for the TE
regime of the anti-plane waves in the half-space with the shear modulus µ2

and the density ρ2.140

4. Dispersion curves analysis

4.1. TE-TE regime

Let us now consider the dispersion relation (17) corresponding to the
TE-TE regime. First, we note that it has the root v = 1 (here c = cT1)
which should be excluded. Indeed, if c = cT1, then α1 = 0 and, as follows145

from Eqs. (13), we get u1 = u2 = 0. Second, the numerical analysis of
the dispersion Eq. (17) reveals that it does not have any positive roots if
vr < 1, i.e., for cT1 > cT2. So, all subsequent calculations are performed for
parameters satisfying the nonstrict inequality cT1 ≤ cT2.

In Figure 2, the dimensionless velocity v = c/cT1 versus the dimension-150

less wave parameter kd is plotted at the fixed parameters vs = 0.25, m12 =
0.5, n = 20 and for different values of the ratio vr = cT2/cT1 = 1.005, 1.01,
1.05, 1.1 (curves 1, 2, 3 and 4, respectively) of the shear waves velocities in
the half-space and the upper layer. In Fig. 2 a), the dashed line corresponds
to the case when the velocities of shear waves in the layer and half-space are155

the same, with mechanical properties being different. In the chosen scale,
curve 4 merges with all dispersion curves for vr ≥ 1.1. Thus, the dashed line
and the curve 4 can be considered as the lower and upper bounds, respec-
tively, for the family of dispersion lines with different parameters vr. Figure 2
b) shows that all dispersion curves asymptotically converge to the straight160

line v = vs (here, vs = 0.25) as kd → ∞.
As expected, under fixed geometrical and physical parameters of the

medium, the velocity c is a monotonically decreasing function of the wave
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Figure 2: Dimensionless phase velocity v = c/cT1 for TE-TE regime vs. wave number
kd = |k|ld for different ratios of the shear waves velocities in the half-space and the
upper layer: a) Curves 1,2,3 and 4 correspond to ratios vr = 1.005, 1.01, 1.05 and 1.1,
respectively; the dashed curve marked by vr = 1 corresponds to the case when the shear
wave velocities in the upper layer and the half-space are the same; b) Dispersion curves
for large values of kd.

parameter kd. It is also seen that increasing the shear wave velocity cT2 in the
half-space results in increasing the velocity c of the anti-plane shear waves.165

Another interesting observation coincides with similar results by Mikhasev et al.
(2022): for any fixed speed ratio vr, there exists such a wave parameter k∗

d,
that Eq. (17) does not have solutions at the segment kd ∈ [0, k∗

d]. The be-
haviour of the dispersion curve near the point (k∗

d, 1) can be approximated
by the linear function

v = 1−Aξ +O(ξ2) as ξ → 0, (30)

where ξ = kd−k∗
d with a parameter k∗

d to be determined and A is a constant.
Substituting (30) into Eq. (17) and equating coefficients in powers of ξ1/2,

we obtain the asymptotic relation for the point

k∗
d =

√

m2
12(1− v2s)

2v2r + 4n(1− v2s )(v
2
r − 1)−m12vr(1− v2s)

2n(1− v2s )
√

v2r − 1
. (31)

The equation for the positive parameter A is not given here, since it is very
cumbersome.
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In Figure 3, the dispersion curves are drawn for vr = 2, vs = 0.25, m12 =
0.5 and different values of the parameter n = h/ld = hρ1/ρ

(s)
1 = 0.025, 0.25,170

0.5, 1. The upper and lower dashed lines correspond to the cases when the
elastic layer vanishes (h → 0) or degenerates into a half-space (h → ∞).
These lines are plotted by solving Eqs. (21) and (20), respectively. It is seen

0 2 4 6 8 10 12 14
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v
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Figure 3: Dimensionless phase velocity v = c/cT1 for TE-TE regime vs. wave number kd =

|k|ld for different values of the parameter n = h/ld = hρ1/ρ
(s)
1 = 0.025, 0.25, 0.5, 1.1.

that the velocity of anti-plane waves decreases when the thickness of the
upper layer increases, and converges to the dashed line. Independent of the175

value of n, all curves converge to the straight line v = vs.
Finally, Fig. 4 demonstrates the behaviour of the dispersion curves at dif-

ferent values of the ratio m12 = µ1/µ2 = 0.5, 1, 2, 5 and the fixed parameters
vs = 0.25, n = 20, vr = 2. The upper and lower dashed lines plotted by solv-
ing Eqs. (19) and (18) are related to the limiting cases when m12 → 0 and180

m12 → ∞, respectively. It is of interest to note that the lower dashed line
gives the phase velocities in the elastic layer with free surfaces, of which the
upper one has the surface enhancement (within the Gurtin-Murdoch model),
while the lower one does not.

4.2. TH-TE regime185

Let us analyze the dispersion curves for the TH-TE regime. Figure 5
displays the solution of Eq. (27) with respect to v as a function of the
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wave parameter kd for different values of the wave velocities ratio vr =
1.05, 1.1, 1.5, 1.5. The calculations were performed at vs = 0.5, m12 =
0.5, n = 5. The dashed curves correspond to the case when vr → +∞. The190

curves lying above the straight line v = 1 are related to the TH-TE regime,
while the curves below this line go for the TE-TE regime. It is of interest to
note that the TE-TE curves plotted by solving Eq. (17) are continuations of
the left family of the TH-TE curves.

In contrast to TE-TE regime, for each fixed value vr there are the family
(an infinite number) of the dispersion curves corresponding to TH-TE regime.
Each dispersion line begins from some point (k∗

d, vr) (which is removed). The
point k∗

d is readily found by the asymptotic estimation of the dispersion curve
behaviour in the neighbourhood of the point (k∗

d, vr). Let

v = vr − Aξ +O(ξ2), ξ = k − k∗
d. (32)

We substitute (32) into Eq. (27) and expand all parameters depending on ξ
into the series in powers of ξ1/2. Considering only the leading approximation,
we straightaway arrive at the equation with respect to the required k∗

d:

tan
(

nk∗
d

√

v2r − 1
)

=
k∗
d(v

2
s − v2r)

√

v2r − 1
. (33)
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Figure 5: Dimensionless phase velocity v = c/cT1 for TH-TE and TE-TE regimes vs. wave
number kd = |k|ld for different ratios of the shear waves velocities in the half-space and
the upper layer. Curves 1,2,3, and 4 correspond to ratios vr = 1.005, 1.1, 1.25 and 1.5,
respectively. The dashed curves correspond to the limit case vr → ∞.

The constant A can be determined from the next two approximations, how-195

ever because of cumbersome calculations we omit it here.
Figure 6 shows the behaviour of the dispersion curves, mainly for the

TH-TE regimes, for different values of the parameter n = 20, 10, 5 (blue,
green and red lines marked by 1, 2 and 3, respectively) specifying the thick-
ness of the upper layer. Here the input parameters are the following: vs =200

0.25, m12 = 0.5, vr = 2. The dashed black line, plotted by solving Eq. (22), is
related to the case when the upper layer vanishes (h → 0). We note that the
left family of the TH-TE curves (which continuously transfer into the TE-
TE lines below the straight line v = 1) starts from the point (0, vr) (here,
vr = 2) regardless of the thickness parameter n. The smaller the thickness h,205

the rarer the corresponding family of dispersion curves beginning from the
point (k∗

d, vr) with k∗
d > 0 becomes. In the limit, as h → 0, all dispersion

curves to the right of the dashed line and corresponding to only the TH-TE
regime degenerate into this dashed line, which, however, is not a dispersion
curve.210

The effect of varying the elastic moduli ratio m12 = µ1/µ2 on the dimen-
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Figure 6: Dimensionless phase velocity v = c/cT1 for TH-TE and TE-TE regimes vs.
wave number kd = |k|ld for different values of the parameter n = 20, 10, 5 (curves 1, 2, 3,
respectively). The dashed black curve corresponds to the limit case n → 0.

sionless phase velocity v is shown in Figure 7. The input parameters are
vs = 0.25, n = 2 and vr = 2. The curves marked by 1, 2, 3 and 4 correspond
to the ratios m12 equal to 0.03, 0.1, 1 and 2, respectively. The dashed black
curves are related to the limit case as m12 → ∞, and the black dash-dotted215

lines go for the case when m12 → 0. The corresponding dispersion relations
for these cases are Eqs. (29) and (28), respectively. The curves above and
below the straight line v = 1 correspond to the TH-TE and TE-TE regimes,
respectively. It may be seen that for the fixed values of the parameters
vs, n, vr, the dispersion curves related to TH-TE regime for any ratio m12 get220

into one of the series of narrow domains which are bounded by the dashed
and dash-dotted lines. The numerical experiments show that the thicker the
elastic layer attached to the half-space (under other fixed input parameters),
the more narrow each of these domains become. As kd → ∞, all curves re-
lated only to TH-TE regime together with the dashed and dash-dotted lines225

converge to the straight line v = 1, while the curves getting from the TH-
TE regime into TE-TE one converge to the line vs. Thus, with increasing
wavenumber, the influence of the moduli ratio m12 = µ1/µ2 on the phase
velocity c of the anti-plane waves weakens.
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Conclusions230

We discussed the propagation of anti-plane surface waves, i.e. waves local-
ized in the vicinity of a free surface, in a layered elastic medium which consists
of a layer of finite thickness perfectly attached to a half-space. In addition we
also assume the action of surface stresses on the free surface of the layer. The
Gurtin–Murdoch model is utilized here. The latter plays a crucial role here,235

since it corresponds to a new type of shear surface waves. We derived disper-
sion relations and presented the complete picture of dispersion curves. The
presence of surface stresses brings additional characteristic length-scale pa-
rameters in the model. Accounting for the latter allowed detecting two novel
regimes of anti-plane surface waves. The first one, called TE-TE regime240

corresponds to waves which exponentially decay in the transverse direction
from both free and interface surfaces, while the second, TH-TE regime is
related to waves which are specified by transversally harmonic (trigonomet-
ric) functions in the upper layer and by transversally exponential functions
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in the half-space. It was observed that anti-plane waves in TE-TE regime245

propagate with lower speed than the ones in TH-TE regime. Since both
regimes are determined by surface properties, these could be useful in the
experimental determination of surface moduli as was proposed by Jia et al.
(2018); Wu et al. (2020), and of surface material properties of multilayered
coatings, in general.250
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