Динамические голограммы в кристалле силиката висмута при варьировании интенсивности лазерных импульсов и периода решетки

И. Г. Даденков¹⁾, А. Л. Толстик¹⁾, Ю. И. Миксюк²⁾, К. А. Саечников²⁾

 ¹⁾ Белорусский государственный университет, Минск, Беларусь, e-mail: <u>dadenkov.ivan@gmail.com</u>
²⁾ Белорусский государственный педагогический университет, Минск, Беларусь, e-mail: ska-bspu@tut.by

Проведено экспериментальное исследование временных и амплитудных характеристик динамических голограмм, записанных в фоторефрактивном кристалле силиката висмута лазерными импульсами при различных интенсивностях и периодах решетки. Установлен локальный механизм формирования короткоживущих решеток и пространственная нелокальность нелинейного изменения показателя преломления при работе с долгоживущими решетками.

Ключевые слова: голография; динамические решетки; фоторефрактивные кристаллы; силикат висмута.

Dynamic holograms in a bismuth silicate crystal with varying laser pulse intensity and grating period

I. G. Dadenkov¹⁾, A. L. Tolstik¹⁾, Yu. I. Miksuk²⁾, K. A. Saechnikov²⁾

¹⁾Belarusian State University, Minsk, Belarus, e-mail: <u>dadenkov.ivan@gmail.com</u> ²⁾Belarusian State Pedagogical University, Minsk, Belarus, e-mail: <u>ska-bspu@tut.by</u>

An experimental study of the time and amplitude characteristics of dynamic holograms recorded in a photorefractive bismuth silicate crystal by laser pulses at different intensities and lattice periods was carried out. A local mechanism for the formation of short-lived gratings and the spatial non-locality of the nonlinear change in the refractive index when working with long-lived gratings have been established.

Keywords: holography; dynamic gratings; photorefractive crystals; bismuth silicate.

Введение

Существенным преимуществом метода динамических решеток являются широкие возможности вариации периода динамической решетки, длины волны записывающего и считывающего лазерного излучения, а также энергии индуцирующего излучения. Изучение зависимости дифракционной эффективности как от времени, так и от периода записываемой дифракционной картины позволяет узнать разнообразные параметры материалов, включая время жизни свободных носителей заряда в полупроводниках и ловушечных уровней в фоторефрактивных кристаллах и т. д. [1, 2].

В качестве исследуемого материала в данном случае был выбран фоторефрактивный кристалл силиката висмута, относящийся к широкозонным полупроводникам, при этом существенное влияние на оптические свойства которых оказывают примеси и структурные дефекты кристаллической решетки, приводящие к возник-

Квантовая электроника: материалы XIV Междунар. науч.-техн. конференции, Минск, 21–23 ноября 2023 г.

новению в запрещенной зоне донорных и акцепторных ловушек [3]. Экспериментальные исследования [4, 5] показали, что времена жизни ловушечных уровней, в зависимости от глубины залегания, могут меняться от микро- и миллисекунд до секунд и даже часов. При этом формирование и распад динамических решеток происходит в режиме реального времени, что является одним из существенных преимуществ фоторефрактивных кристаллов семейства силленитов. Такая динамика записанных решеток открывает возможность многократной перезаписи, что определяет возможность использования данных кристаллов в адаптивных интерферометрах, голографических системах записи и обработки информации и др. [6, 7].

1. Методика эксперимента

Для экспериментального исследования кинетики формирования и релаксации нестационарных решеток с разными периодами, индуцируемых лазерными импульсами с изменяющейся интенсивностью, в кристалле силиката висмута была использована установка, схематично представленная на рис. 1.

Рис. 1. Схема экспериментальной установки, где 1 – импульсный Nd:YAG лазер; 2 – He-Ne лазер; 3 – полуволновая пластинка; 4 – 7, 10 – глухое зеркало; 8 – полупропускающее зеркало; 9 – кристалл силиката висмута (BSO); 11 – фотоприемное устройство; 12 – цифровой осциллограф

В качестве записывающего излучения использовалась вторая гармоника неодимового лазера 1 с $\lambda = 532$ нм. Лазерный луч проходит через полуволновую пластинку и изменяет плоскости поляризации для уменьшения отражения от иссле-дуемого кристалла. Системой зеркал 4 – 8 луч разделяется на два, интерференционная картина между которыми записывается в кристалле 9, формирую динамическую решетку. Изменение периода записываемой решетки происходит при помощи перемещения кристалла по прямой на расстояние h. В качестве зонда использовалось излучение непрерывного гелий-неонового лазера, луч которого, дифрагировав на записанной динамической решетке, направлялся на фотоприемник 11, подключенный к осциллографу 12. Полученные осциллограмы представлены на рис. 2.

Квантовая электроника: материалы XIV Междунар. науч.-техн. конференции, Минск, 21–23 ноября 2023 г.

Рис. 2. Осциллограммы дифрагированного сигнала на решетке с периодом 400 нм, записанной излучением интенсивностью около 1 МВт/см², с временным масштабом *a*) 500 мс/дел; *б*) 5 мс/дел

2. Результаты и обсуждения

Из рис. 2 видно, что дифрагированный сигнал состоит из двух компонет, одна из которых быстрая, формируется за сотни микросекунд и релаксирует несколько миллисекунд (рис. 2, δ). Затем за пару сотен миллисекунд формируется долгоживущая решетка, которая живет несколько секунд (рис. 2, a). Формирование двух типов решеток можно связать с различными ловушечными уровнями (вблизи зоны проводимости и в глубине запрещенной зоны).

Обобщая полученные результаты при различных интенсивностях лазерных импульсов и периодах решеток, сделаны следующие выводы: времена формирования и релаксации короткоживущих решеток слабо зависят от их периода, но существенно увеличиваются с ростом интенсивности записывающего лазерного излучения, в то время как для долгоживущей решетки оказывается верно обратное. Выявленные закономерности можно объяснить локальным механизмом формирования короткоживущих решеток и пространственной нелокальностью нелинейного изменения показателя преломления при работе с долгоживущими решетками.

Библиографические ссылки

- 1. Investigation of free charge carrier dynamics in single-crystalline CVD diamond by two-photon absorption / E. V. Ivakin [et al.] // Quantum Electronics. 2014. Vol.44, iss.11. P. 1055–1060.
- Tolstik A. L. Light Beam Transformation and Material Diagnostics by Dynamic Holography Methods / A. L. Tolstik, E. V. Ivakin, I. G. Dadenkov // Journal of Applied Spectroscopy. 2023. Vol. 90, iss. 2. P. 407–413.
- Crystals with Sillenite Structure: Synthesis, Composition, Properties / Yu. F. Kargin [et al.]. Russ. Acad. Sci., Moscow, 2004.
- Photoinduced absorption and pulsed recording of dynamic holograms in bismuth silicate crystals / I. G. Dadenkov [et al.] // Optics and Spectroscopy. 2020. Vol. 128. P. 1401–1406.
- 5. Light-induced effects in sillenite crystals with shallow and deep traps / T. Kornienko [et al.] // Phys. Proc. 2017. Vol. 86. P. 105–112.
- 6. *Petrov M. P.* Photorefractive Crystals in Coherent Optics. / M. P. Petrov, S. I. Stepanov, A. V. Khomenko. St. Petersburg: Nauka, 1992.
- 7. *Ромашко Р. В.* Адаптивная голографическая интерферометрия: техника, прогресс и приложения // Вестник Дальневосточного отделения Российской академии наук. 2021. № 4. С. 40–47.

Квантовая электроника: материалы XIV Междунар. науч.-техн. конференции, Минск, 21–23 ноября 2023 г.