ПРЫЖКОВАЯ ПРОВОДИМОСТЬ В СЛОЯХ SiO₂, ИМПЛАНТИРОВАННЫХ ИОНАМИ In⁺ И Sb⁺

В.Ю. Слабухо^{1), 2)}, А.К. Федотов¹⁾, Ю.А. Федотова¹⁾ ¹⁾Белорусский государственный университет, Институт ядерных проблем, ул. Бобруйская 11, Минск 220006, Беларусь, julia@hep.by ²⁾Белорусский государственный университет, пр. Независимости 4, Минск 220030, Беларусь, akf1942@gmail.com

Исследована прыжковая проводимость в слоях SiO₂, имплантированных ионами In⁺ и Sb⁺, до и после отжига при температурах 800 и 1100 °C для создания нанокристаллов InSb. Проводимость гетероструктур Al/Si/SiO₂<InSb>/Al исследовались как функция электрического поля (в диапазоне 0-7·10⁷ B/м) и температуры (в интервале 2-300 K). Установлено, что при T > 100 K и в полях $E \le 3 \cdot 10^7$ B/м температурные зависимости проводимости $\sigma(T)$ описываются моделью прыжковой проводимости с переменной длиной прыжка. Во всем диапазоне температур и при значениях напряженности поля $E > 3 \cdot 10^7$ B/м зависимости $\sigma(E, T)$ описываются в рамках модели Шкловского для прыжковой проводимости в сильных электрических полях. Установлено уменьшение с ростом поля средней длины прыжка, что соответствует модели Шкловского. Полученные результаты обсуждаются с точки зрения эволюции структурных свойств имплантированных ионами пленок SiO₂.

Ключевые слова: ионная имплантация; SiO₂; InSb; нанокристаллы; прыжковая проводимость.

HOPPING CONDUCTIVITY IN SiO₂ LAYERS IMPLANTED WITH In⁺ AND Sb⁺ IONS

V.Yu. Slabukho^{1), 2)}, A.K. Fedotov¹⁾, J.A. Fedotova¹⁾ ¹⁾Institute for Nuclear Problems, Belarusian State University, 11 Bobruiskaya Str., 220006 Minsk, Belarus, julia@hep.by ²⁾Belarusian State University, 4 Nezavisimosti Ave., 220030 Minsk, Belarus, akf1942@gmail.com

In this paper, we investigate the temperature and electric field dependence of the electrical conductivity $\sigma(T, E)$ in unannealed and annealed heterostructures of the Al/Si/SiO₂<InSb>/Al type obtained by ion-beam synthesis. These structures containing InSb nanocrystals in SiO₂ layers were manufactured using 280 nm thick SiO₂ layer, which was grown by heating a *p*-type (100) silicon wafer with 100 mm diameter, in which In⁺ and Sb⁺ ions were implanted with energies of 200 keV and fluences of $8.0 \cdot 10^{15}$ cm⁻². Before the annealing, the 600 nm thick Si layers were transferred onto the ion-implanted SiO₂ layers. Samples were subjected to post-implantation annealing in an N₂ ambient at temperatures $T_a = 800$ and 1100 °C for 30 min. After the annealing, the top Si layer was removed. The temperature dependences of the electrical conductivity $\sigma(T)$ in the temperature range of 2–300 K with the applied electric fields $E = 0 \div 7 \cdot 10^7$ V/m were obtained by numerical differentiation of the current-voltage characteristics j(E), i.e. $\sigma = dj/dE$ (*j* is the current density). It was established that the carrier transport is provided by variable range hopping (VRH) conductivity due to hopping of electrons over localized states in the SiO₂ layers induced during implantation of In⁺ and Sb⁺ ions. Above 100 K, the $\sigma(T)$ at $E \le 3 \cdot 10^7$ V/m K is described by the modified Mott's model, which considers the field-assisted thermally-driven VRH regime, while at $E > 3 \cdot 10^7$ V/m solely field-driven hopping conductivity $\sigma(T)$ is observed in the entire temperature range, which obeys the theory of Shklovskii. The results obtained are discussed in terms of the evolution of the structural properties of ion-implanted SiO₂ films.

Keywords: ion implantation; SiO₂; InSb; nanocrystals; hopping conductivity.

Введение

Основным методом модернизации технологии создания МДП приборов для электроники является создание гибридных структур путем внедрения в кремний или SiO₂ других химических элементов. В этом смысле, комбинация технологии кремний-на-изоляторе (КНИ), где в слое

¹⁵⁻я Международная конференция «Взаимодействие излучений с твердым телом», 26-29 сентября 2023 г., Минск, Беларусь 15th International Conference "Interaction of Radiation with Solids", September 26-29, 2023, Minsk, Belarus

SiO₂ содержатся полученные ионнолучевым синтезом нанокристаллы InSb, создает новый тип структур для современной электроники и оптоэлектроники. Имплантация ионов In⁺ и Sb⁺ в слои SiO₂ сопровождается возникновением большого количества точечных дефектов (ионы примесей, междоузельные атомы и вакансии), по которым возможна прыжковая проводимость носителей заряда. В данной работе определены параметры прыжковой проводимости в слоях SiO₂ в зависимости от вида постимплантационного отжига.

Методика эксперимента

Изучаемые в работе МДП-структуры типа Al/Si/SiO₂<InSb>/Al были изготовлены методом DeleCut, подробно описанного в [1]. Слои SiO₂ толщиной 280 нм были термически выращены на подложках моно-Si p-типа. В слои SiO₂ имплантировались ионы Sb⁺ и In⁺ с энергией 200 кэВ и дозами 8.0·10¹⁵ см⁻². С целью предотвращения испарения In на имплантированный SiO₂ методом водородного переноса был перенесен покрывающий слой Si. Постимплантационный отжиг КНИ структур проводился при температурах $T_{\text{отж}} =$ 800 и 1100 °С в течение 30 минут в парах азота. В результате в пленке захороненного SiO2 слоя формировались нанокристаллы (НК) InSb, структура и геометрические параметры которых зависели от Тотж [1, 2]. Затем покрывающий слой Si удалялся в кипящем водном растворе аммиака.

С целью изучения механизмов прыжковой проводимости в слоях SiO₂ с дефектами и HK InSb, после удаления слоя Si были изготовлены МДП-структуры путем приваривания искровой сваркой фольги из Al толщиной 50 мкм с обеих сторон образца. Затем к слоям Al с помощью ультразвуковой пайки индия были прикреплены медные проволоки, которые распаивались в измерительном зонде. Температурные зависимости проводимости $\sigma(T)$ в диапазоне температур 2 – 300 К при электрических полях $E = 0 \div 7 \cdot 10^7$ В/м были получены численным дифференцированием вольтамперных характеристик j(E) (BAX), т.е. $\sigma = dj/dE$, где j – плотность тока.

Результаты и их обсуждение

На рис. 1 представлены зависимости $\sigma(T)$ при E = const в координатах Мотта. Из кривых 1-4 на рис. 1а следует, что выше 100 К зависимости Lg $\sigma - (1/T)^{1/4}$ для исходного образца линеаризуются в полях $E < 4.10^7$ В/м. Последнее указывает на реализацию в нем моттовского прыжкового механизма переноса носителей заряда типа VRH по дефектам, образованным в слое SiO₂ в процессе имплантации. После отжига при 800 °C этот механизм также проявляется, однако температурная область его реализации начинает сильно зависеть от величины Е (см. кривые 1-3 на рис. 1б). При более высокой Тотж механизм Мотта полностью исчезает (рис. 1в), видимо, вследствие отжига точечных дефектов при формировании НК InSb.

Отметим, что модель Мотта не учитывает вклад электрического поля в параметры прыжковой проводимости. По этой причине для более адекватного описания зависимостей $\sigma(T, E)$ был использован подход, предложенный в [3]. В соответствии с ним выделяют два режима прыжковой проводимости. В области малых полей ($E = (1-3) \cdot 10^7$ В/м) рассматривается VRH режим для термически стимулированной прыжковой проводимости, который описывается законом:

$$\sigma(T,E) = \sigma_1 \exp(-\frac{T_0}{T})^{\frac{1}{4}} \exp(\frac{0.17r(T)eE}{k_B T}), \quad (1)$$

где $e = 1.6 \cdot 10^{-19}$ Кл – заряд электрона, $k_B = 1.38 \cdot 10^{-23}$ Дж/К – постоянная Больцмана, σ_1 – константа, T_0 – характеристическая температура в модели Мотта, r – средняя длина прыжка электронов. Параметры T_0 и r позволяют вычислить плотность состояний на уровне Ферми $N(E_F) = \frac{19}{k_B T_0 \xi^3} [3] (\xi$ – характерная длина спада волновой функции электрона, $\xi = \frac{8}{3}r(\frac{T}{T_0})^{\frac{1}{4}}$), по которым могут осуществляться прыжки. Из соот-

¹⁵⁻я Международная конференция «Взаимодействие излучений с твердым телом», 26-29 сентября 2023 г., Минск, Беларусь 15th International Conference "Interaction of Radiation with Solids", September 26-29, 2023, Minsk, Belarus

Секция 4. Наноматериалы: формирование и свойства при воздействии излучений Section 4. Nanomaterials: Formation and Properties under the Influence of Radiation

ношения (1) следует, что с ростом E величина r уменьшается.

Рис. 1. Зависимость удельной электропроводимости от температуры $\sigma(T)$ в координатах Мотта в исследованных МДП структурах до (а) и после отжига при температуре 800 °С (б) и 1100 °С (в). Значения напряженности электрического поля *E* (B/м): $1 - 1 \cdot 10^7$, $2 - 2 \cdot 10^7$, $3 - 3 \cdot 10^7$, $4 - 4 \cdot 10^7$, $5 - 5 \cdot 10^7$, $6 - 5.5 \cdot 10^7$, $7 - 6 \cdot 10^7$, $8 - 7 \cdot 10^7$

Обнаружено, что наименьшие значения *r* (8.0 – 6.2 нм) наблюдаются для образца после $T_{\text{отж}} = 800$ °C, а наибольшие (62 – 24 нм) – после $T_{\text{отж}} = 1100$ °C. Для исходного образца получаем $N(E_F) \approx 2 \cdot 10^{18}$ эВ⁻¹см⁻³, после $T_{\text{отж}} = 800$ °C имеем $N(E_F) \approx (2-7) \cdot 10^{18}$ эВ⁻¹см⁻³, а после $T_{\text{отж}} = 1100$ °C – $N(E_F)$ снижается до 9·10¹⁵ эВ⁻¹см⁻³.

При $E > 3.10^7$ В/м реализуется лишь полевой вклад в VRH режим (модель Шкловского [4]):

$$\sigma(E) = \sigma_2 \exp(-\frac{E_0}{E})^{\frac{1}{4}}, \qquad (2)$$

где σ_2 – константа, E_0 – параметр, позволяющий оценить длину спада волновой функции ξ . Установлено, что величина ξ минимальна после $T_{\text{отж}} = 800$ °C и максимальна после $T_{\text{отж}} = 1100$ °C. Другими словами, оптимальные условия для прыжковой проводимости создаются после промежуточной $T_{\text{отж}}$, когда часть дефектов, внесенных имплантацией, аннигилировала, но не все ионы приняли участие в образовании HK InSb.

Заключение

Установлено, что в слоях SiO₂, имплантированных ионами Sb⁺ и In⁺, реализуется VRH режим прыжковой проводимости. При этом выше 100 К в полях $E \le 3 \cdot 10^7$ В/м проводимость описывается модифицированной моделью Мотта, учитывающей влияние электрического поля. При E> $3 \cdot 10^7$ В/м наблюдается прыжковая проводимость, стимулированная полем, которая подчиняется закону Шкловского. Доказано, что оптимальные условия для прыжковой проводимости создаются в образце, отожженном при 800 °C.

Библиографические ссылки

- 1. Tyschenko I.E., Voelskow M., Cherkov A.G., Popov V.P. Ion-beam synthesis of InSb nanocrystals in the buried SiO₂ layer of a silicon-on-insulator structure. *Semiconductors* 2014; 48(9): 1228-1233.
- Zukowski P., Koltunowicz T.N., Czarnacka K., Fedotov A.K., Tyschenko I.E. Carrier transport and dielectric permittivity of SiO₂ films containing ionbeam synthesized InSb nanocrystals. *Journal of Alloys and Compounds* 2020; 846: 156482.
- 3. Cheah C.Y., Kaiser A. Variable-range hopping transport: Crossovers from temperature dependence to electric field dependence in disordered carbon materials. *International Journal of Nanotechnology* 2014; 11: 412–418.
- 4.Шкловский Б.И. Прыжковая проводимость полупроводников в сильном электрическом поле. Физика и техника полупроводников 1972; 6(12): 2335-2340.

¹⁵⁻я Международная конференция «Взаимодействие излучений с твердым телом», 26-29 сентября 2023 г., Минск, Беларусь 15th International Conference "Interaction of Radiation with Solids", September 26-29, 2023, Minsk, Belarus