СТРУКТУРНЫЕ, МАГНИТНЫЕ И ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ЭПИТАКСИАЛЬНЫХ ПЛЕНОК ТЮ₂ С ИМПЛАНТИРОВАННОЙ ПРИМЕСЬЮ КОБАЛЬТА

В.В. Базаров¹⁾, Е.М. Бегишев¹⁾, В.Ф. Валеев¹⁾, И.Р. Вахитов^{1), 2)}, А.И. Гумаров^{1), 2)}, А.Л. Зиннатуллин^{1), 2)}, А.З. Киямов²⁾, В.И. Нуждин¹⁾, Р.И. Хайбуллин^{1), 2)}

¹⁾Казанский физико-технический институт им. Е.К. Завойского, ФИЦ "Казанский научный центр РАН", ул. Сибирский Тракт 10/7, Казань 420029, Россия ²⁾Институт физики Казанского федерального университета, ул. Кремлевская 18, Казань 420008, Россия vbazarov1@gmail.com, begishev.evg@gmail.com, valeev@kfti.knc.ru, ujay@mail.ru, amir@gumarov.ru, almaz.zinnatullin@gmail.com, Airatphd@gmail.com, nuzhdin@kfti.knc.ru, rikkfti@mail.ru

Тонкие толщиной 150 нм эпитаксиальные плёнки TiO_2 со структурой рутила на монокристаллических подложках R-сиt корунда (Al_2O_3) были получены методом реакционного магнетронного напыления с последующим высокотемпературным отжигом на воздухе. Показано, что имплантация ионов Co^+ с энергией 40 кэВ и высокой дозой $1.25 \cdot 10^{17}$ ион/см² в нагретую до 900 К плёнку TiO_2 индуцирует в ней ферромагне-тизм при комнатных и выше температурах. Согласно анализу данных рентгеновской дифракции и рентге-новской фотоэлектронной спектроскопии наблюдаемый ферромагнетизм обусловлен формированием в имплантированной пленке TiO_2 твердого раствора двухвалентных ионов кобальта.

Ключевые слова: ионная имплантация; диоксид титана; магниторазбавленные оксидные полупроводники; кислородные вакансии; энергонезависимая память.

THE MICROSTRUCTURE, MAGNETIC AND ELETRIC PROPERTIES OF EPITAXIAL TiO₂ FILMS IMPLATED WITH COBALT IONS

Valery Bazarov¹⁾, Evgeniy Begishev¹⁾, Valery Valeev¹⁾, Iskander Vakhitov^{1), 2)}, Amir Gumarov^{1), 2)}, Almaz Zinnatullin^{1), 2)}, Airat Kiiamov²⁾, Vladimir Nuzhdin²⁾, Rustam Khaibullin^{1), 2)}

¹⁾Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, 10/7 Sibirsky Tract, 420029 Kazan, Russia, vbazarov1@gmail.com, begishev.evg@gmail.com, ²⁾Institute of Physics, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia valeev@kfti.knc.ru, ujay@mail.ru, amir@gumarov.ru, almaz.zinnatullin@gmail.com, Airatphd@gmail.com, nuzhdin@kfti.knc.ru, rikkfti@mail.ru

A thin TiO_2 films with 150 nm thickness were deposited on a (1-102)-face oriented Al_2O_3 substrate by using the reactive magnetron sputtering. According to X-ray diffraction (XRD), the deposited films consisted of a mixture of two phases: anatase and rutile. After annealing in air at a temperature of 800 C for 60 minutes, the films become single-phase with epitaxial rutile structure. Then 40 keV single-charged ions of cobalt were implanted into an epitaxial TiO_2 films with the dose value of $1.25\cdot10^{17}$ ion/cm² at ion current density of 2-3 μ A/cm² and substrate temperature of 900 K. It was found that the high-dose implantation with cobalt ions induces ferromagnetism in the TiO_2 film. The magnetic hysteresis loops are observed at room and more higher temperatures. The coercive field is increasing from 420 Oe up to 620 Oe with temperature decreasing from 300 K to 5 K, respectively. At the same time, the saturation magnetic moment turns out to be practically temperature independent, and ones is equal to ~0.7 μ B per Co ion. The analysis of high-resolution XPS spectra unambiguously indicates that the dominant part of the cobalt impurity in the implanted TiO_2 film is in the divalent oxidized state. This means that the observed ferromag-netism is due to the formation of a solid solution of divalent cobalt ions in TiO_2 matrix. Moreover Co-ion implanted TiO_2 films exhibit a semiconductor type of conductivity.

Keywords: ion implantation; titanium dioxide; magnetically dilute oxide semiconductors; oxygen vacancies, non-volatile memory.

Введение

В настоящее время большой интерес вызывают процессы резистивного переключения в оксидных полупроводниках и изоляторах, которые обусловлены диффузией и упорядочением кислородных вакансий в электрическом поле. Особое внимание обращено к диоксиду титана (TiO₂) в связи с изготовлением на его основе пассивного элемента - мемристора в 2008 году [1]. В то же время, в пионерской работе [2] было показано, что легирование данного материала магнитной примесью 3d-элементов приводит к возникновению в нем ферромагнетизма при комнатной температуре. В данном контексте магниторазбавленный TiO2 имеет перспективы применения как в полупроводниковой спинтронике, так и в области энергонезависимой памяти. В данной работе мы исследуем влияние имплантации ионов кобальта на структуру тонких плёнок ТіО2 и модификацию их магнитных и электрических свойств.

Материалы и методы исследования

Плёнки TiO_2 толщиной 150 нм были получены на корундовой (Al_2O_3) подложке ориентации (1-102) методом реакционного магнетронного распыления титановой мишени. Для обеспечения стехиометрии по кислороду исходно осажденные плёнки TiO_2 были подвергнуты дополнительному отжигу в атмосфере воздуха при T = 800 °C в течение 60 мин.

Однозарядные ионы Co^+ с энергией 40 кэВ была имплантированы в синтезированные плёнки TiO_2 с дозой $1.25\cdot 10^{17}$ ион/см 2 при повышенной температуре подложки 900 К во время ионного облучения на ионно-лучевом ускорителе UJV-3. Плотность ионного тока поддерживалась на уровне 2-3 мкА/см 2 .

Коэффициент распыления поверхности пленок TiO_2 (S=3 атом/ион) во время облучения был определен путем измерения высоты ступеньки между имплантированной и необлученной частью образца. Это позволило рассчитать глубинные профили

распределения концентрации примеси кобальта в имплантированной плёнке TiO₂ с учётом распыления поверхности.

Морфология поверхности и элементнофазовый состав плёнок ТіО2 были исследованы методами сканирующей электронной микроскопии и рентгеноструктурного анализа. Валентное состояние примеси кобальта на различной глубине залегания было определено путем регистрации спектров рентгеновской фотоэлектронной спектроскопии (РФЭС) высокого разрешения. Магнитные свойства были изучены в интервале температур 5-300 К методами вибрационной магнитометрии на установке PPMS-9 (Quantum Design). Температурные измерения электросопротивления образцов проводились 4-х контактным методом.

Результаты и их обсуждение

Рентгеновская дифрактограмма исходно-осажденной плёнки TiO2 на подложке Al₂O₃ показана на Рис. 1 (зелёная кривая). Помимо интенсивных рефлексов, соответствующих ориентированной подложке Al₂O₃, наблюдается также ряд более слабых рефлексов, которые относятся к кристаллическим полиморфными фазам диоксида титана: рутил и анатаз. Последующий высокотемпературный отжиг плёнок на воздухе привёл к исчезновению рефлексов от фазы анатаза. На рентгеновской дифрактограмме (красная кривая на рис. 1) наблюдается лишь один рефлекс, соответствующий отражению от плоскостей (101) рутила. Следовательно, после отжига плёнка становится однофазной и ориентированной вдоль [101]кристаллографического направления структуры рутила. Эпитаксиальный рост отожжённой пленки также подтверждается φ -сканом рефлекса.

Дифрактограмма имплантированной кобальтом плёнки TiO_2 показана на рис. 1 чёрной кривой. Видно, что интенсивность основного рефлекса (101) рутила существенно падает, а также появляются другие рефлексы от структуры рутила. Это

указывает на существенное разупорядочивание кристаллической структуры имплантированной пленки. Заметим, что все наблюдаемы рефлексы рутила сдвинуты в сторону меньших углов по 2θ . По величине сдвига было определено, что параметры кристаллической решетки рутила увеличиваются на ~ 0.5 % по сравнению со структурой исходной плёнки TiO_2 . Причиной этого может быть как внедрение примеси кобальта в позиции титана (ионный радиус Co^{2+} больше, чем Ti^{4+}), так и образование большого количества радиационных дефектов, приводящих к «разбуханию» плёнки.

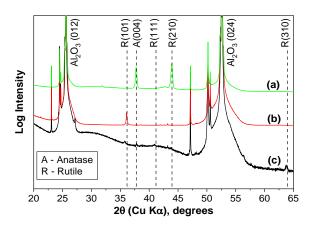


Рис. 1. Рентгеновские дифрактограммы тонкой плёнки TiO_2 на подложке Al_2O_3 : а — после напыления, b — после отжига в атмосфере воздуха при $T=800~^{\circ}\mathrm{C}$ в течение 60 минут, с — после имплантации ионами кобальта (E = 40 кэB, D = $1.25\cdot10^{17}$ ион/см²)

В тоже время анализ спектров РФЭС высокого разрешения однозначно указывает на то, что доминирующая часть примеси кобальта по всей глубине залегания в пленке находиться в двухвалентном окисленном состоянии.

Полевые зависимости магнитного момента тонкой плёнки TiO₂, имплантированной ионами кобальта, измеренные при температурах 5 К и 300 К, показаны на рис. 2. Как хорошо видно, даже при комнатной температуре наблюдается раскрытая петля магнитного гистерезиса, что указывает на ферромагнитные свойства имплантированной плёнки TiO₂. Хотя коэрцитивное поле возрастает с понижением

температуры (420 Э при 300 К, и 620 Э при 5 К), приведённый магнитный момент насыщения оказывается практически независящим от температуры ($\sim 0.7~\mu_B/Co$ ион).

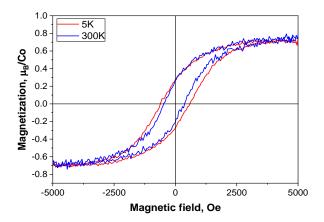


Рис. 2. Кривые магнитного гистерезиса тонкой плёнки TiO_2 , имплантированной ионами кобальта ($E=40~{\rm к} {\rm эB},~D=1.25 \cdot 10^{17}~{\rm иоh/cm}^2$), измеренные при температурах 5 К (красная кривая) и 300 К (синяя кривая)

В результате электрических измерений установлено, что пленки TiO_2 с имплантированной примесью кобальта проявляют полупроводниковый тип проводимости.

Заключение

Совокупный анализ результатов проведенных исследований указывает на то, что ферромагнетизм, наведенный в плёнке ${\rm TiO_2}$ путем имплантации в её структуру примеси кобальта, обусловлен формированием в ней фазы твердого раствора замещения ионами ${\rm Co^{2+}}$ «домашних» катионов ${\rm Ti^{4+}}$.

Исследование выполнено за счет гранта Российского научного фонда (проект № 22-19-007I2, https://rscf.ru/project/22-19-00712).

Библиографические ссылки

- 1. D. Strukov, G. Snider, D. Stewart, et al. *Nature* 2008; 453: 80-83.
- 2. Matsumoto Y., Murakami M., Shono T. et al. *Science* 2001; 291: 854.