УДК 621.383.292

<u>Огородников Д. А.</u>¹, Богатырев Ю. В.¹, Ластовский С. Б.¹, Лемешевская А. М.², Цымбал В. С.²

ВЛИЯНИЕ ГАММА-КВАНТОВ НА ХАРАКТЕРИСТИКИ SIФЭУ С ОПТИЧЕСКИ ИЗОЛИРОВАННЫМИ ЯЧЕЙКАМИ Р⁺-N-N⁺-ТИПА

¹Научно-практический центр НАН Беларуси по материаловедению, Минск, Беларусь; ²ОАО «Интеграл», Минск, Беларусь

Исследовано влияние облучения гамма-квантами Co⁶⁰ на темновой ток I_b кремниевых фотоэлектронных умножителей (SiФЭУ) с ячейками p⁺-n-n⁺-типа, которые оптически изолированы друг от друга металлизированными канавками. Вывод металла канавки соединялся с n⁺-областью. При облучении в режиме лавинного пробоя наблюдается немонотонное изменение темнового тока. При дозах $D = (0,3 \div 1) \cdot 10^5$ рад значение I_b увеличивается на три-четыре порядка, а при $D = (1.\div 2) \cdot 10^5$ рад уменьшается до значений, не превышающих исходное в 2,5 раза, и практически не изменяется вплоть до $D = 1 \cdot 10^6$ рад.

Ваедение. Кремниевый фотоэлектронный умножитель (SiФЭУ) представляет собой матрицу параллельно включенных ячеек, каждая из которых содержит лавинный фотодиод с последовательно включенным гасящим резистором. SiФЭУ предназначены для регистрации предельно слабого оптического излучения видимого и ближнего инфракрасного диапазонов, ионизирующих излучений и единичных фотонов [1]. Недостатком SiФЭУ является оптическая связь между ячейками. Фотоны, порождённые при рекомбинации «горячих» электронов и дырок при гейгеровском разряде в одной из ячеек, проникают в соседние и генерируют там электронно-дырочные пары. Фотоэлектроны и дырки запускают дополнительные гейгеровкие разряды и на выходе прибора регистрируются ложные импульсы.

Одним из способов подавления оптической связи является создание разделительных канавок между ячейками [2-4]. Канавки после пассивации стенок слоем SiO₂ могут заполняться металлом. В работах [3, 4] исследовалось влияние альфа-частиц и рентгеновских квантов на темновой ток образцов SiФЭУ с оптической изоляцией ячеек канавками, которые после пассивации стенок слоем SiO₂ заполнялись вольфрамом. Ячейки представляли собой n^+ -*p*-*p*⁺-структуры. Авторами [3, 4] рассматривались два варианта образцов SiФЭУ. В первом варианте вывод металла канавки электрически соединялся с n^+ -областью ячейки, в другом – с p^+ -областью. Радиационным эффектом в SiФЭУ, влияющим на функциональные параметры, является увеличение темнового тока, что и наблюдалось в работах [3, 4]. В наибольшей степени этот нежелательный эффект проявлялся при облучении в активном электрическом режиме образцов, вывод металла канавки которых был соединен с n^+ -областью. Значение темнового тока таких SiФЭУ увеличивалось в результате облучения на 4 порядка, в то время как у образцов другой конструкции — менее чем в два раза. Полученный результат объясняется усилением выхода дырочного заряда под действием электрических полей в слоях оксидов разделительных канавок ячеек SiФЭУ, облучаемых под обратным смещением [4]. Накопленный положительный заряд усиливает напряженность электрического поля в фотоактивной р-области ячеек вблизи окисла разделительных канавок, что стимулирует генерацию неравновесных электронно-дырочных пар и ведет к увеличению темнового тока.

Распределение векторов напряженности электрического поля зависит от структуры ячеек SiФЭУ. В работах [3, 4] исследовались образцы SiФЭУ с ячейками в виде n^+-p-p^+ -структур. В этих ячейках областью лавинного умножения фотоэлектронов является *p*-область. Представляет интерес изучение влияния проникающих излучений на образцы SiФЭУ с оптически изолированными ячейками p^+-n-n^+ -типа.

Цель работы – исследование влияния гамма-квантов Со-60 на темновой ток образцов SiФЭУ с ячейками p^+ -n- n^+ -типа, оптически изолированными металлизированными разделительными канавками.

Методика эксперимента. Объектом испытаний являлись опытные образцы малогабаритного SiФЭУ, изготовленные в Филиале НТЦ «Белмикросистемы» ОАО «ИНТЕГРАЛ». Размеры кристаллов SiФЭУ составляли S_{кр}=1,44x1,44 мм², со светочувствительной площадью 1x1 мм² и размером одного пикселя 35x35 мкм² (всего 1004 пикселя). Пиксели представляют собой p⁺-n-n⁺-диодные структуры, изготовленные в эпитаксиальной плёнке с удельным сопротивлением 0,4 Ом·см толщиной 4 мкм n-типа (4КЭФ0,4), выращенной на низкоомной подложке n-типа КЭМ0.01. Последовательно в цепи с каждым диодом выполнен высокоомный гасящий резистор. Фотоактивная поверхность диода и канавок покрыты слоями SiO₂ и Si₃N₄. Напряжение лавинного пробоя исследуемых SiФЭУ составляло порядка $U_{br} = 25\pm1,0$ В.

Конструктивной особенностью исследуемых образцов SiФЭУ является наличие оптической экранировки ячеек друг от друга с помощью разделительных металлизированных канавок в виде решётки для устранения вышеописанного паразитного оптического взаимодействия. Исследовались SiФЭУ, которые [3, 4] считаются наименее стойкими к воздействию ионизирующих излучений: в данной конструкции прибора выводы металла (вольфрам) канавок соединялись с контактными площадками n⁺-областей.

Образцы SiФЭУ облучались гамма-квантами Co⁶⁰ на установке «Исследователь» в активном (при значениях напряжения, которое превышает напряжения пробоя на 3 В) и пассивном (выводы образцов были короткозамкнуты) электрических режимах.

Экспериментальные результаты и обсуждение. На рисунке 1 представлены обратные вольт-амперные характеристики (ВАХ) SiФЭУ до и после облучения разными дозами D гамма-квантов Co⁶⁰ в пассивном электрическом режиме. Существенных изменений ВАХ в результате облучения образца не наблюдается. Это также хорошо видно из дозовых зависимостей обратного тока I_b при разных значениях обратного смещения. При $D = 1 \cdot 10^6$ рад значение I_b при обратном смещении 25 В увеличилось в 3 раза.

Рисунок 1 – Обратная ВАХ до и после облучения в режиме хранения

Рисунок 2 – Изменение обратного тока при разных значениях обратного смещения с ростом дозы облучения в режиме хранения

На рисунке 3 представлены обратные ВАХ образца SiФЭУ до и после облучения разными дозами гамма-квантов Co⁶⁰ в активном электрическом режиме. При облучении на образец подавалось обратное смещение $U_b = -29,6$ В, что соответствовало перенапряжению $|U_b - U_{br}| = 3$ В. Из полученных результатов видно, что на начальном этапе облучения ($D = (3\div5) \cdot 10^4$ рад) значение I_b возрастает на три-четыре порядка, а при $D = (1\div 2)\cdot 10^5$ рад уменьшается до значений, не превышающих исходное в $3\div4$ раза (рисунок 4). При $D = 1\cdot 10^6$ рад значение I_b при обратном смещении 25 В больше исходного в 2,4 раза.

Максимальная напряженность E электрического поля и, следовательно, величина накопленного заряда Q в оксиде разделительных канавок SiФЭУ, облучаемых в режиме лавинного пробоя, достигаются в слое, граничащем с p^+ -областью. В процессе облучения в объёме диэлектрика вблизи границы SiO₂/ p^+ -Si накапливается положительный заряд, а в объёме полупроводника возрастают напряженность электрического поля и темп генерации неравновесных электронно-дырочных пар, то есть значение темнового тока (начальный этап облучения). Наряду с накоплением заряда Q идет процесс его нейтрализации. Электроны термически забрасываются из валентной зоны на уровни ловушек, а также туннелируют из полупроводника. С ростом D напряженность электрического поля усиливается в области локализации Q и ослабевает в остальной толще диэлектрика. При определенном значении Dвыравниваются скорости накопления и нейтрализации Q, в результате чего достигается насыщение величины I_b [5].

Рисунок 3 – Обратная ВАХ до и после облучения в режиме лавинного пробоя

Рисунок 4 – Изменение обратного тока при разных значениях обратного смещения с ростом дозы облучения в режиме лавинного пробоя

Уменьшение значения темнового тока при $D = (1 \div 2) \cdot 10^5$ рад, видимо, результат снижения темпа генерации Q, то есть уменьшения выхода дырочного заряда до уровня, сопоставимого с пассивным режимом облучения. Уменьшение E в слое SiO₂ возможно, если допустить накопление при облучении не только положительного, но и отрицательного заряда вблизи границ Si₃N₄ с металлом или SiO₂. Наличие такого заряда также приведёт к перераспределению падения напряжения в слое диэлектрика, несмотря на нейтрализацию положительного заряда [5].

Заключение. Исследовано изменение темнового тока образцов SiФЭУ, облучаемых гамма-квантами Co⁶⁰ в различных электрических режимах. Ячейки SiФЭУ в виде p^+ -n- n^+ -структур были оптически изолированы металлизированными разделительными канавками. Вывод металла канавок соединялся с n^+ -областью ячеек. При облучении образцов в режиме хранения дозой $D = 1 \cdot 10^6$ рад темновой ток I_b при обратном смещении 25 В возрастает в 3 раза. При облучении в режиме лавинного пробоя наблюдается немонотонное изменение I_b . На начальном участке облучения $D = (0,3 \div 1) \cdot 10^5$ рад значение I_b увеличивается на тричетыре порядка, а при $D = (1 \div 2) \cdot 10^5$ рад уменьшается до значений, не превышающих исходное в 2,5 раза, и практически не изменяется вплоть до $D = 1 \cdot 10^6$ рад.

Список литературы

1. Гулаков, И. Р. Фотоприемники квантовых систем / И. Р. Гулаков, А.О. Зеневич. – Минск: УО ВГКС, 2012. – 48 с.

2. The cross-talk problem in SiPMs and their use as light sensors for imaging atmospheric Cherenkov telescopes / E. Popova [et al.] // Nucl. Instrum. Methods Phys. Res., Sect. A. -2009. - Vol. 610, No 1. -P. 131–134.

3. Огородников, Д. А. Влияние облучения альфа-частицами на обратные вольтамперные характеристики кремниевых фотоумножителей / Огородников Д. А., Богатырев Ю. В., Ластовский С. Б., Кетько А. В., Лемешевская А. М., Цымбал В. С., Шпаковский С. В. Рубанов П. В., Луконин С. Е. // Вопросы атомной науки и техники. Сер.: Физика радиационного воздействия на радиоэлектронную аппаратуру. 2021. № 3, С. 28-32.

4. Огородников Д. А. Моделирование накопления заряда в кремниевых фотоэлектронных умножителях под воздействием мягкого рентгеновского излучения // Д. А. Огородников // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. – 2022. – Т. 58, № 3. – С. 337–343.

5. Першенков, В. С. Поверхностные радиационные эффекты в элементах интегральных микросхем / В. С. Першенков, В. Д. Попов, А. В. Шальнов // М.: Энергоатомиздат, 1988. 256 с.