УДК 538.9+539.23 <u>Константинов С. В.¹</u>, Комаров Ф. Ф.¹, Чижов И. В.¹, Зайков В. А.²

ВЛИЯНИЕ ДОБАВКИ КРЕМНИЯ НА ЭЛЕМЕНТНЫЙ СОСТАВ И СТРУКТУРУ ПОКРЫТИЙ TIAISIN, TIAISICN

¹НИИПФП им. А. Н. Севченко БГУ, Минск, Беларусь ²Белорусский государственный университет, Минск, Беларусь

Сформированы образцы нитридных и карбонитридных покрытий TiAlSiN, TiAlSiCN на различных типах подложек. Проведены исследования элементного состава, структуры и морфологии покрытий. Методом энергодисперсионной рентгеновской спектроскопии определен элементный состав покрытий. Методом сканирующей электронной микроскопии изучены их структурные свойства. Структурно-фазовое состояние сформированных покрытий исследовано методом рентгеноструктурного и фазового анализа. Полученные покрытия являются однородными, плотными и не содержат видимых дефектов по всей площади поверхности. Установлено, что уменьшение степени реактивности α от значения $\alpha = 0,605$ до величины $\alpha = 0,421$ приводит к увеличению скорости осаждения нитридных TiAlSiN и карбонитридных TiAlSiCN покрытий на Si подложках (TiAlSiN на 200 – 300 %). Обнаружено, что покрытие TiAlSiN обладает однородной однофазной структурой (Ti, Al)N, представляющей собой неупорядоченный твердый раствор с гранецентрированной кубической решеткой (ГЦК).

Введение. Разработка и создание наноструктурированных покрытий, обладающих высокой твердостью, износостойкостью, устойчивостью к воздействию радиационного излучения в настоящее время является одним из важнейших направлений исследований в области материаловедения [1]. Интерес представляет добавление небольшой концентрации 4–8 ат % Si к составу покрытий TiAlN, TiAlCN. Как известно, кремний является мощным аморфизирующим элементом для структуры твердых тел [2]. Кроме того, в малых концентрациях он способен активизировать наноструктурирование формируемого вакуумным методом покрытия.

Формирование покрытий TiAlSiN, TiAlSiCN и методы исследования их свойств. Покрытия TiAlSiN, TiAlSiCN были нанесены методом реактивного магнетронного распыления на различные типы подложек: титан марки BT1-0, нержавеющую сталь марки 12X18H10T, монокристаллический кремний Si (100), монокристаллический кремний с термически выращенным оксидом SiO₂. Для контроля и управления процессом нанесения покрытий методом реактивного магнетронного напыления использован разработанный модульный комплекс управления расходом газов (МКУРГ) [3]. Формирование осуществлялось в режимах с различной степенью реактивности α из мишени № 1 (46 ат. % Ti, 46 ат. % Al, 8 ат. % Si) и № 2 (69 ат. % Ti, 23 ат. % Al, 8 ат. % Si). В таблице 1 представлены основные параметры нанесения покрытий.

Морфология и микроструктура полученных покрытий исследовались методом сканирующей электронной микроскопии (СЭМ) с использованием микроскопа Hitachi SU3400 (Япония) в режиме вторичных электронов с энергией 15 кэВ. Микроскоп был оснащен датчиком рентгеновского излучения (энергодисперсионным спектрометром), позволяющим определять элементный состав исследуемых покрытий методом энергодисперсионной рентгеновской спектроскопии (ЭДРС). Рентгеноструктурный и фазовый анализ покрытий TiAlCuN осуществлялся с использованием рентгеновского порошкового дифрактометра ADANI PowDiX 600/300 компании ADANI Systems с фокусировкой по Брэггу-Брентано. Длина волны излучения СоКа составляла $\lambda = 1,7889$ Å.

Результаты и их обсуждение. На рисунках 1 представлен энергодисперсионный рентгеновский спектр от нитридного покрытия TiAlSiN. Обнаруженная в составе покрытий концентрация кремния (около 8 ат %) примерно совпадает с концентрацией в мишени. Уменьшение степени реактивности α от значения $\alpha = 0,605$ до величины $\alpha = 0,421$ приводит к увеличению скорости осаждения нитридных TiAlSiN и карбонитридных TiAlSiCN покрытий на Si подложках (для покрытия TiAlSiN на 200 – 300 %). На основании анализа результатов СЭМ выявлено, что полученные покрытия являются однородными, плотными и не содержат видимых дефектов по всей площади поверхности.

Таблица 1 – Степень реактивности (а), стехиометрия состава	, толщина (h), сі	корость (v) и вре	мя (τ) осаждения
нитридных TiAlSiN и карбонитридных	 TiAlSiCN покрытий на 	Si подложках		

Образец	α	Ti/Al	(Ti+Al), ат.	(N+Si+C),	(Ti+Al)/	<i>h</i> , нм	τ, c	<i>v</i> , нм/с
			%	ат. %	(N+Si+C)			
1N1.27	0,605	0,67	37,65	57,88	0,650	1170	2520	0,46
1N1.30	0,526	0,73	46,32	48,28	0,959	1370	1860	0,74
1N2.32	0,474	0,66	45,43	48,7	0,933	1320	1560	0,85
2N1.30	0,526	1,92	38,06	57,33	0,664	853	1400	0,61
2N1.30	0,526	2,45	48,12	49,74	0,967	880	1380	0,64
2N2.34	0,421	2,85	51,18	45,07	1,136	823	720	1,14
2CN1.30	0,526	2,51	43,72	51,6	0,847	430	1380	0,31
2CN2.33	0,447	2,94	58,89	36,85	1,598	823	1230	0,67

Рисунок 1 – Энергодисперсионный рентгеновский спектр от покрытия TiAlSiN. Образец 1N1.30; подложка – Si; α = 0,526

На рисунке 2 представлены рентгеновские дифрактограммы от нитридных покрытий TiAlSiN, сформированных в различных режимах. На всех дифрактограммах обнаружены пики дифракции от подложки титана Ti BT1-0. Также обнаружены пики дифракции от фазы с гранецентрированной кубической решеткой (ГЦК) типа NaCl (Ti, Al)N (111), (200), (220), (222). Интенсивность пиков от различных кристаллографических плоскостей изменяется в зависимости от степени реактивности α процесса и мишени № 1 либо № 2, что влияет на элементный состав покрытий. Такое выделение интенсивности рефлекса от отдельной плоскости свидетельствует о текстурированности сформированного покрытия. Было обнаружено, что покрытие TiAlSiN обладает однородной однофазной структурой (Ti, Al)N, представляющей собой неупорядоченный твердый раствор с гранецентрированной кубической решеткой (ГЦК). Наличие диффузного уширения пиков дифракции фазы (Ti, Al)N свидетельствует о нанокристаллической природе покрытий TiAlSiN. Эти пики смещены в область больших углов 20 дифракции, относительно чистого нитрида титана. Это свидетельствует о замещении атомов титана атомами алюминия, обладающими меньшим атомным радиусом: $R_{Ti} = 1,47$ Å, $R_{Al} = 1,43$ Å [1, 3]. Формирование однофазной структуры обычно наблюдается для покрытий

TiAlN [3] и TiAlCN [2]. Из этого следует, что добавление кремния не изменяет фазовый состав покрытия и не приводит к образованию новых фаз.

Не обнаружено отдельных пиков дифракции от кремния или кремнийсодержащих фаз. В то же время, не выявлено существенного сдвига пиков дифракции, по сравнению с предыдущими результатами для фазы (Ti, Al)N [3], предполагая возможность растворения кремния в нитриде (Ti, Al)N. В этой связи, можно утверждать, что кремний, находясь в аморфном состоянии, сегрегируется вдоль границ кристаллитов и сдерживает их дальнейший рост. Возможность такого процесса была отмечена в [2]. Также кремний может образовывать аморфный нитрид Si₃N₄ стехиометрического или нестехиометрического состава. Кроме этого, в [2] было показано что кремний забирает на себя паразитные вредные примеси, такие как кислород, связывается с ними в соединения и, таким образом, способствует геттерированию структуры покрытия. Рассчитанный средний размер кристаллитов фазы (Ti, Al)N составил $20-30 \pm 5$ нм.

Рисунок 2 – Рентгеновские дифрактограммы от нитридных покрытий TiAlSiN, сформированных на подложках из титана марки ВТ1-0 (образцы 1N1.27, 1N1.30, 1N1.32, 2N1.30)

Заключение. Таким образом, полученные покрытия являются однородными, плотными и не содержат видимых дефектов по всей площади поверхности. Установлено, что уменьшение степени реактивности α от значения $\alpha = 0,605$ до величины $\alpha = 0,421$ приводит к увеличению скорости осаждения нитридных TiAlSiN и карбонитридных TiAlSiCN покрытий на Si подложках. Было обнаружено, что покрытие TiAlSiN обладает однородной однофазной структурой (Ti, Al)N, представляющей собой неупорядоченный твердый раствор с гранецентрированной кубической решеткой (ГЦК). Кремний не формирует выделенных фаз в кристаллическом состоянии, а сегрегируется по дефектам и границам раздела.

Список литературы

1. Komarov, F.F Effects of Proton Irradiation on the Structural-Phase State of Nanostructured TiZrSiN Coatings and Their Mechanical Properties / F.F. Komarov, S.V. Konstantinov, V.A. Zai-kov, V.V. Pil'ko // Journal of Engineering Physics and Thermophysics. – 2021. – Vol. 94, N. 6. – P. 1609–1618. https://doi.org/10.1007/s10891-021-02442-2

2. Cavaleiro, A. Nanostructured Coatings / A. Cavaleiro, J.T.M. De Hosson. – Berlin, 2006. – 648 p. https://doi.org/10.1007/978-0-387-48756-4

3. Komarov, F.F. Structure and mechanical properties of TiAlN coatings under hightemperature Ar⁺ ion irradiation / F.F. Komarov, S.V. Konstantinov, J. Żuk, A. Droździel, K. Pyszniak, I.V. Chizhov, V.A. Zaikov // Acta Physica Polonica A. – 2022. – Vol. 142, № 6. – P. 690-696. https://doi.org/10.12693/APhysPolA.142.690