Гурбанович Ад. В. 1 , Гурбанович Ан. В. 1 , Липницкий Ф. В. 2

УСЛОВИЯ СИНТЕЗА И КРИСТАЛЛИЧЕСКАЯСТРУКТУРА ТВЁРДЫХ РАСТВОРОВ ЗАМЕЩЕНИЯ Sb_{2-x}M_xTe₃, (M- Cr, Fe; 0≤x≤0,15)

 1 ГО «НПЦ НАН Беларуси по материаловедению», Минск, Беларусь 2 УО «Белорусский национальный технический университет», Минск, Беларусь

Введение

Твёрдые растворы замещения представляют интерес в связи с тем, что их базовое соединение Sb_2Te_3 относится к веществам, носящих общее название топологические изоляторы [1-4]. Одной из важных особенностей топологических изоляторов является то, что будучи изоляторами внутри объёма, поверхность их не обладает свойствами обычной металлической проводимости. Движение носителей заряда на поверхности топологического изолятора происходит одновременно в двух взаимно противоположных направлениях: электроны со спином «вверх» движутся в одном направлении, а со спином «вниз» — в противоположном. Эксперимент показывает, что топологические изоляторы обладают нестандартными поверхностными электронными состояниями и электромагнитными свойствами. Это способствует реализации их применения в технических устройствах. Топологические изоляторы востребованы технологами приборостроения. Анализ особенностей их физико-химических характеристик в зависимости от условий внешних воздействий актуален и представляет несомненный интерес теоретикам физики конденсированного состояния для математического моделирования свойств. **Цель работы:** синтез составов Sb_2Te_3 , $Sb_{2-x}Cr_xTe_3$, $Sb_{2-x}Fe_xTe_3$, изучение особенностей их кристаллической структуры.

Синтез образцов

Соединение Sb_2Te_3 синтезировано методом прямого сплавления элементов сурьмы и теллура высокой чистоты в вакууме. Образцы твердых растворов замещения с содержанием составов элементов железа и хрома в интервале концентраций $0 \le x \le 0,15$ составов $Sb_{2-x}Cr_xTe_3$, $Sb_{2-x}Fe_xTe_3$ получены методом твердофазных реакций [5]. Температурно-временная последовательность синтеза схематически представлена на рисунке 1.

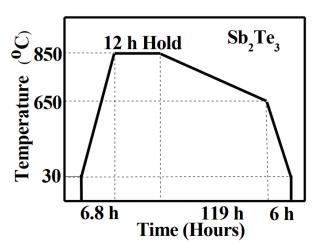


Рисунок 1- Изменение температуры со временем синтеза Sb_2Te_3 , $Sb_{2-x}Cr_xTe_3$, $Sb_{2-x}Fe_xTe_3$.

Образцы после синтеза представляли собой плотные слитки светло-серого цвета.

Результаты рентгеноструктурного анализа

Методом дифракции рентгеновских лучей в $Cu\ K_a$ - излучении при комнатной температуре установлено, что синтезированные составы обладают кристаллической структурой ромбоэдрической сингонии, пространственной группы S.G.: R3m.

На примере состава Sb_2Te_3 , на рисунке 2 приведена рентгенограмма, характерная для синтезированных составов твердых растворов замещения $Sb_{2-x}Cr_xTe_3$, $Sb_{2-x}Fe_xTe_3$.

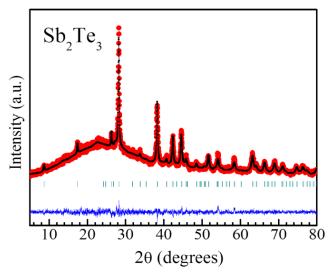


Рисунок 2 — Рентгенограмма базового соединения Sb_2Te_3 .

Выявлено, что все рефлексы, наблюдаемые на рентгенограммах синтезированных составов, находится в корреляции со сведениями международной базы данных PCPDFWIN v.2.00, JCPDS 1998 (card 65-3678, 15-08774, 71-0393, 89-6185). Определены параметры элементарных кристаллических ячеек, величины осевых соотношений c/a и их объём. Установлено, что параметр a элементарной ячейки заключен в интервале значений 4,23 $\mathring{A} < a \le 4,25 \mathring{A}$, величина параметра c имеет значения в пределах $30,11\mathring{A} < c \le 30,33\mathring{A}$, изменение осевого соотношения заключено в интервале величин $7,07 < c/a \le 7,12$. Величина объёма элементарной ячейки изменяется от 475,54 \mathring{A} до 469,55 \mathring{A} \mathring{A} .

Выводы

Анализ полученных данных эксперимента методом дифракции рентгеновских лучей указывает на то, что элементарная кристаллическая ячейка исследуемых составов искажена в направлении кристаллической оси c. Величина параметра a элементарной ячейки практически не изменяется при замещении сурьмы ионами хрома и железа. Осевое соотношение c/a при этом также указывает на значительную деформацию элементарной кристаллической ячейки образцов синтезированных составов топологических изоляторов Sb₂Te₃, Sb_{2-x}Cr_xTe₃, Sb_{2-x}Fe_xTe₃. Параметр c и осевое соотношение c/a ромбоэдрической кристаллической структуры изменяются на 0.7- 0.8%.

Список литературы

- 1. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010). doi: 10.1103/RevModPhys.82.3045.
- 2. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011). doi: 10.1103/RevModPhys.83.1057.
- 3. Mal'shukov, A. G. & Chu, C. S. Spin Hall effect in a Josephson contact. Phys. Rev. B 78, 104503 (2008). doi: 10.1103/PhysRevB.78.104503.
- 4. Bocquillon, E. et al. Gapless Andreev bound states in the quantum spin Hall insulator HgTe. Nature Nanotechnology 12, 137–143 (2017). doi: 10.1038/nano.2016.159.
- 5. Янушкевич К.И. Твердые растворы монохалькогенидов 3d-металлов. Минск, (2009).-256 с.