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G - СЕТЬ КАК СТОХАСТИЧЕСКАЯ МОДЕЛЬ  
СЕТИ ПЕРЕДАЧИ ДАННЫХ

Т. В. РУСИЛКО1)

1)Гродненский государственный университет им. Янки Купалы,  
ул. Ожешко, 22, 230023, г. Гродно, Беларусь

Целью статьи является математическое моделирование сети передачи данных, состоящей из оконечных 
устройств, соединенных устройствами маршрутизации и каналами передачи данных. В качестве стохастической 
модели предлагается использовать замкнутую экспоненциальную G-сеть массового обслуживания с однолиней-
ными узлами, в которой циркулируют положительные заявки и сигналы. Модель исследуется в асимптотическом 
случае при большом числе обрабатываемых заявок. Применяемый математический подход позволяет рассчитать 
основные статистические характеристики марковского процесса, описывающего состояние модели, а также анали-
тически восстановить его нормальную функцию плотности распределения вероятностей на основе метода гауссова 
приближения. Результаты исследования могут быть полезны для расчета показателей производительности сети 
передачи данных как в переходном, так и в стационарном режиме, а также для проектирования и оптимизации 
сетей передачи данных.

Ключевые слова: G-сеть; сеть передачи данных; сеть массового обслуживания; асимптотический анализ; гаус-
сово приближение; математическое моделирование.
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The primary objective of this paper is the mathematical modelling of a data network consisting of terminal devices 
connected by routing devices and data links. A closed exponential G-network of single-server queueing nodes with posi-
tive requests and signals is used as a stochastic model. The model is studied in the asymptotic case of a large number of 
requests being processed. The mathematical approach used makes it possible to calculate the main statistical characteris-
tics of a Markov process describing the model state, as well as to reconstruct analytically its normal probability density 
function based on the Gaussian approximation method. The results of the study allow us to analyse the data network 
performance in both transient and steady state. The areas of implementation of the research results are the pre-design of 
data networks and solving problems of their optimisation.
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Introduction
To date, the development of technology has led to the widespread use of systems that provide parallel and 

decentralised data processing. Examples of such systems are multiprocessor devices, distributed databases, grid 
systems and data networks. A characteristic feature of these systems is the set of incoming tasks that are quite 
simple to process. These tasks come to the system nodes, requesting resources for processing. The required 
transformations are performed using resources, after which the task is considered completed and the resources 
are released. Due to the peculiarities of such systems, it is necessary to create new and modify existing methods 
for their analysis and for solving the problems of increasing their efficiency.

The transfer and processing of data is the field of activity of a large number of companies. Network systems 
and data processing applications are ubiquitous, so the study of the functioning of these systems is relevant. 
Various mathematical models can be used for research, including models belonging to the queueing theory. 
Queueing networks are effective mathematical models for studying discrete probabilistic systems with a net-
work-like structure. A queueing network is a collection of interdependent queueing systems (nodes) that pro-
vides transfer and processing of requests. The object of investigation in this paper is a stochastic data network 
model in the form of a G-network.

G-networks are generalised queueing networks of queueing nodes with several types of requests: positive 
requests, negative requests and, in some cases, triggers. Negative requests and triggers are not serviced, so 
they are identified as signals. When a negative request arrives at a node, one or a group of positive requests 
is removed or «killed» in a non-empty queue, while the queued trigger displaces requests and moves positive 
requests from one node to some other node. G-networks were first introduced by E. Gelenbe and have been 
studied in a steady state since the 1990s [1–3]. Their field of application is modelling computing systems and 
networks, evaluating their performance, modelling biophysical neural networks, pattern recognition tasks 
and etc. [4 –7]. More details on the practical use of G-networks with signals are described in work [8].

The purpose of this paper is the mathematical modelling and efficiency analysis of the data network using 
a closed exponential G-network with signals. An asymptotic analysis of the model is carried out, which implies 
an approximation method of the queueing network study under the assumption of a large but limited number 
of requests [9 –11]. The mathematical approach used in this article is based on a discrete model of a continuous 
Markov process and the theory of diffusion approximation of a Markov process [12; 13].

Model description. Formulation of the problem
The focus of this paper is the data network consisting of terminal devices, connected by routing devices and 

communication channels (data links). The function of terminal devices is the transfer and reception of data, as they 
are communication endpoints. Each terminal or routing device has many inputs and outputs. Each of the commu-
nication channels has one input and one output, which are connected to the inputs and outputs of the devices: 
they provide data transfer. Data are transmitted over the network in the form of discrete packets. The bandwidth 
of data links is limited. Network devices and channels process data packets at a limited rate.

In general, a payload (information useful to the user), a malicious code (malware) and a service information 
can be transmitted over data networks. By service information we mean commands that provide load balancing 
between devices. The load balancing is the process of distributing a set of packets over a set of network units, 
with the aim of making their overall processing more efficient and avoiding overloading some units.

The problem of mathematical modelling of such a data network can be solved using a G-network with 
signals. As a model of a data network, we will use a closed exponential G-network, consisting of n queueing 
nodes Si , i n=1, , and a fictitious request source S0. The node S0 plays the role of an external environment. 
Requests in the G-network correspond to data packets transmitted over the data network, positive requests are 
assigned to payload, signals are assigned to malware and service information. Assume that K homogeneous 
requests circulate in the G-network. Exponential single-server nodes Si , i n=1, , correspond to the terminal and 
routing devices, as well as network data links. The fictitious system S0 has K servers.

Each data packet can be in one of the following states corresponding to G-network nodes with the same 
number:

  • S0 – the data packet is in an external environment outside the data network;
  • Si – the data packet is in one of the devices or data links, i n=1, .

The transition of a request from the node S0 to the node Si, i n=1, , corresponds to the arrival of a packet in 
the network. The arrival request flow is divided into a flow of positive requests and signals. Requests arrive 
from the outside following a Poisson process with the rate λ0 k0, λ0 is the parameter, k0 is the number of requests 
in the node S0. The probability of payload packet arriving at the time interval t t t, �� ��  is �0 00k p t o ti

� � � �� � , 
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the arrival probability of packet containing malicious code or service information is �0 00k p t o ti
� � � �� � , i n=1, , 

p pi i
i

n

0 0

1

1
� �

�

�� � �� . A payload packet transfers from Si to Sj without modification with the probability pij
+, trans-

fers from Si to Sj as a packet containing malicious code or service information with the probability pij
−, or leaves 

the network with the probability p p pi ij ij
j

n

0

1

1� � �� �� �

�
� , i j n, , .=1

All queueing nodes Si, i n=1, , are single-server, the waiting buffer is unlimited. The service time of posi-
tive requests is exponentially distributed with the service rate µi, i n=1, . Requests are served according to the 
FIFO rule (first in first out). Signals arriving at a node are not served by the node servers. A signal arriving at 
the node Si either instantly moves a positive request from the system Si to the system Sj with the probability qij, 
note that in this case the signal is called a trigger, or destroys a positive request located at the same node Si with 
the probability q qi ij

j

n

0

1

1� �
�
�  and immediately leaves the network. 

The state of this G-network at the time t is represented by a random process

k t k t k t k tn� � � � � � � � � �� �1 2, , , ,

where k ti � � is the number of requests (data packets) in the node Si at the time t, 0 � � � �k t Ki , i n=1, , t� ��� �0, . 

It is obvious that the number of requests serving in the G-network at the time t is k t K k ti
i

n
� � � � � �

�
�
1

0
. The al-

location of data packets according to possible states at the time t fully describes the state of the data network 
at that time. Accordingly, the allocation of requests by queueing nodes completely determines the state of the 
G-network used as the data network model. Taking into account the above-described, the process k t� � is a con-
tinuous-time Markov process on the finite state space.

Using the technique described in works [9 –16], it is possible to derive a set of differential equations for the 
main statistical characteristics of a random process k t� � in the asymptotic case of a large number of requests. 

Asymptotic analysis of the network model
The discrete (discontinuous-state) Markov process k t� � is used to determine the state of the G-network 

under study. In this paper, the passage to the limit from a Markov chain k t� � to a continuous-state Markov pro-
cess � t� � is considered. In contrast to discontinuous processes, continuous processes in any small time interval 
�t � 0 have some small change in the state �x � 0. The mathematical approach used in this paper is based on 
a discrete model of a continuous Markov process described in many books on the theory of diffusion Markov 
processes (see, for example, [13]).

Theorem. In the asymptotic case of a large number of requests K the probability density function p x t,� � of 

the random process � t
k t
K

k t
K

k t
K

k t
K
n� � � � �

�
� � � �

�
� ��

�
�

�

�
�

1 2
, , ,  provides that it is differentiable with respect to t 

and twice continuously differentiable with respect to xi , i n=1, , satisfies up to � �2� �, where � � 1
K
, the multi

dimensional Fokker – Planck – Kolmogorov equation

 
� � �

�
� � �

�
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� �

�
�

p x t
t x

A x t p x t
x x

B x t p x t
i

i
i

n

i j
ij

,
, , , ,

1

2

2

� �� �� �
�
�
i j

n

, 1

 (1)

with drift coefficients
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and diffusion coefficients

B x t x p p xii i
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where δji is the Kronecker delta, i j n, , .=1
P r o o f. First of all, we consider all possible ways of changing the state of the Markov random process k t� � 

in a small time ∆ t. Let us introduce a n-vector of the form Ii
i

�
�

�
�
�

�

�
�
�

� �0 0 0 1 0 0 0, , , , , , , ,

� �� ��
 and the Heaviside 

function

� x
x
x

� � �
�
�

�
�
�

1 0

0 0

, ,

, .

As mentioned above, the process k t� � is a continuous-time Markov process on the finite state space. The as-
sumptions made in the model description determine that in the short time ∆t the Markov process k t k t� � � � �,  
can make one of the following transitions:

  • from the state k I ti�� �,  to the state k t t, � �� � with the probability

�0
1

01K k t p t o ti
i

n

i� � � �
�

�
��

�

�
�� � � �

�

�� � � ,

that corresponds to a payload packet arrival from the node S0 to the node Sn + 1;
  • from the state k I ti�� �,  to the state k t t, � �� � with the probability

�

�

0

1

0 0

0

1

1 1

K k t p q t

k t p p

i
i

n

i i

i i i ij

� � � �
�

�
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�

�
�� �
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�

�� �

min ,
�� � � �� �� �� � � � �1 � k t t o tj � � ,

which is possible when a packet containing malicious code arrives from the external environment S0, when 
a payload packet is routed from Si to the external environment S0, or when a payload packet is transmitted 
as a signal from Si to the empty node Sj, i j n, , ;=1

  • from the state k I I ti j� �� �,  to the state k t t, � �� � with the probability

� �i i ij i
i

n

i ijk t p K k t p qmin ,� � �� � � � � �
�

�
��

�

�
��

�

�
�
�

�

�
�
�

�

�

��1 1 0

1

0 �� �t o t� � �,

which is possible when a payload packet is transferred from the system Si to the system Sj without modification 
or when a signal (trigger) arrives from the external environment S0 to Si and this trigger moves the payload 
packet from Si to Sj, i j n, , ;=1
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  • from the state k I I ti j� �� �,  to the state k t t, � �� � with the probability

�i i ij jk t p q t o tmin , ,� � �� � � � ��
1 1 0� �

which corresponds to the transfer of a payload packet from the node Si to the node Sj, i j n, , ,=1  as malware;
  • from the state k I I tIi j s� �� �� ,  to the state k t t, � �� � with the probability

�i i ij jsk t p q t o tmin , ,� � �� � � � ��
1 1 � �

when a payload packet moves from the node Si to the node Sj as a signal (trigger) that moves the packet from Sj 
to Ss, i j s n, , , ;=1

  • from the state k t,� � to the state k t t, � �� � with the probability
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which corresponds to no packets transfer;
  • from other states to the state k t t, � �� � with the probability o t�� �.

With regard to the transitions listed above in the short time ∆ t, using the law of total probability, the follo-
wing set of equations is valid for the probability P k t P k t k, :� � � � � �� �
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Data networks typically handle a large number of data packets. In connection with this, we proceed to the limit 

from the Markov chain k t� � to the continuous-state Markov process � t
k t
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when K tends to be very large number. The state space of the relative vector � t
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The increment of ��i t� � in the short time ∆ t → 0 is ∆ xi = ε, where � � 1
K
. As K → ∞, the increment of ��i t� � 

decreases, and in any small time interval ∆ t → 0 the process ��i t� � has some small change in the state ∆ xi → 0. 
We can assume that the limiting distribution of ��i t� � is continuous. The vector � t� � will be continuous-time 
continuous-state Markov processes with a probability density function p x t, .� �  The probability density func-
tion satisfies the asymptotic relation
 K P k t K P xK t p x t x Xn n

K, , , , .� � � � � � ��� � � �
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 (3)

Realising the passage to limit (3) for equation (2), assuming, � � 1
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If p x t,� � is a twice continuously differentiable function with respect to x, then we can use the second 
degree Taylor series of functions p x e ti�� �, , p x e e ti j� �� �, , p x e e ti j� �� �,  and p x e e e ti j s� � �� �,  at 
a point x [9; 11]. Substituting the above-mentioned Taylor series into equation (4), having grouped the terms in 
the resulting equation, we conclude that compact mathematical expression (1) is valid. The theorem is proven.
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Equation (1) is known as the multidimensional Fokker – Planck – Kolmogorov equation. The drift coef-
ficients A x ti ,� � characterise the rate of change of random process � t� �. The diffusion coefficients B x tij ,� � 
characterise the rate of change in the variance of the considered process � t� �. Note that the drift and diffusion 
coefficients depend linearly on x.

The main statistical characteristics  
of a Markov process describing the model state

The probability distribution of the vector � t� � given by the probability density function p x t,� � is a com-
plete and exhaustive characteristic of the G-network state at the time t. However, such an exhaustive charac-
teristic cannot be found, since equation (1) is not explicitly solvable. Therefore, instead of the probability 
density function p x t, ,� �  we will use an incomplete approximate description of a random process � t� � using 
its moments. The probability distribution of a random process is usually characterised by a small number of pa-
rameters, which also have a practical interpretation. It is often enough to know what «average value» of � t� � is, 
how far from this average value the values of � t� � typically are, and how the statistical relationship between 
its components �i t� � and � j t� � is characterised.

The minimum set of parameters by which an n-dimensional random process can be characterised is as follows.
1. The expected values E t t E t t E t tn n� � � � � �1 1

1

2 2

1 1� � � � � � � � � � � � � � � �� � � � � �
, , , . Expectations are non-random 

functions of the time that characterise the mean trajectories of the process components around which they are 
grouped.

2. The variances D t D t D tn� � �1 2� � � � � � �, , , . Variances are non-random functions of the time that charac-
terise the spread or dispersion of process realisations relative to the expectations.

3. The correlation moments 
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They characterise the pairwise correlation of the components included in the vector � t� �. The notation 
� � �ij i jt E t t1 1,� � � � � � � � �� � is the mixed raw moment of the second order, i j n, , .=1

It was found [16] that the set of ordinary differential equations for the first-order and second-order raw 
moments of the state vector elements �i t� � is
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 (5)

It is proven that the moments are determined with an accuracy of � �2� �, where � � 1
K
, from the set of 

ordinary differential equations (5). The solution of set (5) with a certain initial condition, firstly, makes it pos-
sible to predict the mean and the dispersion of the number of data packets at each model state with time, and, 
secondly, draw a conclusion about the correlation of the number of packets at different data network units with 
time. These results are useful in decision making and network load analysis. They are applicable with a speci-
fied accuracy in both transient and steady state, this is a fundamental advantage of the used asymptotic method.

In this paper, we restrict ourselves to considering only the set of differential equations for expected values 
�i t1� � � �, i n=1, , of the defined form
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In the asymptotic case of large K, the Gaussian approximation method [13; 17] can be used to analytically 
reconstruct the normal probability density function
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from the found moments of the process � t� � and to analyse this process using the normal density properties, 
K t� � �1  being the inverse covariance matrix [18].

Numerical example
Consider the data network with a router to which two terminal devices are connected via two data links. 

The mathematical model of this network will be the above-described G-network of four nodes (n = 4). Nodes 
S1 and S2 are data links, nodes S3 and S4 are terminal devices, the external environment S0 is a router. The struc-
ture of the G-network is set by the following non-zero elements of the transition matrices: p01 0 6

� � . , p01 0 2
� � . , 

p02 0 19
� � . , p02 0 01

� � . , p13 0 65
� � . , p13 0 01

� � . , p10 0 34= . , p24 0 02
� � . , p24 0 7

� � . , p20 0 28= . , p31 0 99
� � . , p31 0 01

� � . , 
p42 0 01
� � . , p42 0 99

� � . , q12 0 97= . , q10 0 03= . , q21 0 95= . , q20 0 05= . , q30 1= , q40 1= .

Let the number of data packets not exceed K = 100 000, and the network operation be specified by the 
following parameters: the arrival rate is λ0 = 0.001; the number of node servers are m1 = 1, m2 = 1, m3 = 1, 
m4 = 1; the service rates are µ1 = 10, µ2 = 10, µ3 = 100, µ4 = 100; the initial placement of packets is � �i ijt t i j1 1 1

0 0 1 4
� � � �� � � � � � �, , , , .

,

� �i ijt t i j1 1 1
0 0 1 4

� � � �� � � � � � �, , , , .
,

Let us solve set (5) by numerical methods under the above initial condition. The figure shows a graphical 
solution of set (5) for �1

1� � � �t  and � �1

1

1

� � � � � � �t D t , which allows us to observe the dynamics of the average 
relative number of packets at the node S1 ant its variation.

The figure demonstrates that the process does not reach the steady state in the considered time interval. 
At time t = 30 000, the average number of packets at the node S1 is K t�

1

1
100 000 0 457 5 45 750

� � � � � � �. . 
It can be concluded that the efficiency of the data network is limited by the data link capacity modelled by the 
queueing system S1. It is recommended to expand this data link, which is the network bottleneck. Similarly, we 
can get the results for the rest of the network nodes.
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The second-order moments found from set (5) allow us to investigate the correlation between the number 
of requests in different network nodes with time:

r t r t t
t t t

D t D
ij i j

ij i j
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,1 1 1 1

jj t
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� �
�, , , .1

Thus, the calculation results can be useful in analysing and making decisions regarding the operation of the 
data network with different parameters. Data network performance indicators and some revenues can be found 
using mathematical methods for calculating the nodal characteristics of queueing networks [19; 20].

Conclusions
In this paper, the queueing G-network with signals was presented as a stochastic data network model. Obvious-

ly, both payload and malware, as well as service information, can be transmitted over a data network. Thus, 
a closed Markov queueing G-network is an appropriate mathematical model for a data network. Requests in 
the G-network correspond to data packets transmitted over the data network, positive requests are assigned to 
payload, signals are assigned to malware and service information. The model was studied in the asymptotic 
case of a large number of requests. As a result, the main statistical characteristics of the number of requests 
at each network unit were found in both transient and steady state. In particular, it is possible to investigate 
the correlation between the number of requests in different network nodes with time. The presented technique 
allows us to reconstruct the normal probability density function of the state process � t� � based on the Gaussian 
approximation method. These results allow us to analyse the network efficiency and load balancing, i. e. dis-
tribute incoming traffic between several devices to improve the stability of their operation. 
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