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PaccmoTpeHo HenMHeifHOe mapaboii4eckoe ypaBHeHHE ¢ HaMATbIo u, = Au + au? qu(x, t)dt—bu" s (x,1)e
0

= Jk(x, Vv, t)ul(y, t)dy U Ha-
0Qx(0,+0) Q
YaJIbHBIMU JTaHHBIMHA u(x, 0) = uo(X), x € Q, tne a, b, q, m, | — NONOXUTENBHBIC TOCTOSHHBIC; p > 0; () — orpaHmYeH-
Hast o6nacTh B mpoctpanctBe R” ¢ mmagkoit rpanuieit 6€); v — eanHUIHAsS BHENTHAS HOpMaib K 0Q. HeorpurarensHast
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6u(x, t)

e Q x (0, +00) C HENMHEHWHBIM HEJIO0KAIbHBIM T'paHUYHBIM YCJIOBUCM
A%

Ouy(x
9TOM OHa YJOBJECTBOPSET yCIOBUIO % = Ik(x, v, O)ué ( y)dy pu x € 0Q). PaccMOTpEHBI KITACCUYECKAE PEIICHHS.
v
Q

VYCTaHOBICHO CYIIECTBOBAHUE JOKAIBHOTO MAaKCHMAJIBHOIO PEIICHUS UCXOMHOW 3a/aud. BBeneHbl MOHATUS BEPXHETO
1 HWXKHEro pemieHuil. IlokazaHo, 4TO NpH BHINOJIHEHUH ONPEEICHHBIX YCIOBUI BEpXHEE PEIICHUE HE MEHbBIIIE HUXKHETO
pemenus. HaliieHbl ycaoBUsI MOJIOKUTENBHOCTH penieHni. Kak ciencTBue MojaoKUTENbHOCTH PEIIeHUH U IPUHIUIIA
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INITIAL BOUNDARY VALUE PROBLEM
WITH NONLOCAL BOUNDARY CONDITION
FOR A NONLINEAR PARABOLIC EQUATION WITH MEMORY

A. L. GLADKOV*

*Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

t
We consider a nonlinear parabolic equation with memory u, = Au + aupjuq (x, T)d’t — bu™ for (x, t) e Qx (0, +00)
0

. .. Ou(x,1) } L
under nonlinear nonlocal boundary condition = Ik(x, ¥, t)u ( ¥, t)dy and initial data u(x, 0) =u, (x),
8Qx(0,4x) Q
xeQ, where a, b, g, m, [ are positive constants; p > 0; Q is a bounded domain in R"” with smooth boundary 6; v is unit
outward normal on 0Q. Nonnegative continuous function & (x, ¥, t) is defined for x € 0Q, y € Q, > 0, nonnegative func-

tion u,(x) e C' (S_!), while it satisfies the condition aug_(x) = Ik (x, v, 0)ug(»)dy forx € 0. In this paper we study clas-
v
o

sical solutions. We establish the existence of a local maximal solution of the original problem. We introduce definitions
of a supersolution and a subsolution. It is shown that under some conditions a supersolution is not less than a subsolution.
We find conditions for the positiveness of solutions. As a consequence of the positiveness of solutions and the comparison
principle of solutions, we prove the uniqueness theorem.

Keywords: nonlinear parabolic equation; nonlocal boundary condition; existence of a solution; comparison principle.

Introduction

In this paper we consider the initial boundary value problem for the nonlinear parabolic equation
t

utzAu+aup_[uq(x, t)dt—bum, xeQ, t>0, (1)
0
with nonlinear nonlocal boundary condition
ou(x,t
%:J‘k(x,y, t)ul(y, t)dy, xe 0Q, t>0, (2)
\Y
Q

and initial datum
u(x, 0)=u0(x), xeQ, (3)
where a, b, g, m, [ are positive constants; p > 0; Q is a bounded domain in R" (n > 1) with smooth boundary 0<;

v is unit outward normal on 0€2.
Throughout this paper we suppose that the functions & (x, y, 7) and u,(x) satisfy the following conditions:

k(x, ¥, t)eC(@Q x Q x [O, +oo)), k(x, y, t) >0,

uo(x)ecl((_l), uo(x)ZO in Q, 6u§—\(/x): Jk(x, v, O)M(I)(y)dy on 0Q.
Q

Initial boundary value problems with nonlocal terms in parabolic equations or in boundary conditions have
been considered in many papers (see, for example, [1-17] and the references therein). In particular, the initial

boundary value problem (1)—(3) with a = 0 was considered for 5=5(x, t)>0 and b=>5(x, £)<0 in publica-
tions [18; 19] and [20; 21] respectively. Problem (1)—(3) with p = 0 and nonlocal boundary condition

u(x, t)=jk(x, v, t)u[(y, t)dy, xeoQ, t>0, 4)
Q

was investigated in work [22].
The aim of this paper is to study problem (1)—(3) for any positive p, g, m and /. We prove existence of
a local solution of problem (1)—(3). Comparison principle and the uniqueness of a solution are established. We

show the nonuniqueness of solution of problem (1)—(3) with uo(x) =0 also.
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Local existence

In this section a local existence theorem for problem (1)—(3) will be proved. We begin with defini-
tions of a supersolution, a subsolution and a maximal solution of problem (1)—(3). Let Oy = Q x (0, T ),
Sp=0Qx(0,T), I =S, 0 Qx{0}, T>0.

Definition 1. We say that a nonnegative function u(x, t) € Cz’l(QT) nCh? (QT U FT) is a supersolution
of problem (1)—(3) in Q;if

t

u, > Au + aupjuq(x, ‘C)d‘t - bu”, (x, t) € O, (5)
0
auéx, t) > fk(x, v, t)ul(y, t)dy, (x, t) esS,, (6)
v o)
u(x, O) > uo(x), xeQ, (7

and a nonnegative function u(x, t) € Cz’l(QT) nCh° (QT U FT) is a subsolution of problem (1)—(3) in Q7
if >0 and it satisfies inequalities (5)—(7) in the reverse order. We say that u(x, t) is a solution of prob-
lem (1)—(3) in QO if u(x, t) is both a subsolution and a supersolution of problem (1)—(3) in O~

Definition 2. We say that u(x, t) is a maximal solution of problem (1)—(3) in Q; if for any other solution
w(x, t) of problem (1)—(3) in Q7 the inequality w(x, ) <u(x, 1) is satisfied for (x, 1) € Oy U T

Let {&,, | be decreasing to zero a sequence such that 0 <¢,, < 1 and ,, — O asm —> 0. Fore =¢,,,m=1,2, ...,
let u,, (x) be the functions with the following properties:

Uy, (x) e Cl(ﬁ), Uy () 2 &, up, (x) 2 uOSj(x) fore, >¢,,
Uy, (x) = up(x) as € —> 0 uniformly in Q, (8)
Ot ( x
% :g'[k(x, Vv, O)u(l)s(y)dy, x € 0Q.
Let us consider the following auxiliary problem:

t
u=Au + aupjuq(x, t)dt —bu" + be", (x, 1) € O,
0
Ou(x, t)
ov

u(x, 0) =u08(x), xe Q,

= jk(x, v, t)ul(y, t)dy, (x, l)e S7, )
Q

where ¢ = ¢,,. The notion of a solution u, for problem (9) can be defined in a similar way as in the definition 1.
Theorem 1. Problem (9) has a unique solution in Q for small values of T > 0.

Proof. Denote K = sup k (x, ¥, t) and introduce an auxiliary function y (x) with the following properties:
0Qx O

\V(x) € CZ(Q), irglzf\v(x) > max(sgpuos(x), lj, igg 5\gix) > Krnax(l, exp(l - 1))5[ \yl(y)dy.

We put

w(x, t) = exp(oct)\y(x),
where o will be defined below.
To prove the existence of a solution for problem (9) we introduce the set

B= {h(x, t) € C(QT) 1e< h(x, t)S w(x, t), h(x, O): uOS(x)}

and consider the problem
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t
u,=Au + aU”JU" (x, T)d‘t — bu" + be", (x, t) € Or,
0

J.k(x V, t t)dy, (x, t)eST, (10)

Q

u(x, O)=u08(x), xe Q,

where v € B. It is obvious, B is a nonempty convex subset of C (QT ) By classical theory [23] problem (10) has
asolution u e C*'(Q;) N C" O(QT ) for small values of 7. Let us call 4(v)=u, where v € B, and u is a solution
of problem (10). In order to show that 4 has a fixed point in B we verify that 4 is a continuous mapping from B
into itself such that 4B is relatively compact. Obviously, the function u (x, t) = ¢ is a subsolution of problem (10).

Let us show that w(x, t) is a supersolution of problem (10) for suitable choice of oo > 0 and 7> 0.
Indeed,

t t

—Aw — aupjuq(x, ‘C)d‘t +bw" —be" 2w, — Aw — awp.[wq(x, r)dt + bw™ — be" >
0 0

exp(qar) —1

Z b(exp(moct)\um(x) - 8'”)2 0
qo.

> exp(oct)[oc\y(x) - A\y(x)} — aexp( par)

for (x, 1) e Oy if

1 _ A\y(x) 1
o >max4—, aexp(1)supy?* 4! (x) + sup }, r<—
{pemntimprr e S re

On the boundary S, we have
6w(x, t)

PV jk(x, y, t)v!(y, t)dy > exp(ar) K max(1, exp(l—l))jwl(y)dy -

Q
—Kexp loct I\V dy>0

forT' < l The inequality
o
w(x, 0) - uog(x) 20
holds for x € Q. Then w(x, t) is a supersolution of problem (10) and thanks to a comparison principle for
problem (10) A maps B into itself.
Let G(x, Vi t— r) denote the Green’s function for a heat equation with homogeneous Neumann boundary
condition. The Green’s function has the following properties (see, for example, [24]):

G(x,y;t—r)ZO, x,yeQ, 0<t<t,
fG(x,y;t—r)dyzl,xe Q0<1t<t. D

It is well known that u(x, t) is a solution of problem (10) in QO if and only if for (x, t) €O,
u(x, t) = IG(x, Vs t)uog(y)dy +
Q

+J£IG(X,y;t—‘t)(aup(y,‘t)foq( )dc+b(s —u"(y, ))]dyd‘c-}-

0Q 0

+f [ G(x.& 1=7)[k(& y,0)0! (3, ¥)dvdS,dr. (12)
00Q Q

We claim that 4 is continuous. In fact let v, be a sequence in B converging tove B in C (QT ) Denote
u, = Av,. Then by (11) and (12) we see that
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T

“ (v yst-1 { (o”(y, 1) - (, T))qu(y, o)do +

0

lu —u | =

T

+ avf(y, r)f(oq(y, o) —vi(y G))dc—b(um(y, ©)—uy'(y, r))}dydr +

0

t

+j I G(x, & t—r)jk(é, v, T)(o’(y,r)—vi(y, ’E))ddeidT <

00Q

<aT sup‘up Up‘supw +aT sup‘oq Uq‘supwp
Or Or Or Or

+ 0T suplu — uy| +KT|Q|sup‘ol— Vs
Or Or

. 1 .
where 0 = mbmax(s’"l, sup wmfl(x, ;)]; T <min {1, %} Now we can conclude that u, converges to u in

_ Or
C(Or)ask— .

The equicontinuity of AB follows from equation (12) and the properties of the Green’s function (see, for
example, [25]). The Ascoli — Arzela theorem guarantees the relative compactness of 4B. Thus we are able to
apply the Schauder — Tychonoff fixed point theorem and conclude that 4 has a fixed point in B if 7T is small.

Now if u, is a fixed point of 4, u_ € c*! (QT) nC" O(QT) and it is a solution of problem (9) in Q. Uniqueness

of the solution follows from a comparison principle for problem (9) which can be proved in a similar way as
in the next section. Theorem 1 is proved.
Now, let &, > €. Then it is easy to see that u,_ (x, t) is a supersolution of problem (9) with € = €,. Applying to

problem (9) a comparison principle we have u, (x, ) <u, (x, t). Using the last inequality and the continuation

principle of solutions we deduce that the existence time of u, does not decrease as € — 0. Taking € — 0, we

get uy,(x, 1) = lin%)us(x, 1) 20 and u,,(x, t) exists in O for some 7> 0. We know that u,(x, ) is a solution of
€ —>

problem (9) in Q; if and only if for (x, t) Sy
ug(x, 1)= IG(x, i g, (y)dy +
0

T

+J£J.G(X,y;l—t)(auf(y,r)fug( )dc+b(8 —u'(y, ))dedu_

[ [ G(x & t=7)[ k(& y, 7)ul (3, T)dvdS,dr. (13)

000
Passing to the limit as € — 0 in equation (13), we obtain by dominated convergence theorem

uM(x, t)z IG(x, V5 t)uo(y)der

+ _“G(X, Vit — r)(au;ﬁ(y, T)_fuf@ (y, G)dG— buy, (y, T)dedTJr

00
+j.[ x Et—r j (E_\,y, I)ujlw(y, r)ddegdr
000
for (x, t) € Q. Therefore, uM(x, t) is a solution of problem (1)—(3). Let u(x, t) be any other solution of
problem (1)—(3). Then by comparison principle from the next section u,(x, #)>u(x, t). Taking € — 0, we

conclude u,,(x, t)>u(x, t). Now we proved the following local existence theorem.
Theorem 2. Problem (1)—(3) has a maximal solution in Q for small values of T.
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Comparison principle

Theorem 3. Let 17(x, t) and y(x, t) be a supersolution and a subsolution of problem (1)—(3) in QO respec-
tively. Suppose that g(x, t) >0 orﬁ(x, t) > 0in O U I ifeither min(q, l) <lorO<p<1. Then ﬁ(x, t) > g(x, t)
in Qp UI7.

Proof. Suppose that min(p, ¢, /)>1. Let T, € (0, T') and u,,(x) have the same properties as in (8) but
only uy,(x)—>u(x, 0) as € — 0 uniformly in Q. We can construct a solution u v (X, 1) of problem (1)—(3) with
uy(x)=u(x, 0) in the following way: u,,(x, t) = 11_1)110 uy(x, t), where u,(x, t) is a solution of problem (9). To es-
tablish the theorem we will show that

L_t(x, t)SuM(x, t)SL?(x, t), (x, t)GQTO. (14)
We prove the second inequality in relations (14) only since the proof of the first one is similar. Let (p(x, r) €
eC 2’1( QTO ) be a nonnegative function such that
o¢(x, t)
ov

for (x, t) €Sp. If we multiply the first equation in problem (9) by (p(x, t) and then integrate over Q, for
1€ (0, T, ), we obtain

=0

'“um o(x, T)dxdt=
0Q

T

1
”'L + au! (x, T)jug(x, G)dG + b(sm - u;”(x, r))}(p(x, r)dxdﬂ:.
0Q 0
Integrating by parts and using Green’s identity, we have

Ju(x t) (xtdx<j xO (x,O)dx+

t
+“. x, 1)@, (x, T)+u,(x, 1)A¢(x, r))dxdt+
00

T

+fj[au X, T Iu X, G d6+b(8 —u! (x, r))}p(x, ’E)dxd‘[+

0

+II X, T jk X, 0,1 ‘E)ddexdT. (15)
080

On the other hand,  satisfies (15) with reversed inequality and with & = 0. Set w(x, 1) =u,(x, t)—u(x, 1).
Then w(x, t) satisfies

0 —

w(x, t)(p(x t J. X, 0 (x O)dx+8 bJ{J.(p(x, r)dxd'ch

+J£_[w(x, r)((pr(x, 1) + Ag(x, T)—mbe{"*l(x, T))(p(x, t)dxdt +

au®(x, 7)o(x, T jqeq l x, o) w(x, G)dedxd’C-l—

|
( |

t
+II ap®y ! (x, 1) Iu X, © dc}dxdt+
00 0
t
+I I (p(x, r)jk(x, V, T)leg_l(y, r)w(y, ’C)ddexdT, (16)
060 Q
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where 6,(x, ), i = 1, 2, 3, 4, are some continuous functions between u,(x, #) and i (x, ). Note here that by
hypotheses for k(x, y, t), u,(x, t) and u (x, t), we have

0< ﬁ(x, t) <M, sSug(x, I)SM, (x, t)e QTO,

_ 17
0<k(x,y,1)<M, (x,y,t)e0QxQx[0, T], (17

where M is some positive constant. Then it is easy to see from (17) that 0" '(x, t), 8 '(x, 1), 65 ~'(x, 1)
and Ga_l(x, 1) are positive and bounded functions in QTO and, moreover, an_l(x, 1)< max{sm_l, M '”_1},
0 '(x, 1) <M, 00 (x, 1) <MP !, 0 (x, 1) <M' " Define a sequence {a,} in the following way:
a,(x, t)e Cm(QTO ), a,(x, t)20and a, (x, #) > mb0" "' (x, t) as n —> w0 in LI(QTO ) Now, we consider a back-
ward problem given by

¢, +Ap—a,p=0, (x, r)e 0,

o9(x, 1)
ov

o(x, 1)=y(x), xe Q,

where y(x) e Cy' () and 0<y/(x)<1. Denote a solution of problem (18) as @, (x, t). Then by the standard

=0, (x ’C)ES (18)

theory for linear parabolic equations (see, for example, [25]), we find that (pn(x, r) eC*! (Q, ), 0<o, (x, ’E) <1
in Q. Putting ¢ = ¢, in inequality (16) and passing to the limit as n — oo, we infer

jw(x, t)\y(x)dx < jw+(x, O)dx +¢"bT, |Q| +
Q Q

+{a(p+q)Mp+q—1T0+l|6Q|MI}J€Iw (x, 1)dxdr, (19)
00

where w, = max (w, 0); in R” " and Q in R” respectively. Since

inequality (19) holds for every \y(x), we can choose a sequence {\yn(x)} converging in LI(Q) to
() 1, if w(x, 1)>0,
Y= 0, if w(x, t)SO.

Passing to the limit as 7 — oo in inequality (19), we obtain

Iw+(x, t)dx < Iw+(x, 0)dx + &"bT,) | +
Q o)

t
+ {a(p + q)M’”q_lTo + l|8§2|Ml}J.J.w+ x, T)dxdr, t€ (0, T ].
0Q
Applying now Gronwall’s inequality, we have
fw+(x, 1)dx < (J.er(x, 0)dx + €"bT, |Q|}exp[{a(p +q)MPIT + l|aQ|Ml}t}
Q Q

forte (0, T, ] Passing to the limit as € — 0, the conclusion of the theorem follows for min( p,q, ! ) >1. For the
case p =0, min(q, /) >1 we prove the theorem in the same way. If min(qg, /) <1 or 0 < p < 1 we can consider

w(x, t)=u(x, t)—u(x, t) and prove the theorem in a similar way using the positiveness of a subsolution or

a supersolution. Theorem 3 is proved.
Remark. For similar problem (1), (3), (4) with p = 0 the authors of work [22] suppose in the comparison

principle that u(x, £)>0 or #(x, £)>0in Qp U I} if min(q, m, /) <1.
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Lemma 1. Let u(x, t) be a solution of problem (1)—(3) in Q. Let uo(x) Z0inQandm=>1. Then u(x, t) >0
in QTUST.lqu(x)>0in§_2andp<m< 1 then u(x, t)>0in Qp U Iy.
Proof. Let uy(x) = 0 in Q and m > 1. We denote

M =supu(x, t),
O

where M is some positive constant; 7, € (O, T). Now we put h(x, t) = u(x, t)exp(lt) with A >bM™ ! Then
in Or, we have

hy = A =exp () (Mt + u, = Au) > uexp(ht)(A - bu" ") 2 0.
Since h(x, O) =u0(x) >0, xeQ, and uo(x) = 0 in Q, by the strong maximum principle h(x, t) >0 in 0.

Hence, u(x, £)>0 in Q. Let h(x), ,)=0 in some point (x,, #,) € S;. Then according to theorem 3.6 of

.. ah(x07 to) . . .-
work [26] it yields —a < 0, which contradicts boundary condition (2).
%
Let uy(x)>0in Q and p <m < 1. Then there exist T € (0, T') and & > 0 such that

u(x, t)>ein 0.

q \m-p _
and, moreover, u (x, t) =g, =min| g, [%} is the subsolution of problem (1)—(3) in O\ Q; with initial

function u(x, r) for ¢ = 1 instead of initial datum (3). Putting g(x, t) =g and u (x, t) = u(x, t) and arguing as
in the proof of theorem 3, we get
u(x, 1)>g in QTO forany T € (0, T).

Lemma 1 is proved.

As a simple consequence of theorem 3 and lemma 1, we get the following uniqueness result for prob-
lem (1)—(3).

Theorem 4. Let problem (1)—(3) have a positive in QOp U Iy solution or a solution in Oy either with non-
negative initial data in Q for min( p,q, 1l ) 21 or with positive initial data in Q under the conditions m > 1 or

p <m < 1. Then a solution of problem (1)—(3) is unique in Qy.
Now we will prove the nonuniqueness of solution of problem (1)—(3) with uy(x)=0 for / < min(1, m) or

p+ g <min(1, m). We note that problem (1)—(3) with u,(x) =0 has solution u(x, 1) =0.
Theorem 5. Let uo(x) =0 and either [ < min(l, m) and

k(x, Yoo to) >0 for any x € 0Q and some y, € 0Q and t, € [0, T) (20)

orp+qg< min(l, m) Then a maximal solution of problem (1)—(3) uM(x, t) =0in Q.

Proof. As shown in theorem 2 a maximal solution u,,(x, #) = lim u,(x, ¢), where u,(x, 1) is some posi-
tive in QT supersolution of problem (1)—(3). To prove the theorem we construct a subsolution u (x, t) =0
of problem (1)—(3) with uo(x) =0. By theorem 3 we have ug(x, t) > g(x, t) and therefore maximal solution
u M(x, t) = 0.

At first let /< min(l, m) and inequality (20) hold. To construct a subsolution we use the change of va-
riables in a neighbourhood of Q) as in work [27]. Let x be a point on Q. We denote by ﬁ()_c ) the inner unit
normal to 6Q2 at the point x. Since 0Q is smooth it is well-known that there exists 8 > 0 such that the mapping
y:0Q x [0, 8] > R" given by y(X, s) =X + sn(x) defines new coordinates (X, s) in a neighbourhood of 6
in Q.

Under the assumptions of the theorem, there exists 7 such that k(x, V, t) >0 fort,<t<t,+t,xe0Qand
y€V(y,), where ¥(y, ) is some neighbourhood of y, in Q.

Leti<aﬁ
1- 1-m

that 4 > 0,0 <& < 1and 0<T; < rnin(T— fos 1, 62). For points in 8Q x [0, 8] x (#y, 1, + T | of coordinates
()_c, s, t) define

form < 1and 3 >2 form> 1. Assume

form<landa>%formzl,2<[3<
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_ a s
g(x, S, t) A(t to) o H +

and extend u as zero to the whole of Qt with © = £, + T;,. Arguing as in work [18] we prove that u is the subso-
lution of problem (1)—(3) with uo(x) =0in Q..

Now we suppose that p + ¢ < min(1, m). Then it is easy to check that u (x, ) =¢" is the subsolution of prob-
lem (1)—(3) with uo(x) =0 in Q, for small values of t if

1

1=(p+q) m=(p+q)

Y > max

Theorem 5 is proved.
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