Как видно из таблицы, соединения системы Sb₂Te₃ — GeTe и Bi₂Te₃ — GeTe обладают относительно небольшими р. У интерметаллид**ов** Sb₂Te₃ — GeTc наблюдается слабая зависимость электросопротивления от давления. Более сильная зависимость отмечена у соединений Ві2Те1 — GeTe, в этом случае внешнее давление существеннее влияет на ширниу запрещенной зоны.

ЛИТЕРАТУРА

1. Абрикосов Н. Х., Банкина В. Ф., Порецкая Л. В., Скуднова Е. В., Чижевская С. Н. Полупроводниковые халькогениды и сплавы на их основе. М., 1975, c. 150.

2. Чижиков Д. М., Счастливый В. П. Теллур и теллуриды. — М., 1966, с. 213. Литвин Ю. А., Севрюков О. Н. Эксперименты и техника высоких газовых и тверлофазовых давлений. — М., 1978, с. 172.
Пол В., Варшауэр Д. Твердые тела под высоким давлением. — М., 1966,

c. 214.

5. Ohtani A., Seike T., Motobayashi M., Onodera A.- J. Phys. Chem. Sol., 1982, v. 43, № 7, p. 627.

Поступила в редакцию 24.01.83.

НИН ФХП БГУ им. В. Н. Ленина, Институт сверхтвердых материалов АН УССР,

NJK 771.534.55

Г. В. АЖАР, В. К. КАЛЕНТЬЕВ, В. В. ПАНСЕВИЧ. Г. А. БРАНИЦКИЯ, Р. С. БИКТИМИРОВ

СТРУКТУРОМЕТРИЧЕСКИЕ СВОИСТВА ГАЛОГЕНИДОСЕРЕБРЯНЫХ ПЛЕНОК С УМЕНЬШЕННЫМ СОДЕРЖАНИЕМ СЕРЕБРА ПРИ ИСПОЛЬЗОВАНИИ МЕДНЫХ ФИЗИЧЕСКИХ ПРОЯВИТЕЛЕЙ

Для получения фотографических изображений из неблагородных металлов на галогенидосеребряных слоях с уменьшенным содержанием серебра изображение с малой оптической плотностью, образующееся после обычного проявления и фиксирования, усиливают в растворах несеребряных (медные, никелевые, кобальтовые) физических проявителей [1, 2].

В настоящей работе рассматривается изменение структурометрических характеристик малосеребряного светочувствительного слоя при медном физическом проявлении.

Объектом исследования явились образцы малосеребряной фототехнической пленки (содержание серебра изменялось от 0,3 до 1,3 г/м²), изготовленной на основе монодисперсной бромосеребряной эмульсии с кубическими микрокристаллами размером 0,18 мкм по ребру и коэффициентом варнации микрокристаллов по размерам C_v=18 %. Отношение серебра к желатине в эмульсионном слое 0,9; содержание серебра в полносеребряном аналоге изучавшейся пленки 2,5 г/м2.

После экспонирования пленки проявляли в проявителе УП-2, фиксировали в 20 %-ном растворе тносульфата натрия, конвертировали в галогенид (обработка в растворе, r/л: $K_3Fe(CN)_6 - 60$, KBr - 6, $H_2O - до$ 1000 мл) и обрабатывали в растворах медного борогидридного (МБ) или медного формальдегидного (МФ) физического проявителя (усилителя). Рабочие растворы физических проявителей готовили смешением растворов А и Б 9:1. МБ (раствор А), г/л: CuSO₄·5H₂O — 25, трилон Б — 42, $H_{3}BO_{3}-12, NaOH$ до рН 10,7, H2O до 1000 мл; раствор Б, г/100 мл: NaBH4 - 0,5, NaOH - 4, H2O до 100 мл. МФ, раствор А, г/л: CuSO4 \cdot 5H2O - 70, глицерин - 65, трилон Б - 10, NaOH - 70, H2O до 1000 мл; раствор Б — 37 % СН₂О.

Разрешающую способность (R) слоев определяли на резольвометре РП-2М. Измерение средней квадратичной гранулярности (о_D) проводили по методике [3].

На рис. 1 приведена зависимость σ_D для оптической плотности $D_{0.85}$

Рис. 2. Зависимость разрешающей способности (R) от коэффициента пропускания (T) пленки с наносом серебра 0,9 г/м² при усилении в МБ (I, Z) и в МФ (I', Z') проявителях в течение 2 (I, I') и 8 (Z, Z') мин

от времени усиления пленки с наносом серебра 0,9 г/м² в МБ и МФ проявителях. В обоих случаях наблюдается рост σ_D в процессе усиления исходной оптической плотности. Однако необходнмо подчеркнуть, что несмотря на это σ_D малосеребряных образцов не только не превышает, но по мере уменьшения содержания серебра в слое даже оказывается значительно меньше, чем σ_D полносеребряной пленки при одном и том же значительно меньше, чем σ_D полносеребряной пленки при одном и том же

Содержа- ине се- ребра, г/м ^а	Физичес- кый про- явитель	Время усиления, мин	Фотографические характе- ристики			Структурометрические характе- ристики		
			S _{0,2} , лк-1.c-1	r	D _{max}	R, лин/мм	² D0.85	τ.30. %
2,5*		_	0,50	2,9	>3,0	215	4,5	50
1,3		_	0,45	2,2	2,1	290	2,3	_
1,3	МБ	6	0,65	6,0	>6,0	195	4,5	-
1,3	МΦ	6	0,60	3,0	3,0	195	3,2	-
0,9	-	-	0,35	1,7	1,9	315	2,3	60
0,9	МБ	6	0,65	5,0	>6,0	240	3,1	50
0,9	МΦ	6	0,50	3,7	2.9	240	2,8	50
0,3	_	-	0,10	0,4	0,5	350	-	_
0,3	МБ	6	0,40	2,7	2,5	290	2,6	_
0,3	МΦ	6	0,25	2.3	2,3	290	2,3	-

Влияние способа обработки на фотографические и структурометрические характеристики малосеребряной фототехнической пленки

* Данные относятся к полносеребряной пленке.

На рис. 2 изображена зависимость разрешающей способности пленки с наносом серебра 0,9 г/м² от величины коэффициента пропускания при различном времени усиления в МБ и МФ проявителях. Видио, что R_{max} в течение первых минут усиления, хотя и незначительно, уменьшается по сравнению с R_{max} неусиленного образца, имеющего малые оптические плотности. При дальнейшем увеличении времени усиления R_{max} остается практически неизменной (максимальное время проявления 10 мнн). Как следует из таблицы, по мере уменьшения содержания серебра в слое. R_{\max} усиленных образцов возрастает и значительно превышает R_{\max} полносеребряной пленки.

Изменение R в процессе усиления происходит неодинаково для участков изображения с разными значениями оптических плотностей. В области малых значений D разрешающая способность слоев с увеличением времени усиления возрастает, а в области больших — падает.

Резольвометрическая широта в процессе усиления уменьшается, что связано с ростом коэффициента контрастности (γ) и уменьшением фотографической широты.

На рис. З приведены частотно-контрастные характеристики (ЧКХ) пленки с содержанием серебра 0,9 г/м² до и после усиления в МБ проявителе. Для МФ проявителя наблюлаются аналогичные зависимо-ЧКХ сти Величина после усиления превышает 100 % примерно при 5 мм-1, что, вероятно, связано с наличием пограничного эффекта проявления. Начиная примерно с 10 мм-1, кривая на всем протяжении проходит ниже, чем соответствующая кривая до усиления. Значения ЧКХ при v=30 мм-1 усиленного образца сопоставимы со значениями ЧКХ полносеребряной пленки.

Рис. 3. Зависимость коэффициента передачи модуляции (T_*) от пространствениой частоты (v) плеики с наносом серебра 0,9 г/м² до (J) и после (2) усиления в МБ проявитсле в течение 5 мин.

Полученные фотографические параметры, а также величины, характеризующие резкостные свойства малосеребряных пленок, сопоставлены в таблице, где для сравнения также указаны аналогичные характеристики полносеребряной пленки. При уменьшении содержания серебра в пленке от 2,5 до 1,3 и 0,9 и далее до 0,3 г/м² и использовании стандартной химико-фотографической обработки (проявление в УП-2 и фиксирование) наблюдается, как и следовало ожидать, существенное уменьшение светочувствительности (S), коэффициента контрастности и достигаемого значения максимальной оптической плотности. В то же время Rпленки по мере уменьшения содержания серебра и толщины эмульсионного слоя заметно увеличивается, σ_D — уменьшается.

Дополнительная обработка пленки со слабовидимым изображением из серебра в растворе отбеливателя и физического проявителя приводит к росту S, у и D_{max} . Оптическая плотность вуали во всех случаях не превышает 0.1, что удовлетворяет требованиям практического использования фотоматериала. Сильное уменьшение содержания серебра в слое (до 0,3 г/м²) приводит к тому, что фотографические характеристики (S, у, D_{max}) после усиления оказываются меньше, в то время как R и ЧКХ значительно выше, а σ_D — ниже, чем характеристики полносеребряного аналога. Это указывает на то, что граница уменьшения содержания серебра в слое диктуется уровнем S, у, D_{max} , а не R, σ_D и ЧКХ.

Таким образом, структурометрические характеристики малосеребряных пленок после усиления серебряного изображения с малой оптической плотностью в растворах медных физических проявителей сравнимы или даже лучше соответствующих характеристик полносеребряных аналогов.

Авторы выражают глубокую благодарность члену-корреспонденту АН БССР В. В. Свиридову за ценные советы и замечания при обсуждении экспериментальных результатов.

ЛИТЕРАТУРА

І. Биктимиров Р. С., Браницкий Г. А., Иванов В. О. и др. — Ж. научн. и прикл. фотогр. и кинематогр., 1980, т. 25, с. 282. 2. Капариха А. В., Рогач Л. П., Браницкий Г. А., Свиридов В. В. –

Капариха А. В., Рогач Л. П., Браницкий Г. А., Свиридов В. В.–
Вести. Белорусского ун.та. Сер. 2. хим., биол., геол., геогр., 1979, № 1, с. 23.
Шалов Б. А. Теория фотографического процесса. – М., 1971, с. 239.

Поступила в редакцию 30.11.81.

НИН ФХП, КазНИНтехфотопроект

УДК 621.315.592.4+546.73:546.654

И. Я. ЛЮБКИНА, И. Ф. КОНОНЮК

ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА СЛОЖНЫХ ОКСИДОВ (La_{1-x}Sr_x)FeO₃

Большинство литературы по $(La_{1-x}Sr_x)$ FeO₂ посвящено исследованию соединений, полученных при высоких давлениях кислорода [1—3]; опубликованы также работы [4, 5], в которых изучено электрохимическое по ведение этих составов, применяющихся в качестве анодов в реакции восстановления кислорода. При этом каталитическая активность сложных ферратов связана с концентрацией кислородных вакансий [4]. Ряд сложных оксидов на основе феррата строиция использовался в качестве нагревательных элементов для работы на воздухе [6]. Поэтому представляло интерес выяснить, какими электрическими свойствами обладают составых типа $(La_{1-x}Sr_x)FeO_3$, синтезированные и спеченные на воздухе.

Экспериментальная часть

(La1-xSrx) FeO3 синтезировали из азотнокислых солей Составы Sr (NO3) 2 марки ч. д. а., La (NO3) 3.6H2O, полученного из La2O3 марки и и Fc(NO₃)₃.9H₂O марки ч. Исходные соли, взятые в заданных соотношениях, нагревали до плавления в кристаллизационной воде, упаривали и разлагали примерно при 800 °C. После перетирания смеси оксидов подвергали дополнительному обжигу при ~ 900 °С в течение 4 ч. После еще одного промежуточного перетирания порошки обжигали при 1200 °C в течение 2-6 ч. Из синтезированных порошков методом гидростатического прессования формовали образцы размером 0,03×0,005×0,005 м³. Спекание образцов проводили на воздухе при 1 300-1 350 °C в течение 3-10 ч. Электропроводность измеряли на воздухе четырехзондовым методом на постоянном токе по компенсационной схеме в ячейке с двухсторонним расположением платиновых зондов с помощью потенциометра Р 363/3. Фазовый состав идентифицировался по рентгенограммам, выполненным на СиКа-излучении. Коэффициент термо-э. д. с. определялся при разности температур на концах образцов в 10-30 °С. Разброс значений электропроводности и коэффициента термо-э. д. с. не превышал ± (10-15) %.

Результаты и их обсуждение

Данные рентгенофазового анализа спеченных образцов показали, что составы с x ≤ 0,8 имели структуру перовскита, а на рентгенограмме SrFcO₂₋₆ появляются дополнительные линии, что свидетельствует, возможно, о частичном разложении или значительной деформации решетки перовскита. Наиболее легко образуется LaFeO₃. Уже после предварительного синтеза при 900 °C реакция полностью завершается, и на рентгенограмме имеются все линии, характерные для LaFeO₃.

Электрические свойства составов ($La_{1-x}Sr_x$) FeO₃ изучались на керамических образцах, спеченных в основном при 1300 °С на воздухе в течение нескольких часов и медленно охлажденных за 12—15 ч до комнатной температуры. Такие образцы практически приводились в равновесное состояние с кислородом воздуха. Плотность, влагопоглощение и открытая пористость образцов в зависимости от x представлены в таблице. Для образцов с x=0,8 и x=1,0 влагопоглощение и открытую пористость