МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ХИМИЧЕСКИЙ ФАКУЛЬТЕТ

Кафедра аналитической химии

ОВСЯННИКОВА Екатерина Максимовна

Влияние N-ацетилцистеина на свободнорадикальную фрагментацию глицерофосфата в присутствии различных биологически активных веществ

Дипломная работа

	Научный руководитель: доктор химических наук, профессор И.Л.Юркова
	Рецензент: доктор химических наук, профессор
Допущена к защите	
«» 2023 г.	
Зав. кафедрой аналитической хим	иии
доктор химических наук	
М. Ф. Заяц	

РЕФЕРАТ

Работа состоит из 41 страницы, содержит 20 рисунков, 3 таблицы, 89 источников.

Ключевые слова: активные формы кислорода, N-ацетилцистеин, глицерофосфат, свободнорадикальная фрагментация, гидроксильный радикал, про/антиоксидант, аскорбат, тролокс, убихинон Q_0 .

В дипломной работе изучено влияние N-ацетилцистеина (АЦЦ) на $Fe^{2+}(Cu^{2+})$ -опосредованную фрагментацию глицеро-2-фосфата, протекающую с разрывом фосфоэфирных связей через стадию образования α -гидроксилсодержащих углеродцентрированных радикалов. Установлено, что АЦЦ нейтрален или активирует фрагментацию, индуцированную системами $Cu^{2+}(Fe^{2+})$ — H_2O_2 , однако ингибирует радиационно-инициированный процесс концентрационно-зависимым образом. Прооксидантный эффект АЦЦ на Cu^{2+} -опосредованную фрагментацию в присутствии соединений, способных воздействовать на уровень HO, соотношение Cu^{2+}/Cu^+ или взаимодействовать с тиолом, усиливается (тролокс, убихинон Q_0), либо изменяется на антиоксидантный (NaN3, Met, аскорбат). В присутствии Fe^{2+} тролокс, в отличие от Q_0 , снижает прооксидантное действие АЦЦ, а аскорбат и комплекс Fe^{2+} с ЭДТА усиливает.