

УДК 681.142.01

А. А. КОЛЯДА, В. К. КРАВЦОВ

О НЕКОТОРЫХ ВОПРОСАХ РЕАЛИЗАЦИИ АРИФМЕТИКИ ОБОБЩЕННЫХ СОК

В настоящей работе на основе анализа алгоритмов арифметики, разработанных в [1—4], сформулированы требования и рекомендации, которыми следует руководствоваться при выборе модулей обобщенных систем остаточных классов (ОСОК). Определен набор функциональных узлов (ФУ) арифметического устройства (АУ), который наиболее полно согласуется с особенностями алгоритмов арифметики ОСОК, а также получены оценки аппаратурных затрат, необходимых для выполнения всех операций в ОСОК с расширенным интервальным индексом по рангу (ОСОК РИИР) [4, 5] за максимальное и минимальное времена.

Остановимся сначала на вопросе о выборе системы модулей $p_1, p_2, \ldots, p_{n+m}$ для определения чисел в ОСОК и выполнения арифметических операций. Анализ алгоритмов арифметики нормированных ОСОК и оценок диапазонов изменения интервального индекса (ИИ) результа-

тов арифметических операций приводит к следующему.

1. Наряду с основной системой попарно взаимно простых модулей p_1, p_2, \ldots, p_n необходима система дополнительных модулей, взаимно простых как между собой, так и с P. Диапазон Q, соответствующий этим модулям, должен удовлетворять условию: $Q \gg \frac{Q_{\rm пp}}{P}$, благодаря которому ИИ произведение любых двух целых чисел из области определения операций полностью определяется остатками по модулям диапазона PQ.

2. Для упрощения работы с интервальными индексами значение r_{max} и один из дополнительных модулей, называемый модулем ИИ и обозначаемый через p_{n+1} , необходимо согласовать так, чтобы выполня-

лось неравенство

$$Q_{\mathrm{ac}} \leqslant p_{n+1} \leqslant p^*, \tag{1}$$

где p^* — максимально возможное значение модуля. Более того, если $Q_{\rm ac} < Q_{\rm пд} \leqslant p^*$, то p_{n+1} целесообразно выбрать в соответствии с неравенством

$$Q_{n,n} \leqslant p_{n+1} \leqslant p^*. \tag{2}$$

3. Один из дополнительных модулей (обозначим его через p_{n+2}) удобно выбрать равным S. Это приводит к простой процедуре деления на S в алгоритме умножения дробей.

4. Если $Q_{\Pi\Pi} \leq p^*$, то, согласно п. п. 2, 3, $Q = p_{n+1}p_{n+2}$, где p_{n+1} удовлетворяет (2), а $p_{n+2} = S$. Если же $Q_{\Pi\Pi} > p^*$, то $Q = p_{n+1}p_{n+2}p_{n+3}$, где p_{n+1} удовлетворяет (1), $p_{n+2} = S$, $p_{n+3} \gg \frac{Q_{\Pi P}}{P_{P_{n+1}} p_{n+2}}$.

5. Так как в алгоритме определения знака числа A вычисление $r_A^{(k)}$ ($k=1,\ 2,\ \ldots,\ n-2$) удобно производить в диапазоне $Q_k^{\rm sh}=p_{k+1}p_{k+2}$, а $r_A^{(k-1)}$ — в диапазоне $Q_{n-1}^{\rm sh}=p_n p$ ($p\neq p_n$), то, согласно [1], необходимо,

чтобы $p_{k+2} \geqslant 2k \ (k=1,\ 2,\ \dots,\ n-2)$ и $p \geqslant 2 \ (n-1)$. Для простоты в

дальнейшем будем предполагать, что m=2.

При реализации алгоритмов арифметики исследуемых систем широко могут быть использованы табличные методы. Нетрудно проверить, что для выполнения всех операций ОСОК, в ЭВМ достаточно иметь следующие функциональные узлы и набор констант.

I. Сумматоры/вычитатели СВi (i=1, 2, ..., n+2) по модулям p_i ,

 p_2,\ldots,p_{n+2}

II. $\Phi \Pi n$ — формирователь числа переполнений по основаниям p_1 , p_2 , ..., p_n при алгебраическом суммировании двух чисел. $\Phi \Pi n$ по входным данным α_i и β_i ($i=1,2,\ldots,n$) определяет величину

$$\pi = \sum_{i=1}^{n} \left[\frac{\alpha_i \pm \beta_i}{p_i} \right].$$

III. СПУИ — схема проверки условия на ИИ. В случае рассматриваемых ОСОК СПУИ для ИИ r_A проверяет неравенство $r_A^{(h)} + 1 - r_{\max} \leqslant r_A < < r_{\max} + r_A^{(h)}$ и формирует признак переполнения.

IV. УВ (p_i) $(i=1, 2, \ldots, n)$ — умножители с весом по модулю p_i , вычисляющие величины $|P_i\alpha_i\beta_i|_{p_i}$ $(0\leqslant \alpha_i, \beta_i\leqslant p_i)$ $(i=1, 2, \ldots, n)$.

V. Умножители Уn+1 и Уn+2, определяющие произведение вычетов соответственно по модулям p_{n+1} и p_{n+2} .

VI. ЧВПМ (p_i) $(i=1, 2, \ldots, n)$ — таблицы для получения частного взвешенного произведения вычетов и модуля, т. е. следующей величины:

$$\left| \left[\frac{P_i \alpha_i \beta_i}{p_i} \right] \right|_{p_i} (0 \leqslant \alpha_i, \ \beta_i < p_i) (i = 1, 2, \ldots, n).$$

VII. ПЦ $(p_{i_1},\ p_{i_j})$ $(j=2,\ 3,\ \dots,\ n+2)$ — преобразователи цифр, где $p_{i_1},\ p_{i_2},\ \dots,\ p_{i_{n+2}}$ — упорядоченная по убыванию система модулей $p_1,\ p_2,\ \dots,\ p_{n+2}$. ПЦ $(p_{i_1},\ p_{i_j})$ по входной величине $\alpha \in [0,\ p_{i_1})$ определяет $|\alpha|_{\mathrm{p}_i}$.

VIII. САИ k — схемы анализа ИИ $r_A^{(k)}$ ($k=1,\ 2,\ \ldots,\ n$). Роль САИ k состоит в формировании двух признаков H_k и S_k , соответствующих индексу $r_A^{(k)}$.

Признаки H_k и S_k определяются следующим образом:

$$\mathbf{H}_k = \left\{egin{array}{ll} 0, \; \mathrm{если} \; r_A^{(k)} & \in (0, \; (r_{\mathrm{max}}^{\mathrm{H}})_k] \\ 1, \; \mathrm{если} \; r_A^{(k)} & \notin (0, \; (r_{\mathrm{max}}^{\mathrm{H}})_k], \end{array}
ight. \ egin{array}{ll} 3_k & = \left\{ 0, \; \mathrm{если} \; r_A^{(k)} & \leqslant 0 \\ 1, \; \mathrm{если} \; r_A^{(k)} & > (r_{\mathrm{max}}^{\mathrm{H}})_k. \end{array}
ight.$$

В зависимости от того, используются ли при анализе $r_A^{(k)}$ сумматоры и умножители или анализ полностью выполняется по схеме, входными параметрами САИ k ($k=1,\ 2,\ \ldots,\ n-1$) соответственно являются позиционный код $r_A^{(k)}$ ($r_A^{(k)}=a_2^{(k)}p_{k+1}+a_1^{(k)}$) или остаточный код $r_A^{(k)}$ ($r_A^{(k)}==(\rho_1^{(k)},\ \rho_2^{(k)})$).

В первом случае цифры $a_2^{(k)}$ и $a_1^{(k)}$ должны быть предварительно определены по соотношениям:

$$a_1^{(k)}=
ho_1^{(k)},\ a_2^{(k)}=\left|rac{
ho_2^{(k)}-
ho_1^{(k)}}{
ho_{k+1}}
ight|_{p_{k+2}}\ k=1,\ 2,\ \dots,\ n-2;$$
 для $k=n-1,\ a_2^{(n-1)}=\left|rac{
ho_2^{(n-1)}-
ho_1^{(n-1)}}{
ho_n}
ight|_p.$

Входной величиной САИ n является r_A .

IX. Формирователь знака (ФЗ) и формирователь ранга (ФР). Эти устройства выполняют окончательное формирование соответственно знака числа $A = (\alpha_1, \alpha_2, \ldots, \alpha_n, r_A)$ и ранга нормированного остаточного кода $(\alpha_1, \alpha_2, \ldots, \alpha_n)$.

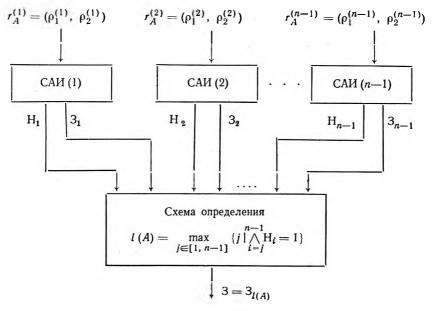


Рис. 1. Функциональная схема ФЗ

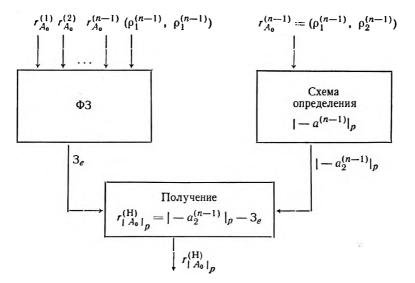


Рис. 2. Функциональная схема ФР

На рис. 1 и 2 изображены функциональные схемы рассматриваемых устройств. Для определенности предполагается, что на рис. 1 входными величинами устройства САИ k ($k=1,\,2,\,\ldots,\,n-1$) является остаточный код индекса $r_{A_0}^{(k)}$, а на рис. 2 — остаточный код индекса $r_{A_0}^{(k)}$, где $A_0=$ $\alpha_1,\,\alpha_2,\,\ldots,\,\alpha_n$, 0). Формирование ранга и знака чисел может выполняться одной схемой, которую назовем формирователем знака/ранга (ФЗР).

Если вычисление $|-a_2^{(n-1)}|_p$ так же, как и анализ $r_A^{(k)}(k=1, 2, \ldots,$ n-1), выполнять по схеме, при определении знака числа или ранга потребуется лишь один такт после того, как $r_A^{(k)} \, (k=1, \, 2, \, \ldots, \, n-1)$ получены.

Х. Константы:

a)
$$\left| \frac{1}{p_i P_i} \right|_{p_i} (i, j = 1, 2, ..., n; i \neq j);$$

6)
$$\left| \frac{1}{p_i} \right|_{p_i}$$
 $(j = 1, 2, ..., n; i = n + 1, n + 2);$

B)
$$\left| \frac{1}{p_{n+2}P^2} \right|_{p_i} (i = 1, 2, ..., n), \left| \frac{1}{p_{n+2}P} \right|, |P|_{p_{n+1}}, |P|_{p_{n+2}};$$

r)
$$|P_{ik}^{-1}|_{p_i}$$
 $(i = 1, 2, ..., k; k = 2, 3, ..., n-1);$

r)
$$|P_{ik}^{-1}|_{\rho_i}$$
 $(i = 1, 2, ..., k; k = 2, 3, ..., n-1);$
 $|P_{ik}^{-1}|_{\rho_i}$ $|P_{ik}^{-1}|_{\rho_{k+1}}$ $|P_{ik}^{-1}|_{\rho_{k+2}}$ $|P_{ik}^{-1}|_{\rho_{k+2}}$ $|P_{ik}^{-1}|_{\rho_{k+2}}$ $|P_{ik}^{-1}|_{\rho_{k+2}}$ $|P_{ik}^{-1}|_{\rho_{k+2}}$ $|P_{ik}^{-1}|_{\rho_{k+2}}$ $|P_{ik}^{-1}|_{\rho_{k+2}}$ $|P_{ik}^{-1}|_{\rho_{k+2}}$ $|P_{ik}^{-1}|_{\rho_{k+2}}$ $|P_{ik}^{-1}|_{\rho_{k+2}}$

ж)
$$|p_n|_p$$
.

Если $p=p_{j}\,(j\neq n)$, то наряду с константой $\left| \begin{array}{c} p_{n} \\ \hline P_{j} \end{array} \right|_{p_{j}}$ необходимо рас-

полагать таблицей, которая по входному данному $\overset{\sim}{\alpha_j}$ вычисляет $\left[\left[\frac{p_n\alpha_j}{p_j}\right]\right]_{p_j}$.

Общее число N(n+2) констант, приведенных в п. X, составл $N(n+2)=n(n+2)+\frac{(n-2)(n+5)}{2}+3.$

При этом число констант, соответствующее отдельным модулям, определяется соотношением

$$N\left(p_{i}
ight) = \left\{egin{array}{ll} 2\left(n-1
ight), \ ext{если} \ i=1,\ 2,\ 3,\ 4; \ 2\left(n+1
ight)-i, \ ext{если} \ i=5,\ 6,\ \dots,\ n-1; \ n+1, \ ext{если} \ i=n,\ n+2; \ n+3, \ ext{если} \ i=n+1. \end{array}
ight.$$

В последней формуле предполагается, что $p = p_{n+1}$. Приведенные соотношения для N(n+2) и $N(p_i)$ справедливы для $n \ge 4$. При n=2, 3 общее число констант соответственно составляет 11 и 20.

Пусть $R_i = \log_2 p_i$ [. Тогда для хранения перечисленных констант потребуется память емкостью $M(n+2) = \sum_{i=1}^{n+2} R_i N(p_i)$. Так, если n=7, $R_1 = R_2 = \dots = R_{n+2} = 5$, to $M(n+2) \stackrel{i=1}{=} 480$ Gut.

Опера ц ия	Время выполнения			
	минимальное		максимальное	
	ОСОК І рода	осоқ риир	ОСОК І рода	осок риир
Алгебраическое сложение с анализом на переполнение	3	$4+\log_2 n[$	3	2n + 3
Определение знака числа или ранга	$2+\log_2(n+1)$ [2n + 1	
Умножение целых с анализом на переполнение	6+]log ₂ n[3(n+1)	5n + 3
Умножение дробей с округлением	9+2]log ₂ (n+1)[$8+2]\log_2(n+1)[$	6(n+1)	6n + 5

Набор функциональных узлов, приведенный в п. п. I—IX обеспечивает минимальную скорость выполнения арифметических операций в ОСОК.

В таблице приведены минимальные и максимальные времена выполнения арифметических операций в нормированных ОСОК. В качестве

единицы измерения используется модульный такт.

Легко проверить, что для обеспечения минимального времени выполнения каждой из арифметических операций в АУ наряду с устройствами, перечисленными в п. п. VII—IX, достаточно включить следующие функциональные узлы и набор констант.

1) Несколько сумматоров $C(p_i)$ по каждому модулю p_i (i=1,

 $2, \ldots, n+2$).

2) Таблицы Тjni ($j=1, 2, \ldots, n; i=1, 2, \ldots, n+2; i\neq j$), Тjkk+1 ($j=1, 2, \ldots, k; k=1, 2, \ldots, n-1$), Тjkk+2 ($j=1, 2, \ldots, k; k=1, 2, \ldots, n-2$), Тj(p) ($j=1, 2, \ldots, n-1$). Тjli по входному данному α_j определяет величину $\left|\frac{\alpha_{je}}{p_i}\right|_{p_i}$, а Т $_j$ (p) — величину $\left|[p_n\alpha_j/p_j]\right|_p$.

Общее число приведенных таблиц составляет $2n^2$. Каждая из них может быть реализована либо по схеме, либо путем хранения в памяти,

объем которой в битах выражается формулой $M = \sum_{i=1}^{n} N_i p_i R_i$, где $N_i = 3n+1-2i$.

Например, если $32 > p_i \geqslant 16$ ($i=1, 2, \ldots, n$), n=7, то $32 \times 500 > M > 16 \times 500$.

3) Константы $|P|_{p_{n+1}}$, $|P|_{p_{n+2}}$, $\left|\frac{1}{p_{n+2}P_i^2}\right|_{p_i}$ $(i=1, 2, \ldots, n)$, $\left|\frac{1}{p_{n+2}P}\right|_{p_{n+1}}$, $\left|\frac{1}{p^{(k)}}\right|_{p_{k+1}}$ $(k=1, 2, \ldots, n-1)$, $\left|\frac{1}{p^{(k)}}\right|_{p_{k+2}}$ $(k=1, 2, \ldots, n-2)$, $|p_n|_p$ —всего 3n+1 констант.

ЛИТЕРАТУРА

1. Коляда А. А.— Вестн. Белорусского ун-та. Сер. 1, мат., физ., мех., 1976, № 1, с. 12.

2. Коляда А. А.— Вестн. Белорусского ун-та. Сер. 1, мат., физ., мех., 1976,

№ 3, с. 3. 3. Коляда А. А., Кравцов В. К. Ранг числа и умножение дробей в нормированных обобщенных СОК.— Рукопись деп. в ВИНИТИ, № 4111-76. Деп. от 29.11.76. 4. Коляда А. А.— Вестн. Белорусского ун-та. Сер. 1, физ., мат. и мех., 1980,

о 1, с. б. 5. Коляда А. А., Кравцов В. К.— Вестн. Белорусского ун-та. Сер. 1, мат.,

физ., мех., 1979, № 3, с. 57.

Поступила в редакцию 24.08.78.

Кафедра ЭММ

УДК 539.19

А. М. ПРИМА, В. М. ПРИМА

РАСЧЕТ ПАРАМЕТРОВ, ОПРЕДЕЛЯЮЩИХ ИНТЕНСИВНОСТИ ИК ПОЛОС ЭТИЛЕНА ПО МОДЕЛИ ЭФФЕКТИВНЫХ ЗАРЯДОВ, И ВЗАИМОСВЯЗЬ ИНТЕНСИВНОСТЕЙ ВАЛЕНТНЫХ И ДЕФОРМАЦИОННЫХ ЧАСТОТ

В настоящее время имеется большое количество работ, посвященных расчету электрооптических параметров и интенсивностей различных классов соединений (см., например, обзор [1]), выполненных на основе валентно-оптической теории интенсивностей [2—4]. Однако при решении прямой и обратной задач по расчету интенсивностей возникают серьезные трудности, связанные с неоднозначностью выбора знаков производные трудности, связанные с неоднозначностью выбора знаков производ-