УПРАВЛЯЕМЫЕ ИНТЕГРАЛЬНО-ОПТИЧЕСКИЕ ФИЛЬТРЫ В IT-ИНДУСТРИИ МУЛЬТИПЛЕКСИРОВАНИЯ

В.Б. Залесский¹, А.К. Есман¹, И.А. Гончаренко², В.К. Кулешов¹, Г.Л. Зыков¹

¹Институт физики НАН Беларуси, г. Минск

²Командно-инженерный институт МЧС Республики Беларусь, г. Минск

Задача увеличения пропускной способности волоконно-оптических линий связи (ВОЛС) всегда решалась с помощью различных методов мультиплексирования. В настоящее время совершенствование волоконно-оптических систем передачи в первую очередь связано с развитием технологий спектрального уплотнения каналов WDM (Wavelength Division Multiplexing), т.е. мультиплексирования по длине волны [1 - 3].

Технология спектрального уплотнения каналов с разделением по длинам волн появилась в начале 80-х годов и поначалу предназначалась для магистральных линий связи, но с 90-х годов WDM стала широко применяться в городских и региональных сетях MAN (Metropolitan Access Network).

Системы со спектральным уплотнением имеют несколько вариантов своей реализации. В таблице приведен наиболее распространенный вариант классификации [4], где: О – первичный диапазон (Original, 1260-1360 нм), Е – расширенный диапазон (Extended, 1360-1460 нм), S – коротковолновый диапазон (short wavelength, 1460-1530 нм), С – стандартный диапазон (Conventional, 1530-1570), L – длинноволновый диапазон (Long wavelength, 1570-1625 нм).

	CWDM	DWDM	HDWDM
	(неплотное СУ)	(плотное СУ)	(высокоплотное СУ)
Расстояние между	20, 25 нм	1.6 нм	0.4 нм
каналами		200, 100, 50 ГГц	25, 12.5 ГГц
Диапазон	O, E, S, C, L	S, C, L	C, L
Число каналов	максимум 18	десятки / сотни	десятки
Стоимость	низкая	высокая	высокая

Таблица. Классификация систем со спектральным уплотнением.

На практике число каналов обычно не превышает 16. В СWDMсистемах при скорости передачи в одном канале 2,5 Гбит/с по 16 каналам обеспечивается скорость до 40 Гбит/с. Обычно если сравнивать технологии CWDM и DWDM, то важным преимуществом систем CWDM являются габариты, энергопотребление и стоимость оборудования.

Дальнейшая перспектива развития CWDM-систем – это создание гибридных систем. Важной характеристикой сети на основе CWDM-систем является ее способность к масштабированию, т.е. к наращиванию производительности сети в процессе ее эксплуатации без замены всего оборудования. Создание гибридных систем является наилучшим способом увеличения числа каналов системы без замены оборудования. Теоретически в диапазоне волн для одного канала CWDM можно разместить до 15 каналов DWDM с шагом между несущими 0,8 нм. Это позволяет увеличить емкость 8-канальной CWDM-системы до 120-канальной. Практически уже реализованы системы, заполняющие один CWDM-канал восемью каналами DWDM, что увеличивает емкость 8-канальной системы CWDM до 64 каналов.

В данной работе рассматривается принцип многоканального спектрального разделения полосы пропускания оптического волокна на основе микрорезонаторов, выполненных из полупроводникового материала. Физическая суть предлагаемого подхода заключается в смещении резонансной длины волны микрорезонатора изменением его оптической длины за счет вариаций концентрации свободных носителей заряда, влияющих на показатель преломления этого материала [5], что в конечном итоге позволяет сократить шаг между каналами в DWDM-системах.

Узкополосный управляемый интегрально-оптический фильтр представляет собой два оптически последовательно связанных кольцевых волноводных резонатора диаметром единицы микрон, которые расположены на расстояниях 200 нанометров друг от друга и от двух прямых входного и выходного оптических волноводов, структурная схема которого приведена на рис. 1. Коэффициент оптической связи входного и выходного волноводов с волноводами обоих микрорезонаторов определяется величиной зазора между ними и длинной области взаимодействия. Из набора оптических частот, распространяющихся по входному волноводу, в микрорезонатор будут ответвляться только те, которые совпадают с его резонансными частотами [6, 7]. Меняя резонансные условия (например, оптическую длину резонатора, т.е. либо его геометрическую длину, либо эффективный показатель преломления волновода), можно менять оптические частоты, ответвляемые в микрорезонатор. В волноводах из полупроводниковых материалов изменение показателя преломления можно осуществлять с помощью оптической или электрической инжекции свободных носителей заряда [5, 8]. Для осуществления электрической инжекции снаружи кольцевых микрорезонаторов необходимо расположить области с *n*-легированием, а внутри - с *p*-легированием. При подаче электрического напряжения на такую диодную структуру электроны и дырки проникают внутрь материала волноводных микроколец и меняют их эффективный показатель преломления и, тем самым, резонансную частоту.

Рис. 1. Структурная схема управляемого интегрально-оптического фильтра на основе двух кольцевых оптически связанных волноводных микрорезонаторов

Анализ характеристик управляемого интегрально-оптического фильтра на основе кольцевых микрорезонаторов проводился методом численного моделирования. Для получения картин распределения электромагнитных полей на входе и выходе фильтра, соответствующих различным моментам времени, резонансных и переходных характеристик установления интенсивности использован известный подход моделирования путем решения волнового уравнения, записанного для электрической функции Боргниса [9]. Это позволило для структуры, состоящей из двух линейных волноводов и оптически последовательно связанных кольцевых микрорезонаторов, ограничится рассмотрением одной компоненты TM-волны E_z и тем самым воспользоваться уравнениями Даламбера в декартовых координатах – для прямых волноводов:

$$\frac{\partial^2 E_z}{\partial x^2} + \frac{\partial^2 E_z}{\partial y^2} - \frac{n^2}{c^2} \frac{\partial^2 E_z}{\partial t^2} = 0$$
(1)

и в цилиндрических координатах – для кольцевых микрорезонаторов:

$$\frac{1}{\rho}\frac{\partial}{\partial\rho}\left(\rho\frac{\partial E_z}{\partial\rho}\right) + \frac{1}{\rho^2}\frac{\partial^2 E_z}{\partial\phi^2} - \frac{n^2}{c^2}\frac{\partial^2 E_z}{\partial t^2} = 0, \qquad (2)$$

где *n* – эффективный коэффициент преломления в рассматриваемой среде волноводов и кольцевых микрорезонаторов.

Уравнения (1, 2) дополнены начальными и граничными условиями. Для решения волновых уравнений (1, 2) с тремя переменными использовалась явная численная схема типа "крест" [10].

Поскольку расчеты производились в определенной области, то на ее границах волновая функция приравнивалась нулю.

Сигнал на входе волновода задавался в виде:

$$E_{z}(x_{0} = 0, y, t) = E_{0} \exp\left(-\frac{(y - y_{0})^{2}}{a^{2}}\right) \sin(2\pi f t), \qquad (3)$$

а распределение компоненты электромагнитного поля E_z в области взаимодействия входного волновода и кольцевого микрорезонатора вычислялось следующим образом:

$$E_z(\rho,\varphi,t) = E_1 \exp\left(-\frac{((\rho - \rho_0)\cos(\varphi))^2}{a^2}\right) \sin(2\pi f t), \qquad (4)$$

где E_0 — амплитуда входного сигнала в первый волновод, E_1 — амплитуда выходного сигнала из входного волновода в кольцевой микрорезонатор, f — несущая частота, значения x_0 , y_0 , ρ_0 , ($\varphi_0 = 0$) и a задают форму и пространственное положение входных функций Гаусса.

В волновом уравнении (1) пространственные интервалы Δx и Δy по осям координат задавались меньше длины волны входного излучения, а при выборе временного шага дискретизации учитывали обобщенное условие устойчивости Куранта [10]:

$$\Delta t \leq \frac{1}{c\sqrt{\left(1/\Delta x\right)^2 + \left(1/\Delta y\right)^2}} \,. \tag{5}$$

Аналогичным образом задавалось соотношение переменных при решении волнового уравнения (2) в цилиндрических координатах.

При моделировании предполагали, что коэффициент связи входного и выходного волноводов с оптически связанными кольцевыми микрорезо-

наторами равен $k_{ce\,l}$, а коэффициент связи кольцевых микрорезонаторов между собой равен $k_{ce\,l}$.

Резонансную характеристику рассмотренной структуры определим как:

$$T(\lambda) = \frac{I_{\text{вых}}}{I_{\text{ex}}} = \frac{E_{z \text{ выx}}^2}{E_{z \text{ ex}}^2},$$
(6)

где $E_{z \text{ вх}}$ и $E_{z \text{ вых}}$ – амплитуды входного и выходного сигнала фильтра, $I_{\text{вх}}$ и $I_{\text{вых}}$ – интенсивности входного и выходного сигнала.

Численное моделирование проводилось для следующих параметров волноводов: длина прямых – входного и выходного волноводов – 13 мкм, их толщина и ширина – 0,3 мкм, расстояние между входными, выходными волноводами и кольцевыми микрорезонаторами – 0,2 мкм.

Эффективность управления резонансной полосой пропускания интегрально-оптического фильтра, состоящего из одного или двух оптически связанных микрорезонаторов, оценивалась по величине отношения η максимальных интенсивностей сигналов на его выходе в двух положениях: $\eta = I_{\rm BKT}/I_{\rm BbIKT}$, где $I_{\rm BKT}$ – максимальная интенсивность, соответствующая открытому состоянию фильтра, $I_{\rm BbIKT}$ – максимальная интенсивность, соответствующая закрытому состоянию фильтра. На рис. 2 представлены зависимости η от величины Δn для фильтров, состоящих из одного резонатора и двух резонаторов, изготовленных из *Si*, *GaAs* и *InP*.

Рис. 2. Зависимости η от величины Δn для фильтров, состоящих из одного резонатора с R = 14 мкм (а) и двух резонаторов с R = 10 мкм (б), изготовленных из *Si* (n = 3.483, кривые 1), *GaAs* (n = 3.2, кривые 2) и *InP* (n = 3.172, кривые 3).

Как видно из рис. 2, отношение сигнал/шум на выходе предложенного фильтра может достигать 50 ∂B при изменении показателя преломления на 0,004, которое может быть реализовано на практике.

Рассчитанные резонансные полосы пропускания фильтра, состоящего из двух одинаковых оптически связанных микрорезонаторов, выполнен-

ных из материалов: а – для кремния, б – для арсенида галлия и с – для фосфида индия, приведены на рис. 4. Для рассматриваемых фильтров высокое значение η (рис. 2 б) достигается при Δn равном $4 \cdot 10^{-4}$ для R = 10 мкм, а ширина полосы пропускания фильтров по уровню 0,1 составляют соответственно для кремния – 0,089 нм, для арсенида галлия – 0,09 нм, для фосфида индия – 0,091 нм.

Рис. 3. Резонансные полосы пропускания фильтра, состоящего из двух одинаковых оптически связанных микрорезонаторов для разных значений коэффициентов преломления при R = 10 мкм: а – выполненных из *Si* для n = 3,483 (1) и 3,4833 (2), б – из *GaAs* для n = 3,2 (1) и 3,2004 (2), в – из *InP* для n = 3,172 (1) и 3,1724 (2).

Быстродействие рассматриваемого фильтра определяется суммой временных интервалов установления выходного сигнала и времени релаксации (рекомбинации) носителей зарядов. Для коэффициентов оптической связи между входным прямым волноводом и однокольцевым микрорезонатором с радиусом R = 10 мкм, равных 0,5, установление выходного сигнала происходит за 20,4 *nc* для *GaAs*, 18,8 *nc* для *Si* и 18,6 *nc* для *InP* [7]. Для фильтра, состоящего из двух оптически последовательно связанных микрорезонаторов, установление выходного сигнала происходит за 26,3; 24,1 и 23,9 пс для арсенида галлия, кремния и фосфида индия соответственно.

С учетом времени релаксации носителей заряда в рассматриваемых материалах: $Si - 23 \ nc$ [11], $GaAs - 0,4 \ nc$ [12], $InP - 0,2 \ nc$ [12], максимальная частота следования сигналов для оптического фильтра на одном микрорезонаторном кольце равна 12,0 $\Gamma\Gamma u$ для Si, 24,0 $\Gamma\Gamma u$ для GaAs и 26,6 $\Gamma\Gamma u$ для InP. Для фильтра, состоящего из двух оптически последовательно связанных колец с радиусом 10 *мкм*, максимальные частоты следования сигналов составляют 10,8, 19,3 и 21,3 $\Gamma\Gamma u$ для Si, GaAs и InP. Таким образом, быстродействие фильтра из арсенида галлия или фосфида индия в два раза больше, чем кремниевого фильтра. Однако кремний является более дешевым материалом, и его технология хорошо отработана и имеет низкий процент брака. Следовательно, для высокопроизводи-

тельной обработки информации необходимо использовать арсенид галлия или фосфид индия, а в оптоэлектронных интерфейсах массового производства можно использовать кремниевые фильтры.

Ширина полосы пропускания фильтров, выполненных из рассмотренных материалов, по уровню 0,1 составляет порядка 0,1 *нм*. Таким образом, использование рассмотренных управляемых фильтров в волоконных системах связи, элементная база которых имеет полосу пропускания 32 *нм*, позволит по одному волокну осуществить параллельную передачу данных по 160 каналам, т.е. с производительностью примерно 1,6 *Тбит/с* при быстродействии одного канала 10 *Гбит/с*. Предложенная разработка может позволить освоить технологию производства высокоэффективных оптических элементов для приборов высокого спектрального разрешения; а также разработать приборы для контроля в технологии элементов микроэлектроники последнего поколения и создать узкополосные перестраиваемые фильтры для оптических магистралей нового поколения.

- 1. *Мамзелев И. А., Малафеев В. М., Снегов А. Д., Юрасова Л. В.* Технологии и оборудование. М.: Эко-Трендз, 2005. 304 с.
- 2. Таценко В. Г., Шишов А. К. // Теле-Спутник. 2004. № 2. С. 24–29.
- 3. Шмалько А. В. // Вестник связи. 2002. № 4. С. 162–170.
- 4. Чернов Б. К., Каминецкий И. С. // Lightwave. Russian edition. 2004. №2. С. 20-24.
- Ibrahim T A., Cao W., Kim Y. et al. // J. of Lightwave Techn. 2003. Vol. 21, No 12. P. 2997–3003.
- 6. *Little B. E., Foresi J. S., Steinmeyer G. et al.* // IEEE Phot. Technol. Lett. 1998. Vol. 10, No 4. P. 549–551.
- 7. Goncharenko I. A., Esman A. K., Kuleshov V. K., Pilipovich V. A. // Opt. Commun. 2006. Vol. 257, No 1. P.54–61.
- *Abdalla S., Ng S., Barrios P. et al.* // IEEE Phot. Technol. Lett. 2004. Vol. 16, No. 4. P. 1038–1040.
- 9. Логгинов А. С., Майоров А. Ш. // Журнал радиоэлектроники. 2007. № 3. С. 17–21.
- 10. Калиткин Н. Н. Численные методы. М.: Наука, 1978. С. 425-439.
- 11. Gardes F. Y., Tsakmakidis K. L., Thomson D. et al. // Optics Express. 2007. Vol. 15, No. 9. P. 5879–5884.
- 12. Тагер А. С. // Фосфид индия в полупроводниковой электронике. Кишинев: Шти-инца, 1988. С. 120–132.