Расстояние Δt до любой выборки от начала сигнала определяется как разность координат t_2-t_1 , соответствующих стробимпульсов и начальных точек сигнала при условии

$$\Delta t = N_2 T_2 - N_1 T_1 \leqslant T_1. \tag{6}$$

Если теперь на основании (4)—(6) каждому стробимпульсу присвоить номер i_{N_2} в соответствии с соотношением

$$i_{N_2} = \frac{\Delta T}{\delta T} = N_2 N_1^p - N_1 N_2^p \leqslant N_2^p,$$

а затем расставить их в соответствии с полученными номерами, то они будут представлять выборки участков исследуемого сигнала, следующих через интервалы δT , а не через интервалы T_2 , и позволят значительно точнее воспроизвести его форму (см. рисунок, ϵ).

ЛИТЕРАТУРА

1. Рябинин Ю. А. Стробоскопическое осциллографирование.— М., 1972. 2. Преснухин Л. Н. и др. Муаровые растровые датчики положения и их применение. - М., 1969.

Поступила в редакцию 03.01.81

Кафедра раднофизики и электроники СВЧ

УДК 517-920

М. Б. МЕЩЕРСКАЯ

О ЗАВИСИМОСТИ МНОЖЕСТВА ЛИНЕЙНЫХ ЭЛЕМЕНТОВ ОТ ПАРАМЕТРИЗАЦИИ КРИВОЙ

Множество K в R^2 назовем линией, если существует представление K = U(x(t), y(t)), где $t \in I$; I =]a, b[; интервал на R; x(t), y(t) — непрерывно-дифференцируемые функции и $[x'(t)]^2 + [y'(t)]^2 > 0$ $\forall t$. Дуга часть линии на промежутке $|\alpha,\beta|$, где $a{\leqslant}\alpha{\leqslant}\beta{\leqslant}b$, причем различным значениям t из $[\alpha, \beta]$ соответствуют различные точки дуги. Если промежуток $|\alpha, \beta| = [\alpha, \beta]$ замкнут, то дугу назовем замкнутой. В случае, если $|\alpha, \beta| = |\alpha, \beta|$, то дуга полуоткрыта. Иногда замкнутую дугу называют «дугой с концами».

Лемма. Пусть $K \bigcup_{i=0}^{\infty} B_i$, где 1) B_0 — полуоткрытая дуга; 2) B_i — замкнутая дуга с концами M_{i-1} , M_i ; 3) $B_i \cap B_{i+1} = M_i$; 4) в каждой точке M_i выполняется условие сопряжения, т. е. $\frac{y_i}{x_i}(\beta_i) = \frac{y_{j+1}}{x_{j+1}}(\alpha_{j+1}) \neq 0;$ тогда K — линия.

Доказательство леммы опустим.

Положим $M_t = (x(t), y(t)) \in K$; $\kappa(M_t) = y'(t) : x'(t) \in R_\infty$; $\kappa(M_t) = x'(t) : x'(t) \in R_\infty$ угловой коэффициент касательной существует в любой точке К.

Возьмем $M = (x, y) \in K$. Обозначим $I_{\mathcal{M}}$ совокупность всех $t \in I$, таких,

что $M_t = M$, и положим

$$\varkappa(M) = \{ \varkappa(M_t) \mid t \in I_{\mathcal{M}} \}.$$

Тройку $(x(t), y(t), \varkappa(t))$ назовем линейным элементом K в точке M_t

данной параметризации [1].

Обозначим l(K) совокупность линейных элементов у K при данной параметризации. Если K является дугой, то l(K), очевидно, не зависит от параметризации.

Покажем, что существуют линии, для которых l(K) зависит от пара-

метризации.

Рассмотрим множество К, составленное из дуг (см. рисунок). На

основании леммы множество К является линией.

Первая параметризация. Кривая начинается в точке A, затем идет так, как показано стрелками на рисунке. Каждый раз, когда мы вновь приходим в точку A, происходит смещение по оси x на какое-то расстояние k_1 — k_i , при этом меняются и r_i , r_i , l_i . Причем

$$(k_i) \uparrow 0$$
 $k_i = -\frac{1}{2^i}$ $(l_i) \downarrow \frac{1}{4}$ $l_i = \frac{1}{4} + \frac{1}{2^{i+2}}$ $i \geqslant 2$

Запишем уравнение кривой в параметрическом виде, только на участке нас интересующем.

Первый шаг:

$$\begin{cases} x = 0 \\ y = r'_0 \operatorname{tg} \theta \end{cases} \quad \operatorname{arctg} \frac{2R}{r'_0} \leqslant \theta \leqslant 2\pi$$

$$\begin{cases} x = 0 \\ y = r_0 \operatorname{tg} \theta_1 \end{cases} \quad \operatorname{arctg} \frac{2R}{r'_0} \leqslant \theta_1 \leqslant 2\pi$$

і-й шаг:

$$\begin{cases} x = 0 \\ y = r'_i \operatorname{tg} \theta - l_i \end{cases} \quad \operatorname{arctg} \frac{2R - l_i}{r'_i} \leqslant \theta \leqslant 2\pi$$

$$\begin{cases} x = 0 \\ y = r_i \operatorname{tg} \theta_1 - l_i \end{cases} \quad \operatorname{arctg} \frac{2R - l_i}{r'_i} \leqslant \theta_1 \leqslant 2\pi$$

В этом случае $\varkappa(\theta) \equiv 0$.

Вторая параметризация

0-ой шаг:

$$\begin{cases} x = R \operatorname{tg} t - R & \frac{7}{4} \pi \leqslant t \leqslant \operatorname{arctg} 2 \\ y = 0 & \frac{7}{4} \pi \leqslant t \leqslant \operatorname{arctg} 2 \end{cases}$$
$$\begin{cases} x = 0 & \frac{7}{4} \pi \leqslant t_1 \leqslant \operatorname{arctg} 2 \end{cases}$$

j-ый шаг $(j \geqslant 1)$ этой параметризации совпадает полностью с первой параметризацией, т. е. j=1 совпадает с первым шагом первой параметризации, а j+1 с i-ым.

В этом случае $\varkappa(\theta) \Longrightarrow 0$.

Таким образом, при первой параметризации построенной кривой множество линейных элементов этой кривой не содержит тройки (0, 0, 0), входящей в указанное множество при второй параметризации.

ЛИТЕРАТУРА

1. Богданов Ю. С. Лекции по дифференциальным уравнениям.— Минск, 1977.

Поступила в редакцию

24.01.80

Кафедра дифференциальных уравнений

УДК 518.32:33

В. В. БОБКОВ

ОБ ОДНОМ СЕМЕЙСТВЕ ЧИСЛЕННЫХ МЕТОДОВ С УЛУЧШЕННЫМИ СВОЙСТВАМИ УСТОЙЧИВОСТИ

На примере задачи Коши для уравнения

$$\dot{u} = f(u, t) \tag{1}$$

рассмотрим вопрос о построении с использованием принципа последовательного повышения порядка точности [1] явных численных методов высоких порядков точности с расширенной областью устойчивости.

Как известно [2], среди линейных методов численного решения уравнений вида (1) не существует A-устойчивых [2] методов порядка точно-