При исследовании плотностных циркуляций в малых водохранилищах, помимо инструментальных измерений элементов течений, для получения наиболее достоверных сведений целесообразно применять динамический метод расчета и метод аномалий температур.

ЛИТЕРАТУРА

1. Базыленко Г. М., Бурдыко П. И., Лопух П. С.—Вестн. Белорусското ун-та. Сер. 2, хим., биол., геол., геогр., 1977, № 1, с. 59.
2. Зубов Н. Н., Мамаев О. И. Динамический метод вычисления элементов мор-

ских течений.— Л., 1956, с. 34.

3. Хатчин сон Д. Лимнология.— М., 1969, с. 30. 4. Верболов В. Н.— В кн.: Гидрология озер и водохранилищ. М., 1975, ч. 1,

5. Тихомиров А. И.— В кн.: Круговорот вещества и энергии в водоемах. М., 1977, c. 156.

Поступила в редакцию 08.01.82.

Кафедра общего землеведения, Отраслевая НИЛ озероведения

Y I K 550.46 + 551.481

А. Л. ЖУХОВИЦКАЯ, В. А. ГЕНЕРАЛОВА, А. Н. РАЧЕВСКИЙ

СЕРА КАК ПОКАЗАТЕЛЬ ПРОЦЕССА ОЗЕРНОГО ОСАДКОНАКОПЛЕНИЯ*

Сера — элемент с четко выраженным биогеохимическим циклом концентрации, величина которой и диапазон варьирования зависят главным образом от геохимии и физико-географической принадлежности ландшафта. Накопление серы в осадках отражает уровень биопродуктивности водоема, напряженность редукционных процессов в водной массе и отложениях, режим окислительно-восстановительных условий на стадиях седиментации и диагенеза, что позволяет использовать этот элемент в качестве индикатора среды и направленности развития озерного бассейна и его осадкообразования.

Малые озерные водоемы Белоруссии, в основном Белорусского Поозерья, объединяет общность зонально-климатической и связанного с ней преобладающего типа озерного накопления органического вещества. Последнее в сочетании с ледниковым рельефом, генетическим разнообразием покровных пород водосборов и озерных котловин отличает их от других водоемов гумидной зоны, определяя специфику условий и типов озерных осадков [1].

Задача настоящей работы показать, как особенности малых бассейнов осадконакопления отражаются на распределении серы и ее форм в зависимости от комплекса различных лимнолого-геохимических фак-

торов.

Изучение распределения общей серы выполнено по результатам более 4,5 тыс. анализов образцов, отобранных из поверхностного слоя и разрезов более 400 озер, представляющих все генетические типы осадков. Статистическая обработка проведена согласно [2]. Рассчитанные средние значения и фоновые пределы характеризуют геохимический фон серы. Среднее содержание ее составляет 0,47~% (S на абс. сухое вещество), что на порядок выше кларка в земной коре (0,047 % по Виноградову [3]), более чем в 1,5 раза выше кларка для осадочных пород, более чем в 2 раза превышает содержание серы в отложениях Байкала [4]. Широкий диапазон колебаний от тысячных долей процента до 10 % свидетельствует о разнообразии условий аккумуляции серосодержащих компонентов. Модальные значения 0,2-0,6 составляют более 50 % данных; сверхфоновые содержания (выше 1 %) и аномальные (выше 2 %) встречены в 10 % случаев.

Распределение серы в основных типах осадков закономерно связа-

^{*} На примере озерных водоемов Белоруссии.

но с содержанием в них органического вещества (табл. 1). Наиболее высокий фон характерен для органических тонкодетритовых сапропелей; в группе органо-минеральных отложений ($C_{\rm opr}$ 5—25 %), к которым относятся преобладающие для белорусских озер кремнеземистые сапропели и глинистые илы (соответственно самый большой объем выборки), средние величины ниже: 0.64-0.53 %. Самые низкие средние значения установлены для минеральных отложений, в которых они приближаются к кларкам для осадочных пород (глины и сланцы).

Сверхфоновые концентрации распределяются в соответствии с фоном. Обращает на себя внимание большая встречаемость высоких концентраций в смешанных сапропелях, причем, как показала специальная выборка, они более часты в поверхностном слое в отличие от органических сапропелей и илов, в которых повышенная сернистость приурочена к разрезам и связана с процессами диагенеза.

Нашими более ранними исследованиями показано, что в озерных осадках в разных сочетаниях присутствуют четыре основные формы серы: моносульфиды, сульфаты, дисульфиды и сера органических соеди-

нений [5].

Источником серы являются сульфаты озерной воды, содержание которых, как правило, не превышает 10—15 мг/л. В придонных слоях и иловых растворах, где экологические условия способствуют жизнедеятельности сульфатредуцирующих микроогранизмов, образуется сероводород, часть которого может в зависимости от поступления кислорода окисляться до свободной серы, другая, диссоциируя в воде, образует гидросульфидные ионы; взаимодействие их с подвижным железом приводит к образованию нерастворимых односернистых соединений, в основном коллоидного гидротроилита. Поглощая свободную серу, моносульфид превращается в двусернистое железо. Таким путем в составе озерных осадков концентрируется минеральная сера.

Другой путь — концентрация органической серы. Живые организмы, используя для жизнедеятельности серу из вод, восстанавливают ее, образуя разнообразные соединения (аминокислоты, белки, полипептиды), поступающие в озерный осадок вместе с органическим детритом. При разложении в анаэробной среде эта органическая масса является дополнительным источником сероводорода, который участвует в дальней-

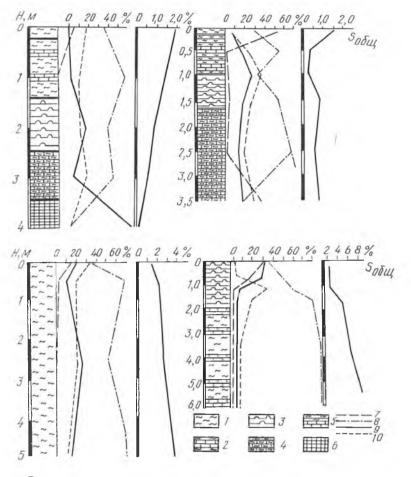
 $\begin{tabular}{llll} T аблица & 1 \\ \hline & Cтатистические показатели распределения серы \\ B озерных отложениях Белоруссии (% на абс. сухое в-во) \\ \end{tabular}$

	Медиана	Объем	Фоновые пределы:	Значения, % встречаемости	
Тип осадка		выборки	25—75% данных	Сверх- фоновые	Аномаль- ные
Органические сапропели ($C_{\rm opr}>>25~\%$)	0,68	875	0,48-0,90	17,4	0,8
Органо-минеральные ($C_{opr} > 15\%$):					
сапропели смешанные;	0,64	156	0,34-0,90	19,8	5,8
сапропели кремнеземистые;	0,60	1036	0,43-0,83	14,4	1,7
сапропели карбонатные	0,53	327	0,32-0,66	10,3	0,6
Илы (C _{орг} >5 %):					
глинистые	0,39	1059	0,24-0,57	5,4	0,7
опесчаненные	0,37	426	0,24-0,54	. 5,8	1,4
Минеральные ($C_{opr.} < 5 \%$):					
глины озерные;	0,24	384	0,12-0,39	1,5	_
пески заиленные;	0,23	160	0,10-0,38	1,2	
пески озерные	0,17	239	0,07-0,30		

ших превращаниях серы. Таким образом, содержание серы в озерном осадке контролируется процессами метаболизма и разложения органического вещества, т. е. связано с трофностью водоема.

Располагая данными по 14 озерам с разным уровнем трофности, различными морфометрическими параметрами и водосборами, рассмотрим баланс основных форм серы в поверхностном слое пелагиальных и сублиторальных, а также в разрезах озерных отложений. Определение соединений серы проводилось по методикам океанологов [6], усовершенствованным в соответствии с составом анализируемых объектов.

Таблица 2
Распределение серы и ее форм в осадках озер с разной трофностью (% на абс. сухое вещество)*


Тип озера	Место отбо- ра, число образцов	Общая	Моносуль- фида	Пирита	Сульфата	Органиче- ская + свобод- ная
Мезо- трофные	Поверхно- стный слой (6)	0,50	0,05	0,09 0,05—0,12	0,30	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Эвтроф- ные	Поверхно- стный слой (16) Разрез (29)	$ \begin{array}{r} 0,95 \\ \hline 0,3-2,9 \\ 1,65 \\ \hline 0,4-5,5 \end{array} $	$ \begin{array}{c c} 0,30 \\ \hline 0,03-1,5 \\ 0,20 \\ \hline 0,01-0,8 \end{array} $	$ \begin{array}{r} 0,18 \\ 0,01-1,3 \\ 1,0 \\ \hline 0,1-3,0 \end{array} $	$ \begin{array}{r} 0.12 \\ \hline 0.02 - 0.3 \\ 0.15 \\ \hline 0.02 - 0.3 \end{array} $	$ \begin{array}{r} 0,30 \\ \hline 0,03-0,9 \\ 0,25 \\ \hline 0,02-1,7 \end{array} $
Эвтроф- ные с призна- ками дистро- фии	Поверхно- стный слой (5)	$\frac{1,20}{0,5-2,0}$	$\frac{0,45}{0,3-0,6}$	0,46	0,10	0,23
	Разрез (12)	$\frac{2,90}{0,15-10,0}$	0,09 H. o.—0,4	$\frac{2,35}{0,05-9,5}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

^{*} Числитель — средние значения; знаменатель — пределы содержания.

Соотношение форм серы в формирующихся современных осадках поверхностного слоя (глинистые илы и кремнеземистые сапропели) четко отражает тип бассейна седиментации (табл. 2). В отложениях мезотрофных озер (Ричи, Долгое, Кривое, Женно) физико-химические условия придонного слоя характеризуются устойчивой в годичном цикле окислительной средой. Здесь преобладают окисленные формы серы, содержание сульфидов (моносульфида и пирита) менее 25 % общей серы. Сапропелевые отложения эвтрофных озер, биохимические процессы в которых определяют дефицит кислорода и продолжительные (периоды стагнации) восстановительные условия (оз. Губиза, Кайминское, Заловское, Муроги), содержат до 50—75 % восстановленных соединений серы.

Изменения относительного содержания форм серы, установленные при переходе от пелагиальных к сублиторальным осадкам, показывают, что в эвтрофных водоемах глубиной более 10 м седиментационные процессы сопровождаются активной сульфатредукцией, образованием моносульфида, доля которого достигает 70 % (оз. Губиза, Заловское). В мелководных сублиторальных зонах таких озер возникает дефицит сульфатов в придонной воде, кинетика сульфидообразования направлена на превращение моносульфида в пирит, в результате формируются отложения, обогащенные пиритом, органической и сульфатной серой. В мелководных озерах с менее контрастными окислительно-восстановительными условиями баланс форм серы в осадках пелагиальных и прибрежных зон аналогичен (оз. Свирь). Относительно стабильно соотношение форм серы и в отложениях разных зон глубоких мезотрофных озер. Основной формой аккумуляции серы в осадках являются сульфаты (45—70 %); доля моносульфида менее 20 %, пирита до 25 %.

Диагенез серосодержащих веществ в разрезах озерных отложений отличается однонаправленным характером. Более 50 % серы связыва-

Распределение серы и ее форм в разрезах озерных отложений: 1— сапропель кремнеземистый; 2— сапропель кремнеземистый с повышенным количеством карбонатов; 3— сапропель смещанный; 4— сапропель карбонатный; 5— ил глинистый с повышенной карбонатностью; 6— глиша; 7— моносульфиды; 8— пирит; 9— сера органическая; 10— сера сульфатов

ется в форме пирита, остальную часть представляют сульфаты либо сера органическая. При этом концентрация общей серы может в десятки раз превышать фон (табл. 2). Распределение форм серы в озерной толще подчинено характеру осадконакопления. Стратиграфические разрезы, несмотря на общие черты, отличаются значительным разнообразием. Более половины из 300 изученных скважин, согласно [7], отнесены к так называемому классическому типу, отражающему все этапы эволюции озер на протяжении голоценового времени. В таких разрезах (оз. Свирь, Губиза, см. рисунок) содержание серы закономерно увеличивается по мере роста органической составляющей осадков. В разрезах органического типа, сложенных сапропелями (иногда слабокарбонатными; оз. Заловское, Боярское) в результате диагенеза концентрация серы вглубь составляет 3,5—10 %. Она представлена дисульфидами железа — пиритом и марказитом.

Таким образом, уровень накопления серы в осадках отражает генетический тип озера и может служить показателем эволюции осадконакопления. Соотношение окислительных и восстановительных форм серы является индикатором физико-химических условий водоема и характеристикой его зональных особенностей. Накопление серы в количествах, в десятки раз превышающих фон, связано с процессами диагенеза, аккумуляцией серы в минеральных новообразованиях типа пирита. Механизм преобразования и накопления серы в малых водоемах гумидной

зоны контролируется их высокой органонакопительной способностью, что при малой сульфатности вод отличает их от крупных континентальных бассейнов седиментации.

ЛИТЕРАТУРА

1. Якушко О. Ф. Озероведенне.— Минск, 1981. 2. ЮфаБ. Я. и Гуревич Ю. М.— Геохимия, 1964, № 8, с. 817. 3. Виноградов А. П.— Геохимия, 1962, № 7.

4. Лазо Ф. И.— Геохимия, 1980, № 1, с. 109. 5. Лукашев К. И., Ковалев В. А. и др.— Литология и полезные ископаемые, 1972. № 3. c. 34.

6. Волков И. И.— Труды Ин-та океанологии, 1959, с. 33. 7. Якушко О. Ф., Богдель И. И. и др.— Вестн. Белорусского ун-та. Сер. 2, хим., биол., геол., геогр., 1978, № 2, с. 50.

Поступила в редакцию 04.11.82.

Институт геохимии АН БССР, Отраслевая НИЛ озерозедения

УДК 637.52(476.1)

Л. А. ПАВЛОВИЧ. В. С. ВЯТСКИЙ

ОСОБЕННОСТИ РАЗВИТИЯ МЯСОПЕРЕРАБАТЫВАЮЩЕГО АГРОПРОМЫШЛЕННОГО КОМПЛЕКСА МИНСКОЙ ОБЛАСТИ

Одной из основных задач Продовольственной программы БССР является значительное улучшение снабжения населения мясом и мясными продуктами. На период до 1990 г. запланировано довести среднегодовое производство мяса в Минской области до 215 тыс. т, в том числе в 1985 г. — 229, в двенадцатой пятилетке — 235—260, в том числе в 1990 г.— 265 тыс. т [1].

Первооснову АПК области составляет сельское хозяйство, специализирующееся на молочно-мясном животноводстве, овощеводстве и выращивании технических культур. За годы IX и X пятилеток колхозы и совхозы области добились определенных успехов в увеличении производства продуктов животноводства. Возросло поголовье скота. В колхозах области в 1981 г. по сравнению с 1970 г. крупного рогатого скота, в том числе и коров стало больше в 1,5 раза, свиней — в 1,4 раза. В Минской области в 1981 г. произведено мяса больше, чем в остальных областях республики (190,8 тыс. т, или 22,9 % общереспубликанского производства) [2]. Численность крупного рогатого скота на начало 1982 г. составила 1,2 млн. голов (17,4 % поголовья БССР), в том числе коров 426,6 тыс. (15,5 %), 736,2 тыс. свиней (15,6 %), 73,8 тыс. овец (14,4 %), птицы 11,7 млн. (28,1 %). Растет уровень производства мяса и плотность поголовья скота в колхозах и совхозах. Так, в расчете на 100 га сельскохозяйственных угодий производство мяса (в живом весе) составило в 1970 г. 74,3, в 1981 г.— 135,7 ц. Намечается в целом по области довести реализацию основных видов скота и птицы на 100 га сельхозугодий до 186 ц. В 1981 г. в расчете на 100 га сельхозугодий значительных успехов добились Смолевичский (292,7 ц), Борисовский (248,2), Дзержинский (189,2 ц), Минский (173 ц), Слуцкий (157,3 ц) районы, низкие показатели в Крупском (79,5 ц), Пуховичском (87,4 ц), Логойском (87,6 ц), Березинском районах (92,3 ц). Плотность крупного рогатого скота на 100 га сельхозугодий в 1981 г. составила 70,6 голов, в том числе коров 283, плотность свиней на 100 га пашни — 102. Большая плотность скота характерна для районов с высокой распаханностью земель и с большими массивами лугов и пастбищ.

В настоящее время в области проводится значительная работа по специализации и концентрации животноводства. Создано 54 производственных сельскохозяйственных объединения (по 1—3 на каждый район). С учетом сложившихся условий и направления специализации