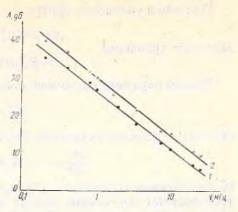
строены графики распределения амплитуд колебаний по частоте

(см. рисунок).

Графики распределения, построенные в логарифмическом масштабе по обеим осям, имеют вид спадающих прямых линий, которые могут быть представлены в аналитическом C помощью эмпирической виле $A(v) = 42 + 64(i_g/B)$ формулы $-(13,6+i_g)$ g v, где A(v) — относительная интенсивность, дБ; v — частота, $M\Gamma_{\rm H}$; i_g и B — ток дуги, A, и индукция продольного магнитного поля, Тл, соответственно. Эмпирическая формула хорошо описывает экспериментальные закономерности спектров высокочастотных колебаний напряжения горения Cd-дуги в следующих диапазонах частот, токов дуги и значений индукции продоль-



Зависимость относительной амплитуды А от частоты v в спектре высокочастотных колебаний напряжения горения Cd-дуги ($i_g = 1,6 A$):

I — без анешнего магнитного поля $\{B=0\}$ 2 — с продольным магнитным полем $\{B=0\}$ = 0,1 Тл)

ного магнитного поля: 0,1 М Γ ц $\leq v \leq 25$ М Γ ц; 1 А $\leq i_g \leq 10$ А; $B \leq$ $\leq 0,115$ Тл.

Общий характер высокочастотного спектра хорошо согласуется с данными работы [2]. По мере продвижения в область больших частот амплитуда колебаний быстро убывает (почти на 4 порядка величины). Увеличение тока дуги наиболее влияет на высокочастотную часть спектра: доля колебаний самых высоких частот уменьшается, в результате наклон графика A(v) увеличивается. Продольное магнитное поле увеличивает амплитуды колебаний дугового напряжения по всему частотному спектру в одинаковом отношении, причем его влияние оказывается наиболее сильным при малых токах дуги.

ЛИТЕРАТУРА

1. Граков В. Е., Майга А. С.— Вестн. Белорусского ун-та. Сер. 1, физ. мат. и мех., 1981, № 1, с. 27. 2. Skolnik M. I., Puckett H. R.— J. Appl. Phys., 1955, v. 26, № 1, p. 74.

Поступила в редакцию 02 02 82

Кафедра физической оптики

УДК 517.925

А. А. САМОДУРОВ

ОБ ИНТЕГРИРУЕМОСТИ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ АБЕЛЯ В ПАРАМЕТРИЧЕСКОМ ВИДЕ

Рассмотрим дифференциальное уравнение Абеля второго рода [1]

$$(y+b(x))y'=a_0(x)y^2+a_1(x)y+a_2(x),$$
 (1)

где $a_0(x) \not\equiv 0$. Замена y + b(x) = 1/u приводит уравнение (1) к виду

$$u' = f_3(x) u^3 + f_2(x) u^2 + f_1(x) u.$$
 (2)

Пусть $f_2(x)$, $f_3(x)$ такие рациональные функции комплексного функции $K_3(x) = f_3(x) \exp(2 \int f_1(x) dx), K_2(x) =$ аргумента x, что $=f_2(x) \exp(\int f_1(x) dx)$ также являются рациональными. Ниже будут получены достаточные условия наличия решений уравнения (2) вида $x = \Phi(p, C), u = \Psi(p, C),$

где p — комплексный параметр, а функции $\Phi(p, C)$ и $\Psi(p, C)$ не имеют гритических подвижных особых точек.

Полагая в уравнении (2) [1]

$$u = z \exp\left(\int f_1(x) dx\right),\tag{4}$$

получаем уравнение

$$z' = K_3(x)z^3 + K_2(x)z^2. (5)$$

Введем параметр р с помощью соотношения

$$\frac{dp}{dx} = z(x),\tag{6}$$

где z(x) — решение уравнения (5). Уравнение (5) примет вид

$$\frac{d^2x}{dp^2} = -K_3(x) - K_2(x) \frac{dx}{dp}.$$
 (7)

Из автономности уравнения (7) видно, что в его общее решение одна из произвольных постоянных входит аддитивно. Пусть $x=F(p+C_1, C_2)$ — общее решение уравнения (7). Заменив $p+C_1$ на новое p, будем записывать его в виде x=F(p,C). Тогда общее решение уравнения (2) запишется в виде

$$x = F(p, C), \ u = \frac{\exp(\int f_1(F(p, C)) F'_p(p, C) dp)}{F'_p(p, C)}. \tag{8}$$

Укажем все те случаи, когда параметрическое представление (8) решений уравнения (2) не имеет критических подвижных особых точек. Для этого заметим, что 2 из 50 канонических уравнений без критических подвижных особых точек имеют вид (7) [2]. Это уравнения

$$\frac{d^2x}{dp^2} = (-3x+q)\frac{dx}{dp} - x^3 + qx^2, \quad \frac{d^2x}{dp^2} = -x\frac{dx}{dp} + x^3 + qx, \tag{9}$$

где q — постоянная (уравнения (9) выбирались с учетом условия $f_3(x|\neq 0)$.

Помимо уравнений (9), к интересующему нас типу принадлежат те канонические уравнения, которые заменой в уравнении (7)

$$x = \frac{\alpha_1(p) w + \beta_1(p)}{\alpha_2(p) w + \beta_2(x)}, (\alpha_1 \beta_2 - \alpha_2 \beta_1 \neq 0)$$
 (10)

приводятся к одному из канонических уравнений без критических подвижных особых точек. Производя в (7) замену (10), получаем уравнение

$$w'' = \frac{-2\alpha_1\alpha_2}{\alpha_0\beta_2 - \alpha_0\beta_1} w'^2 + P(p, w, w'), \tag{11}$$

где P(p, w, w') — линейная функция относительно w', коэффициенты которой — полиномы относительно α_1 , α_2 , β_1 , β_2 , α_1' , α_2' , β_1' , β_2' , w, $K_2(x)$ и $k_3(x)$.

Во всех канонических уравнениях коэффициент при ${w'}^2$ либо нулевой, либо имеет полюс относительно w. Первому случаю соответствуют уравнения (9). Из вида уравнения (11) следует, что второй случай невозможен.

Подвижные особые точки решений уравнений (9) — некритические полюсы, $\exp(\int f_1(x) dx) = K_2(x)/f_2(x)$ — рациональная функция x, поэтому второе из соотношений (9) не содержит подвижных критических особых точек.

Из приведенных рассуждений следует

Теорема. Для того, чтобы уравнение (2) с рациональными $K_2(x)$ и $K_3(x)$ имело общее решение вида (3), где $\Phi(p,C)$ и $\Psi(p,C)$ не имеют критических подвижных особых точек, достаточно, чтобы с помощью преобразований (4), (6), (10) оно преобразовывалось в одно из уравнений (9).

Из теоремы следует, в частности, что уравнения $u' = (3x-q)\exp\left(-2\int f(x)dx\right)u^3 + (x^3-qx^2)\exp\left(-\int f(x)dx\right)u^2 + f(x)u$, $u' = -(qx+x^3)\exp\left(-2\int f(x)dx\right)u^3 + x\exp\left(-\int f(x)dx\right)u^2 + f(x)u$, где f(x) произвольная аналитическая функция, интегрируются в квадратурах.

1. Қамке Э. Справочник по обыкновенным дифференциальным уравнениям.— М., 1971.

2. Айнс Э. Л. Обыкновенные дифференциальные уравнения.— Харьков, 1939.

Поступила в редакцию 18 12 80.

Кафедра дифференциальных уравнений

УДК 519.1

А Н ИСАЧЕНКО

ОБ ОДНОМ КРИТЕРИИ ДЛЯ МАТРОИДОВ

Критерии для определения, является ли пара (S, E) матроидом, могут базироваться на различных понятиях: независимых множеств, функций ранга, базиса, стягивающих множеств, функций обхвата, замыкания, поверхностей, гиперплоскостей [1, 2]. В настоящей заметке дается критерий, использующий понятие двойственных систем независимости и «жадного» решения.

Пусть E — непустое конечное множество.

Лемма. Непустая совокупность β подмножеств множества E является семейством базисов матроида на E тогда и только тогда, когда выполняется следующее условие: (*) если B_1 , $B_2 \subseteq \beta$, то для любого $x \subseteq B_1 \setminus B_2$ существует $y \subseteq B_2 \setminus B_1$ такое, что $(B_2 \setminus y) \cup x \subseteq \beta$.

Справедливость леммы вытекает из эквивалентности условия (*) и

аксиомы базисов матроида.

Предположим, что пара (S, E) является системой независимости, т. е. S — непустая совокупность подмножеств множества E, замкнутая относительно взятия подмножеств. Ясно, что система независимости однозначно определяется своими множествами максимальной мощности (базисами). Обозначим множество базисов системы независимости (S, E) через $\beta(S, E)$. Двойственной к системе независимости (S, E) назовем систему независимости (S^*, E) с множеством базисов $\beta(S^*, E) = \{E \setminus B : B \in \beta(S, E)\}$.

Пусть на множестве E задана функция $w:E \to R^+$. Вес множества $G \subseteq E$ определим как $w(G) = \sum_{e \in G} w(e)$. Рассмотрим пару экстремальных

залач

А) найти $G' \in \beta(S, E)$ такое, что $w(G) \leqslant w(G') \ \forall \ G \in \beta(S, E)$;

В) найти $G^* \in \beta(S^*, E)$ такое, что $w(G) \geqslant w(G^*) \ \forall G \in \beta(S^*, E)$. Простой алгоритм («жадный» алгоритм) для решения задач A, B, предложенный в $\{2, 3\}$, состоит в следующем: 1) $G_0 = \emptyset$; 2) Пусть |E| = n. Упорядочиваем для задачи A элементы множества E по убыванию, а для задачи B по возрастанию функции $w(e_1, e_2, \dots, e_n; 3)$ $G_{i+1} = 0$

 $=igl\{G_i \cup e_{i+1}, \text{ если } G_i \cup e_{i+1} \in S, \ G_i \text{ в противном случае;} \}$ 4) если i+1 < n повторяем 3). Множе-

ство G_n называем «жадным» решением.

Пусть G_A — «жадное» решение задачи A, G_B — «жадное» решение задачи B. Известно [2], что решение G_A совпадает с точным тогда и только тогда, когда пара (S, E) является матроидом. Следовательно, если (S, E) — матроид, то для любой функции $w: E \rightarrow R^+$

$$w(G_A) = w(E) - w(G_B). \tag{1}$$

Покажем, что справедливо и обратное.

Теорема 1. Пусть (S, E) — система независимости. Если для любой функции $w: E \to R^+$ имеет место равенство (1), то (S, E) — матроид.

Доказательство. Пусть B_1 , $B_2 \subseteq \beta(S, E)$ и $x \in B_1 \setminus B_2$. Определим функцию w следующим образом.