ные экспериментальные исследования в диапазоне $t=20-100\,^{\circ}\mathrm{C}$ показали, что значения температур исследуемых приборов на воздухе примерно на 10.2 °C выше, чем в этиленгликоле. Таким образом, температура поверхности корпуса тест-структуры в воздухе с учетом поправки $t_{00} = 45.8$ °С. Достоверность полученного значения проверена измерениями с помощью термоиндикатора плавления с $t_{\pi\pi} = 45$ °C. С учетом погрешности измерений $(\pm 2 \, ^{\circ}\text{C})$ можно говорить о хорошем соответствии результатов.

ЛИТЕРАТУРА

1. Хауф В., Григуль У. Оптические методы в теплопередаче.— М., 1973. 2. Bolvin R.— Электроника, 1974, № 22, с. 50. 3. Pavelek M., Liška M., Boček V., Ramik Z.— Jemma mechanika a optika, 1976(162), № 6.

4. Краткий справочник по химии / Под ред. О. Д. Куриленко.— Киев, 1965. 5. Ландсберг Г. С. Оптика.— М., 1976, с. 558. 6. Яворский Б. М., Детлаф А. А. Справочник по физике.— М., 1973.

Поступила в редакцию 20.05.80.

Кафедра радиотехники и физической электроники

УДК 535.37

В. П. БОБРОВИЧ, В. И. ГРИГОРЬЕВА, Л. М. ПОДГОРНАЯ, А. М. САРЖЕВСКИЙ, М. А. СЕНЮК, Г. Н. СИЦКО, Л. П. СНАГОЩЕНКО

ПОЛЯРИЗАЦИОННЫЕ СПЕКТРЫ ФЛУОРЕСЦЕНЦИИ ОКСАЗОЛЬНЫХ ПРОИЗВОДНЫХ СТИЛЬБЕНА

Широкое применение производных стильбена в качестве оптических отбеливателей, активаторов жидких и пластмассовых сцинтилляторов, а также в квантовой электронике [1-3] обусловливает необходимость систематического исследования спектральных, люминесцентных и поляризационных характеристик этих соединений.

В данной работе исследуются поляризационные спектры флуоресценции оксазольных производных стильбена, общая структурная формула которых имеет вид:

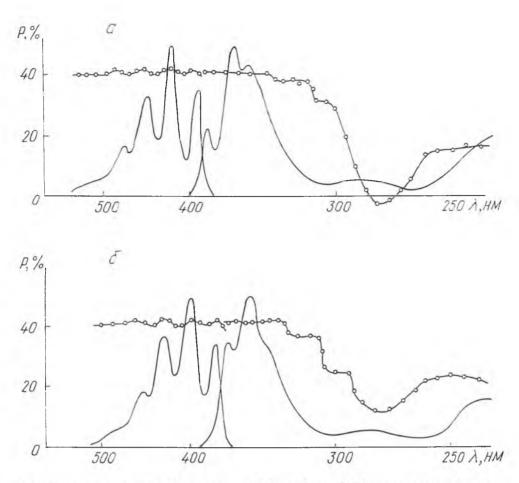
$$R_1$$
 — CH = CH — R_2

Заместители R_1 и R_2 представлены в табл. 1.

Для исследования поляризационных спектров флуоресценции производных стильбена была использована установка, описанная ранее [4]. Относительная погрешность измерений не превышала 3 % при значениях степени поляризации флуоресценции, близких к предельным, и 10 % при P = 0.1.

Спектры поглощения оксазольных производных стильбена в ближней ультрафиолетовой области состоят из трех широких полос. Длинноволновая полоса поглощения (A-полоса) обусловлена возбуждением π -электронной системы молекулы в целом. Введение в молекулу фенильного и оксазольного колец приводит к появлению новой полосы поглощения (R-полоса), максимум которой расположен в области 290 нм. Коротковолновая В-полоса вызвана возбуждением п-электронов бензольных

Поляризационные спектры флуоресценции 2-(стильбенил-4)-5-фенилоксазола (соединение V) и 2-(стильбенил-4)-5-(4'-метоксифенилоксадиазола) (соединение VI) в бутиловом спирте при температуре —130°C приведены на рисунке. Степень поляризации флуоресценции по полосе испускания практически постоянна, немного повышается лишь на местах колебательных максимумов. Такой ход поляризационного спектра сви-


Соединения	R_1	R ₂		
I	$\frac{N}{N}$	N (CH ₃),		
II	$CI - \sqrt{\frac{1}{2}} - \sqrt{\frac{N}{N}}$			
III		СН₃		
IV	$OCH_3 - $			
V	=			
VI	$OCH_3 - $			

детельствует о принадлежности полосы испускания одному электронному переходу.

Степень поляризации флуоресценции в области А-полосы поглощения соединений V и VI в стеклообразном растворе бутилового спирта близка к предельному значению, характерному для молекул, поглощение и испускание которых моделируется линейными осцилляторами (41 и 42 % соответственно). Столь же высокие значения степени поляризации флуоресценции в области длинноволновой полосы поглощения наблюдаются и для других оксазольных производных стильбена (табл. 2). Следовательно, дипольный момент электронного перехода, ответственного за длинноволновую полосу поглощения, параллелен моменту электронного перехода, ответственного за флуоресценцию.

Таблица 2 Степень поляризации флуоресценции оксазольных производных стильбена для различных полос поглощения

Полосы поглоще- ния	Соединения							
	I	11	111	IV	A	VI	Стильбен	
A	44	44	44	43	41	42	45	
A'	41	39	41	41	39	37	43	
A"	28	_	27	27	32	26	23	
R	24	3	2	3	— 3	12	_	
В	18	22	14	24	13	22	12	

Поляризационные спектры флуоресценции 2-(стильбенил-4)-5-фенилоксазола (a) и 2-(стильбенил-4)-5-(4'-метоксифенилоксадиазола) (б) в бутиловом спирте при — $130\,^{\circ}$ С

Известно, что степень поляризации флуоресценции по спектру поглощения имеет высокие положительные, близкие к $50\,\%$, значения, если за полосу поглощения ответствен линейный, полностью анизотропный осциллятор, параллельный осциллятору испускания, и значения, близкие к $-33\,\%$, если линейный осциллятору испускания перпендикулярен к осциллятору испускания. Отнесение осцилляторов к полосам поглощения, в области которых степень поляризации флуоресценции принимает промежуточные значения от $-33\,$ до $50\,$ %, неоднозначно. Так, например, невысокие положительные значения степени поляризации флуоресценции в области R и B-полос поглощения стильбена (см. табл. 2) можно описать как линейным, полностью анизотропным осциллятором, ориентированным под некоторым углом к осциллятору испускания, так и плоским осциллятором с преимущественным поглощением света вдоль одной из осей.

Появление R-полосы оксазольных производных стильбена обусловлено поглощением арильных группировок. Вследствие этого степень поляризации в области данной полосы должна зависеть от вводимых в молекулу арильных звеньев. Так как за полосы поглощения соединений H-V ответственны одинаковые арильные группировки (фенильное и оксазольное кольца), следует ожидать, что степень поляризации данных соединений в области R-полосы будет иметь близкие значения. Действительно, значения P для данных соединений расположены в интервале от -3~% до 3~% (табл. 2). Замена в молекуле оксазольной группы на оксадиазольную приводит к увеличению степени поляризации от 3~до 12~%.

Исследования электронной структуры стильбена с помощью кванто-

во-механических расчетов методом Парра-Паризера — Попла [5—7] предсказали существование нескольких скрытых электронных переходов в коротковолновой области А-полосы [8]. Экспериментально наличие данных переходов обнаружено в работе [4]. Так как добавление к молекулярной цепи различных структурных групп может вызвать хотя бы частичное снятие запрета по симметрии на электронные переходы в высокочастотной области длинноволновой полосы и увеличить их долю вклада в спектры, следует ожидать более отчетливого проявления данных переходов в поляризационных спектрах.

В поляризационных спектрах флуоресценции оксазольных производных стильбена в коротковолновой части A-полосы поглощения отчетливо регистрируются два участка (обозначим их A' и A''), в области которых значения степени поляризации флуоресценции постоянны. Степень поляризации в области A'-полосы лишь на несколько процентов ниже значения P в длинноволновой части A-полосы поглощения. Для всех исследованных оксазольных производных стильбена значения степени поляриза-

ции в области A''-полосы примерно одинаковы (см. табл. 2).

В спектрах поглощения оксазольных производных стильбена колебательная структура выражена значительно слабее, чем в спектре стильбена. Тем не менее, в поляризационном спектре флуоресценции по поглощению области A^\prime и $A^{\prime\prime}$ выражены более четко. Ступенчатый ход поляризационного спектра в коротковолновой части А-полосы, по-видимому, нельзя связать с колебаниями молекул. Объяснить падение степени поляризации флуоресценции в коротковолновой части A-полосы можно, предположив, что в ее формировании, как и у стильбена, участвуют два скрытых электронных перехода.

ЛИТЕРАТУРА

1. Красовицкий Б. М., Кутуля Л. А., Афанасиади Л. Ш., Шевченко Л. Е., Егорова Н. П.— ЖПС, 1978, т. 29, № 2, с. 272.
2. Красовицкий Б. М., Кутуля Л. А., Шевченко А. Е., Афанасиади Л. Ш., Егорова Н. П., Шворина А. Л.— ХГС, 1977, № 5, с. 656.

3. Лазеры на красителях / Под ред. Шефера Ф. П.— М., 1976. 4. Бобрович В. П., Саржевский А. М., Сенюк М. А.— ЖПС, 1979, т. 30, № 6, c. 1022.

5. Pariser R.— J. Chem. Phys., 1956, v. 24, № 2, p. 250.
6. Perkampus H. H., Knop J. V.— Theoret, Chim. Acta, 1966, v. 6, № 1, p. 45.
7. Wettermark G., Schor R.— Theoret. Chim. Acta, 1967, v. 9, № 1, p. 57.
8. Beveridge D. L., Jaffe H. H.— J. Amer. Chem. Soc., 1965, v. 87, № 23, p. 5340.

Поступила в редакцию 21.05.80.

Кафедра общей физики

УДК 621.378; 535.31

Б. Ю. ХАНОХ

ОПТИЧЕСКИЕ СВОЙСТВА ТЕТРАЭДРИЧЕСКОГО ЗЕРКАЛЬНОГО ОТРАЖАТЕЛЯ С ОДНОЙ ЦИЛИНДРИЧЕСКОЙ ОТРАЖАЮЩЕЙ ПОВЕРХНОСТЬЮ

В [1] исследованы отражающие свойства зеркального тетраэдрического отражателя с одной цилиндрической отражающей поверхностью, образующие которой пересекают плоские взаимно ортогональные отражающие поверхности под углом 45°.

Настоящая работа посвящена исследованию оптических свойств зеркального тетраэдрического отражателя с одной цилиндрической поверхностью, образующие которой под произвольным углом пересекают две плоские отражающие поверхности, двугранный угол между этими поверхностями имеет небольшое отступление от 90°.

Пусть ось цилиндрической поверхности РОО отражателя параллельна плоскости XOY и пересекает ось Z прямоугольной системы координат