ПЕКТАТЛИАЗНАЯ АКТИВНОСТЬ ШТАММОВ PECTOBACTERIUM В ЗАРАЖЕННЫХ ТКАНЯХ КЛУБНЕЙ И СТЕБЛЕЙ КАРТОФЕЛЯ

Шао Чэнюе

Белорусский государственный университет, г. Минск; 520095424@qq.com;

науч. рук. А. Н. Евтушенков, д-р. биол. наук, проф.

Из стеблей картофеля и клубней картофеля, с симптомами черной ножки и мягкой гнили, выделены и идентифицированы пектолитические бактерии Pectobacterium brasiliense (Pcb), P.carotovorum (Pcc) и P.parmentieri (Ppa). Штаммы P.brasiliense впервые выявлены нами в Республике Беларусь. Изучали вирулентные свойства выделенных бактерий путем заражения клубней и стеблей картофеля сортов Винета и Палац. Различие в степени мацерации сортов Палац и Венета проявлялось при заражении бактериями P.carotovorum и P.parmentieri. Сорт Палац оказался более устойчивым в сравнении с сортом Венета. Сорт Палац также показал более высокую устойчивость к черной ножке, вызываемой P.carotovorum и P.parmentieri. P.brasiliense одинаково эффективно мацерировала клубни обоих сортов и вызывала черную ножку, что свидетельствует о более высокой степени вирулентности в сравнении с P.carotovorum и P.parmentieri. Пектатлиазная активность в мацерированных клубнях и стеблях картофеля коррелировала со степенью поражения растительного материала, подтверждая ведущую роль пектатлиаз в вирулентности пектобактерий.

Ключевые слова: пектатлиаза, мацерация клубней, черная ножка, картофель сорт Винета, сорт Палац,

ВВЕДЕНИЕ

растений пектобактерии В процессе заражения продуцируют внеклеточных ферментов, включающих целлюлазы комплекс пектиназы. Эти ферменты играют ведущую роль в разрушении и растений, обеспечивая клеточных стенок питательными веществами для роста самих бактерий. Таким образом, ферменты являются внеклеточные одним ИЗ важных факторов вирулентности при заражении растений-хозяев фитопатогенными Двумя бактериями. наиболее важными классами пектиназ, присутствующих в патогенах растений, являются пектинлиаза (PL) и полигалактуроназа (PG) [1].

Пектатлиазы являются основными внеклеточными ферментами пектобактерий, расщепляющими пектин в межклетниках и стенках клеток растений, что приводит к коллапсу тканей, повреждению клеток и утечке электролитов [2].

Целью нашей работы было изучение вирулентных свойств штаммов *Pectobacterium* при экспериментальном заражении клубней и стеблей картофеля и анализа пектатлиазной активности в зараженных тканях. В работе использовали 18 штаммов *Pectobacterium* (Таблица 1), выделенных из образцов картофеля с симптомами мягких гнилей (клубни) и черной ножки (стебли), собранных на территории Беларуси. Штаммы были идентифицированы до вида на основании изучения биохимических свойств и ПЦР с видоспецифическими праймерами.

Таблица 1 Штаммы, использованные в работе

Вид, Штамм	Источник	Место отбора проб	
Pcc 4-3	Морковь	Минская область	
Pcc 52-1	Клубень картофеля	П.Самохвалович	
Pcc 52-2	Клубень картофеля	П.Самохвалович	
Pcc 74	Бегония	Минская область	
Pcc 88-2	Клубень картофеля	Брестская обл	
Pcc 114-1	Стебли картофеля (черная ножка)	Минская область	
Ppa 106-1	Стебли картофеля (черная ножка)	Минская область	
Ppa 108-2	Стебли картофеля (черная ножка)	Минская область	
Ppa 111-2	Стебли картофеля (черная ножка)	Минская область	
Ppa 113-1	Стебли картофеля (черная ножка)	Минская область	
Ppa 119-2	Стебли картофеля (черная ножка)	Минская область	
Ppa 121-2	Стебли картофеля (черная ножка)	Минская область	
Pcb 98-1	Клубень картофеля	Брестская обл	
Pcb 98-2	Клубень картофеля	Брестская обл	
Pcb 126	Стебли картофеля (черная ножка)	Брестская обл	
Pcb 127	Стебли картофеля (черная ножка)	Брестская обл	
Pcb 129	Стебли картофеля (черная ножка)	Брестская обл	
Pcb 130	Стебли картофеля (черная ножка)	Брестская обл	

Инокуляция клубней и стеблей

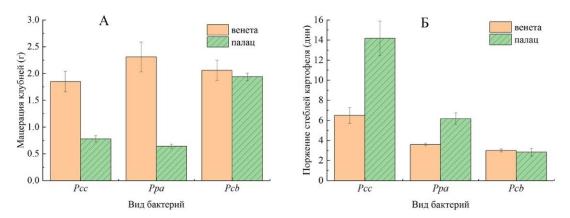
Клубни картофеля (сорта Винета и сорта Палац) стерилизовали поверхностно 70% этанолом и заражали супензией бактерий. Бактерии выращивали в жидкой среде LB в течение ночи, центрифугировали, промыть 0,85% раствором NaCl, ресуспендировали в том же растворе до OD600, соответствующей плотности клеток (3×10⁸ клеток/мл). Шприцем вводили 20 мкл бактериальной суспензии и рану изолировали пленкой парафильм. Инокулированные клубни картофеля помещали в условия 28°C и относительной влажности от 70% до 80%. Через 48 ч после инокуляции измеряли массу мацерированной ткани и сохраняли при температуре -20°C до измерения ферментативной активности.

Растения картофеля выращивали в фитотроне при 22°C с фотопериодом 16 часов. Заражали стебли картофеля 20 мкл суспензии бактерий и инкубировали до развития симптомов черной ножки.

Анализ активности пектатлиазы

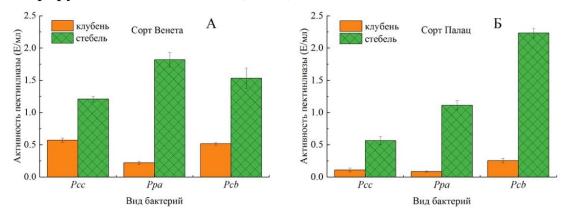
К 500 мг образца мацерированной ткани клубней или стеблей картофеля, добавляли 500 мкл дистиллированной воды, перемешивали и центрифугировали для получения неочищенного ферментного экстракта. Определение активности пектатлиазы проводили путем регистрации увеличения оптической плотности реакционной смеси при OD235 нм, температуре 30°C на регистрирующем спектрофотометре как описано ранее[3].

РЕЗУЛЬТАТЫ


Все изучаемые штаммы активно мацерировали ткани клубней картофеля и на стеблях картофеля вызывали черную ножку. Два сорта картофеля различались по степени поражения клубней; сорт Палац оказался более устойчивым в сравнении с сортом Винета. Различие в степени мацерации сортов Палац и Венета проявлялось при заражении бактериями *P.carotovorum* и *P.parmentieri*. *P.brasiliense* одинаково эффективно мацерировала клубни обоих сортов.

Похожая картина наблюдалась и при заражении стеблей картофеля. Сорт Палац также показал более высокую устойчивость к черной ножке, вызываемой *P.carotovorum* и *P.parmentieri*. *P.brasiliense* одинаково эффективно заражала стебли обоих сортов картофеля и быстро вызывала черную ножку (в среднем за 3,35 дня) (Таблица 2). Следует отметить что *P.brasiliense* впервые выявлена нами в Республике Беларусь и судя по способности эффективно заражать клубни и стебля картофеля разных сортов является более опасным патогеном в сравнении с *P.carotovorum* и *P.parmentieri*. (Рис.1). Ранее уже отмечали высокий потенциал вирулентности *P.brasiliense* в сравнении с другими пектобактериями [4].

 Таблица 2


 Результваты мацерации клубней картофеля и заражения стеблей картофеля штаммами пектобактерий

Вид бактерий	Мацерация клубней, г		Поражение стеблей	
			картофеля, дни	
	Сорт Винета	Сорт Палац	Сорт Винета	Сорт
				Палац
P.carotovorum	1.85	0,78	6,5	14.2
P.parmentieri	2,31	0,64	3,8	7,4
P.brasiliense	2.1	1,9	3,3	3,4

Puc. 1. Результаты мацерации клубней картофеля и заражения стеблей картофеля штаммами пектобактерий. А- мацерация клубней картофеля. Б- Время развития черной ножки. *Pcc - P.carotovorum, Ppa - P.parmentieri, Pcb - P.brasiliense*

Пекталиазная активность бактерий также была более высокой при заражении клубней сорта венета, чем палац. Это коррелировало с мацерирующей активностью. (Рис.2)

Puc.2. Сравнение пектатлиазной активности *Pectobacterium* в стеблях и клубнях картофеля. А-Сравнение активности пектинлиазы в стеблях и клубнях картофеля сорта Винета. Б-Сравнение активности пектинлиазы в стеблях и клубнях картофеля сорта Палац. *Pcc - P.carotovorum*, *Ppa - P.parmentieri*, *Pcb - P.brasiliense*

выводы

Выделенные из растений в Республике Беларусь фитопатогенные пектобактерии идентифицированы до 3 основных видов: *P. carotovorum*, *P.parmentieri*, *P.brasiliense*.

Все виды пектобактерий эффективно поражали клубни и стебли картофеля при экспериментальном заражении.

Сорта картофеля отличались по устойчивости к заражению клубней пектобактериями: сорт Палац оказался более устойчивым в сравнении с

сортом Винета. При заражении стеблей картофеля сорт Палац оказался также более устойчивым в сравнении с сортом Винета.

При заражении клубней и стеблей картофеля бактериями *P.brasiliense* не наблюдали разности сортов в устойчивости, что свидетельствует о более высокой вирулентности *P.brasiliense*, способных преодолевать защитные механизмы растений.

Библиографические ссылки

- 1. *Collmer A., Keen N. T.* The Role of Pectic Enzymes in Plant Pathogenesis // Annual Review of Phytopathology. 1986. T. 24. № 1. C. 383–409.
- 2. Hugouvieux-Cotte-Pattat N., Condemine G., Shevchik V. E. Bacterial pectate lyases, structural and functional diversity // Environmental microbiology reports. 2014. № 5 (6). C. 427–440. doi:10.1111/1758-2229.1216
- 3. А.Н. Евтушенков, В.Е. Шевчик, Л.Б. Попова, Ю.К. Фомичев. Очистка и свойства двух внеклеточных пектатлиаз штамма *Erwinia chrysanthemi* ENA49 // Прикладная биохимия и микробиология. 1986. Т. 22, № 2.- С. 187-192.
- 4. Li L. u ∂p. Comparative genomic analysis of *Pectobacterium carotovorum subsp. brasiliense* SX309 provides novel insights into its genetic and phenotypic features // BMC genomics. 2019. T. 20. № 1. C. 1–17. https://doi.org/10.1186/s12864-019-5831-x.