ВЛИЯНИЕ ЗРИТЕЛЬНОЙ НАГРУЗКИ НА СОСТОЯНИЯ ЗРИТЕЛЬНОГО АНАЛИЗАТОРА СТУДЕНТОВ

А. А. Оковицкая

Белорусский государственный университет, г. Минск; angelina.okovitskaya@mail.ru; науч. рук. – К. М. Люзина, канд. биол. наук, доц.

Ценность цветового и периферического поля зрения заключается в обнаружении опасности в различных участках пространства, не находящихся прямо перед человеком. Однако человек регулярно «нагружает» свой зрительный анализатор, используя экраны разных устройств во время работы и отдыха. В публикации приводятся результаты исследования состояния полей зрения на белый и монохроматические цвета у студентов, с экранным временем более и менее 4 часов в сутки, а также результаты цветоощущения. Проанализированы характерные особенности различий в ширине поля зрения между правым и левым глазом. По итогам проведенной периметрии в нашей выборке не было выявлено влияния экранного времени на границы полей зрения. По результатам исследования цветоощущения по полихроматическим таблицам Рабкина, нарушения были выявлены у 7 добровольцев из 11.

Ключевые слова: периметрия, поле зрения, цветовое зрение, таблицы Рабкина.

Отличительной особенностью зрительного анализатора человека является способность различать множество цветов и их оттенков благодаря наличию фоторецепторов. Существует два вида зрительного восприятия – центральное и периферическое.

Цель работы – оценка возможности потери периферического зрения и цветового восприятия у студентов, экранное время которых составляло более 4 часов в сутки.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

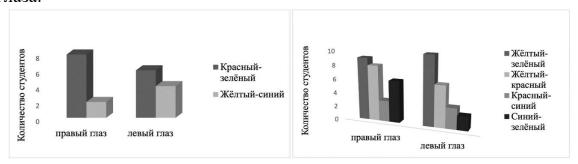
В исследовании участвовало 11 студентов женского пола в возрасте от 19 до 22 лет. Из них 5 участников с остротой зрения OD/OS=1,0; у 6 студентов миопия. Студенты с миопией проходили исследование в очках/линзах при условии 100% коррекции. Добровольцы были разделены на группы — экранное время более 4 часов в сутки (опытная), менее 4 часов в сутки (контрольная). При проведении периметрии для определения полей зрения использовали настольный периметр Форстера. Для выявления и проявления аномалий в способности различать цвета использовали полихроматические таблицы Рабкина.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В результате проведенной периметрии было установлено, что в нашей выборке экранное время не влияло на границы полей зрения, поскольку сужение на белый цвет на фоне черного периметра было отмечено для правого и левого глаза как в контрольной, так и в исследуемой группе (таблицы 1, 2, результаты в градусах).

Отклонения от нормы OD												
		Верхнее		Нижнее		Нижнее		Верхнее				
цвет	Верхнее	диагональное	Латеральное	диагональное	Нижнее	диагональное	Медиальное	диагональное				
		латеральное		латеральное		медиальное		медиальное				
ч/белый	3±6	1±10	-8±7	4±12	-4±7	2±7	9±7	-5±5				
красный	9±8	26±7	28±5	15±18	9±14	9±16	4±13	18±8				
синий	5±8	16±10	9±7	10±14	3±8	13±9	6±8	14±7				
зеленый	25±12	30±10	42±11	40±18	33±16	18±16	26±13	20±9				
желтый	20±12	19±13	-1±8	-5±17	-9±16	1±13	19±11	13±13				
Отклонения от нормы OS												
		Верхнее		Нижнее		Нижнее		Верхнее				
цвет	Верхнее	диагональное	Медиальное	диагональное	Нижнее	диагональное	Латеральное	диагональное				
		медиальное		медиальное		латеральное		латеральное				
ч/белый	1±8	-4±6	8±5	4±6	-4±8	6±4	-10±3	8±11				
красный	5±13	24±14	4±8	13±12	7±13	15±17	18±14	11±8				
синий	1±7	17±8	5±14	14±7	3±11	15±12	1±7	14±8				
зеленый	11±9	23±17	14±12	28±8	19±14	41±16	33±13	22±12				
желтый	16±14	24±10	12±11	6±12	-5±12	1±7	-9±17	-2±13				

Таблица 2 Результат периметрии с экранным временем менее 4 часов в сутки

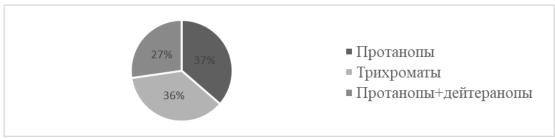

	•	-		-			•					
Отклонения от нормы ОD												
цвет	Верхнее	Верхнее диагональное латеральное	Латеральное	Нижнее диагональное латеральное	Нижнее	Нижнее диагональное медиальное	Медиальное	Верхнее диагональное медиальное				
ч/белый	-3±6	-5±5	-10±10	9±7	-8±3	5±5	5±5	0±3				
красный	5±15	13±3	22±8	15±3	5±3	0±10	3±8	15±9				
синий	-2±15	10±5	8±8	9±9	14±9	13±3	-2±6	13±12				
зеленый	15±5	32±10	36±12	38±4	24±12	28±12	20±9	24±13				
желтый	13±10	15±10	-2±8	-10±9	-5±15	0±5	16±5	12±10				
Отклонения от нормы OS												
цвет	Верхнее	Верхнее диагональное медиальное	Медиальное	Нижнее диагональное медиальное	Нижнее	Нижнее диагональное латеральное	Латеральное	Верхнее диагональное латеральное				
ч/белый	-3±8	-4±6	2±3	7±6	-7±3	7±6	-13±6	7±6				
красный	3±15	17±5	5±10	3±15	4±15	11±21	22±3	10±10				
синий	-2±10	16±5	7±8	8±6	8±6	21±8	2±3	12±6				
зеленый	11±10	19±3	18±8	31±4	18±10	37±15	30±10	22±6				
желтый	15±10	12±12	14±4	-6±15	-10±22	-15±26	-7±18	-8±6				

Изучение действия монохроматических раздражителей показало, что границы полей зрения для зелёного и красного цвета увеличены как в контрольной, так и в исследуемой группе. Проведение периметрии по синему цвету в контрольной группе показало, что наблюдается незначительное сужение тестируемой величины. Среднее отклонение от

нормы составило -2 градуса. Аналогичные изменения были выявлены при использовании желтой метки — сужение полей зрения выявлены как в контрольной, так и в исследуемой группе. Среднее отклонение от нормы составило -7 градусов. Сужение для монохроматических маркеров позволяет предположить, что различные элементы световоспринимающего аппарата сетчатки обладают неодинаковой устойчивостью к воздействию излучения дисплеев [1, с.100].

Что касается различий между правым и левым глазом, то в контрольной группе наблюдается ассиметрия по черно-белому, зеленому и желтому цвету в верхнем диагональном латеральном направлении. При определении синего объекта левым глазом в медиальном и нижнем диагональном медиальном направлении поле зрения больше, при определении красного цвета по всем направлениям поле зрения принципиально не отличается для левого и правого глаза [2].

Среди испытуемых было отмечено ошибочное восприятие оппонентных и неоппонентных цветов (рис. 1). В частности, наибольшее количество ошибок в определении оппонентных цветов относится к красно-зеленому раздражителю, как видно на графике, ошибки встречались у 8 студентов из 11 для правого глаза; среди неоппонентных цветов можно отметить желто-зеленый раздражитель, ошибки в восприятии которого встречались у 10 человек из 11, но уже для левого глаза.



Puc.1. Ошибочное восприятие оппонентных (слева) и неоппонентных цветов (справа)

Полученные данные можно объяснить следующим образом: ошибочное восприятие красного-зеленого и желтого-синего связано с оппонентными процессами цветоразличения. Механизм цветовосприятия таков, что каждая пара способна вызвать только одно из двух возможных ощущений, то есть желтый антагонистичен синему, а красный – зеленому.

Как упоминалось выше, исследование цветоразличительной функции зрительного анализатора проводили с помощью полихроматических таблиц для исследования цветоощущения Рабкина. Нарушения цветоощущения приобретенного характера были выявлены у 7 добровольцев из 11 (рис. 2). Ошибки встречались от 1 до 3 случаев из 15

картинок по всей выборке. В большинстве случаев это были ошибки при просмотре таблиц с желтым фоном и зеленым элементом внутри, а также с зеленым фоном и красным элементом внутри. Стоит отметить, что аналогичные нарушения цветоощущения преимущественно встречались на периметрии по оппонентным и неоппонентным цветам. Лишь 4 студента можно отнести к нормальным трихроматам, так как правильно определили все геометрические фигуры и цифры. Среди испытуемых тританопов не обнаружено. Следует подчеркнуть, что у троих студентов из группы нормальных трихроматов экранное время составляло менее 4 часов в сутки.

Рис. 2. Количество студентов (%) с признаками протанопии, дейтеранопии + протанопии

ЗАКЛЮЧЕНИЕ

По результатам периметрии в нашей выборке не наблюдалось влияния экранного времени на границы полей зрения. Отмечено сужение на белый цвет на фоне черного периметра для правого и левого глаза как в контрольной, так и в исследуемой группе. Также встречалась ассиметрия по всем цветам для левого и правого глаза. Среди испытуемых было отмечено ошибочное восприятие оппонентных и неоппонентных цветов. В частности, наибольшее количество ошибок в определении оппонентного цвета относится красно-зеленому К раздражителю; среди неоппонентных цветов можно отметить желтозеленый раздражитель. Были выявлены аномалии в способности различать цвета: лишь 4 студента можно отнести к нормальным трихроматам, у остальных испытуемых наблюдаются признаки протанопии и дейтеранопии.

Библиографические ссылки

- 1. Дмитриева А. А., Дмитриев Е. В., Сгибнев Ю. Ю., Логачева Е. О., Авдеев Р. В. Оценка периферического зрения у активных пользователей компьютера // Медицинский вестник Башкортостана. 2015. Т. 10, № 2. С. 97-100.
- 2. *Романова А. Н., Наумова А. А., Наумова Т. А.* Определение поля зрения в зависимости от пола и возраста // Universum: Химия и биология: электрон. научн. журн. 2016. № 6 (24). URL: http://7universum.com/ru/nature/archive/item/3259.