МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

Кафедра физики твердого тела

Дипломная работа

СТРУКТУРНЫЕ ИЗМЕНЕНИЯ В СТАЛИ Р18, ОБЛУЧЕННОЙ МОЩНЫМ ЭЛЕКТРОННЫМ ПУЧКОМ

Подготовила студентка 6 курса: Кисель Юлия Сергеевна

Научный руководитель: профессор кафедры физики твердого тела, доктор физикоматематических наук

В.М.Анищик

Допущен к защи	ите
«»	2023г.
Зав. кафедрой ф	изики твердого тела
Профессор, докт	гор физмат. наук
Углов В.В.	
	

Содержание

Введение.					• • • • • • • • • •	6
Глава 1. О	бщая характери	истика инст	рументаль	ьных сталей		7
1.1 Улеродистые инструментальные стали					8	
1.2	1.2 Легированные инструментальные стали					9
1.3	Быстрорежущие стали					10
1.4	Взаимодейств			пучка	co	
	сталью		12			
Глава 2. М	1 етодика экспер	оимента			• • • • • • • • •	19
2.1 изме	Описание ерений19	микротве	рдомера	DHV-1000	И	методика
2.2 1	- Рентгенофазовь	ій анализ и	методика	измерений		20
2.3	-			-	Атомі	но-силовая
МИК	роскопия			21		
2.4	.4 Растровая			электронная		
мик	роскопия			22		-
Глава 3. Э	ксперименталь	ные резуль	гаты и их (обсуждение		24
Выводы						35
Список ли	тературы					36

Реферат

Дипломная работа с.36.; 16 рис.; 6 табл.; 18 источников. Объектом исследования являлась инструментальная быстрорежущая сталь P18, облученная мощным электронным пучком

Цель работы - исследование структуры и механических свойств быстрорежущей стали P18, облученной мощной электронным пучком.

Методы исследования — рентгеноструктурный анализ, растровая электронная микроскопия, атомно-силовая микроскопия, измерение микротвердости по методу Виккерса.

Установлено, что обработка быстрорежущей стали P18 импульсным электронным пучком приводит к изменению структуры, фазового состава (выделение карбидов) и механических свойств (микротвердости поверхностного слоя).

Обнаружено изменение микротвердости, обусловленное главным образом ориентированными микронапряжениями, возникающими в результате обработки.

Так же после воздействия электронного пучка наблюдается изменение рельефа (сглаживание поверхности и уменьшение шероховатости).

Рэферат

Дыпломная работа с.36.; 16 мал.; 6 табл.; 18 крыніц.

Аб'ектам даследавання з'яўлялася інструментальная хуткарэзная сталь P18, апрамененая магутным электронным пучком

Мэта працы - даследаванне структуры і механічных уласцівасцяў хуткарэзнай сталі P18, апрамененай магутнай электронным пучком.

Метады даследавання - рэнтгенаструктурны аналіз, растравая электронная мікраскапія, атамна-сілавая мікраскапія, вымярэнне мікрацвёрдасці па метадзе Вікерса.

Устаноўлена, што апрацоўка хуткарэзнай сталі P18 імпульсным электронным пучком прыводзіць да змены структуры, фазавага складу (вылучэнне карбідаў) і механічных уласцівасцяў (мікрацвёрдасці павярхоўнага пласта).

Выяўлена змена мікрацвёрдасці, абумоўленае галоўнай выявай арыентаванымі мікранапружаннямі, якія ўзнікаюць у выніку апрацоўкі.

Гэтак жа пасля ўздзеяння электроннага пучка назіраецца змена рэльефу (згладжванне паверхні і памяншэнне шурпатасці).

Abstract

Thesis p.36.; 16 fig.; 6 tablets; 18 sources.

The object of the study was R18 tool high-speed steel irradiated with a powerful electron beam.

The purpose of the work is to study the structure and mechanical properties of high-speed steel P18 irradiated with a powerful electron beam.

Research methods - X-ray diffraction analysis, scanning electron microscopy, atomic force microscopy, measurement of microhardness by the Vickers method.

It has been established that the processing of high-speed steel R18 by a pulsed electron beam leads to a change in the structure, phase composition (precipitation of carbides) and mechanical properties (microhardness of the surface layer).

A change in microhardness was found, mainly due to oriented microstresses arising as a result of processing.

Also, after exposure to an electron beam, a change in the relief is observed (smoothing the surface and reducing the roughness).